
Attunity Connect Reference
Version 4.1

Attunity Connect Reference

© 2003 by Attunity Ltd.

Due to a policy of continuous development, Attunity Ltd. reserves the right to alter, without
prior notice, the specifications and descriptions outlined in this document. No part of this
document shall be deemed to be part of any contract or warranty whatsoever.

Attunity Ltd. retains the sole proprietary rights to all information contained in this document.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopy, recording, or otherwise, without
prior written permission of Attunity Ltd. or its duly appointed authorized representatives.

Product names mentioned in this document are for identification purposes only and may be
trademarks or registered trademarks of their respective companies.

3rd party software credits

Attunity products (Attunity Connect and Attunity Connect Studio) include software developed
by Eclipse.org, Exolab.org, Sun Microsystems, Inc., the JDOM project (http://www.jdom.org/)
and the Apache Software Foundation (http://www.apache.org/).

Attunity hereby disclaims on behalf of all Eclipse.org contributors whose components are
included in Attunity Connect, all warranties and conditions, express and implied, including
warranties or conditions of title and non-infringement, and implied warranties or conditions
of merchantability. Attunity excludes on behalf of all Eclipse.org contributors whose
components are included in Attunity Connect all liability for damages, including direct,
indirect, special, incidental and consequential damages.

Attunity hereby agrees to defend and indemnify Sun and its licensors from and against any
damages, costs, liabilities, settlement amounts and/or expenses (including attorneys' fees)
incurred in connection with any claim, lawsuit or action by any third party that arises or
results from the use or distribution of any and all Programs and/or Software, as related to
Sun's software components embedded in this software (Attunity Connect).

Castor is Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.

JDOM is Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

The Apache Software License, Version 1.1 is Copyright (c) 1999-2000 The Apache Software
Foundation. All rights reserved.

Table of Contents
About this Manual 23

ACX 27

Adabas DDM Import 27

Adabas Driver 29
Setting Up the Binding ..31

Checking the Adabas Environment ..34

Mapping Adabas Data Types ..36

Generating a Trace File ...37

Transaction Support ..37

Locking ...37

Metadata Considerations...37

Adapters 38

ADD 38

ADD Supported Data Types 38

ADD Syntax 48
The <table> Statement ..48

The <dbCommand> Statement ...54

The <fields> Statement ...54

The <field> Statement ...55

The <group> Statement...61

The <variant> Statement ..64

The <case> Statement ...67

The <keys> Statement ...68

The <key> Statement...69

The <segments> Statement...72

The <segment> Statement ..73

iv Attunity Connect Reference
The <foreignKeys> Statement...74

The <foreignKey> Statement ..74

The <primaryKey Statement> ..76

The <pKeySegment> Statement ...77

The <procedure> Statement ..77

The <parameters> Statement ...79

ADDON file 80

ADO 80
ADO Methods and Properties..80

ADO Schema Recordsets ...84

Optimizing ADO...84

ADO Connect String 87
Connect String Parameters ...87

APIs to Application Adapters 92

Application Adapter 92

Application Adapter Definition 93
The adapter Element ...94

The interaction Element ..96

The schema Element..97

The enumeration Element ...98

The record Element..98

The variant record Element...100

The field Element ...100

Attunity Connect Analyzer ..103

Attunity Connect Environment Prompt (Windows Only) 103

Attunity Connect Procedure 103

Attunity Studio 103

Attunity Studio Preferences 105

Contents v
Attunity Connect XML Protocol (ACX) 105
ACX Request and Response Documents ...106

Connection Verbs ...107

Transaction Verbs ..112

The execute Verb..118

Metadata Verbs ..119

The ping Verb ...124

The exception Verb...125

BASIC Mapfiles Import (OpenVMS Only) 128

Batching SQL Statements 129

Binding Configuration 129

BizTalk Adapter 138

Btrieve DDF File Import (Windows Only) 142

Btrieve Driver 143
Setting Up the Binding ..144

Mapping Btrieve Data Types...145

Transaction Support ..146

Metadata Considerations...146

C and COBOL APIs to Applications 147
Using the Attunity Connect API to Invoke Application Adapters147

Connection APIs...148

Transaction APIs..153

The Ping Function..158

The Get Error Function ...158

Example Programs Using Attunity Connect APIs to Invoke Application
Adapters ...158

Change Data Capture 165

Chapters 167

vi Attunity Connect Reference
CICS as a Client – Invoking an Application Adapter
(OS/390 and z/OS Only) 168

Configuring the IBM OS/390 Machine..169

Using a CICS Transaction to Invoke an Application Adapter.......................170

Calling the Transaction ...173

The Transaction Output ..174

CICS Application Adapter (OS/390 and z/OS Only) 174
Setting Up the Binding ..174

The Adapter Definition ..176

Transaction Support ..176

CISAM Driver 177
Setting Up the Binding ..177

CREATE TABLE Data Types..179

Transaction Support ..180

Locking..180

Metadata Considerations...180

Client Machine 180

COBOL APIs to Applications 180

COBOL Copybook Import for Data Source Metadata 181

COBOL Copybook Import for Application Adapter Definitions 181

COBOL Data Types to Attunity Data Types 183

Codepage 186

COM Application Adapter 186
Registering the COM Application ...187

Setting Up the Binding ..187

The Adapter Definition for a COM Adapter ...187

COM Adapter Supported Data Types ...189

ComACX – Attunity Connect COM Component for XML 191

Contents vii
Communication Errors 191

Configuration Perspective 206

Configuration Properties 211

Connect String 211

Connection Pooling 212

Copying Data From One Table to Another 212

Daemon 213
Starting the Daemon..214

Shutting Down the Daemon ..219

Checking that a Daemon is Running ..220

Daemon Command Interface 222

Daemon Configuration 227
The Daemon Definition..228

The Workspace Definition ... 235

Sample Daemon Configuration ...250

Data Drivers 251

Data Source 252

Data Source Shortcut 252

Database Adapter 252
Setting Up the Binding ..253

The Adapter Definition for a Database Adapter ..253

Using the Database Adapter ...263

DB2 Driver 264
Setting Up the Binding ..264

Mapping DB2 Data Types ... 268

CREATE TABLE Data Types..269

Stored Procedures ..269

viii Attunity Connect Reference
Transaction Support ..270

Isolation Levels and Locking ...272

DBMS Driver 272
Setting Up the Binding ..274

Mapping DBMS Data Types ..275

Database Model Mapping Requirements..276

Transaction Support ..289

Locking..289

Metadata Considerations...290

Resolving Errors...290

DBMS Import (OpenVMS Only) 303

Delete Command in Attunity Studio 304

Deleting Repository Objects 304

Demo Database 304

DISAM Driver 305
Setting Up the Binding ..305

CREATE TABLE Data Types..307

Locking..307

Metadata Considerations...307

Drill-down Operations 307

Driver Configuration Properties 308

Drivers 308

Editing Repository Objects 309

Encryption 310

Enscribe Metadata Import from COBOL Copybooks
(HP (Compaq) NonStop Only) 310

Contents ix
Enscribe COBOL and DDL Import
(HP (Compaq) NonStop Only) 311

Enscribe Driver (HP (Compaq) NonStop Only) 314
Setting Up the Binding ..315

CREATE TABLE Data Types..316

Creating Enscribe Files ...317

Transaction Support ..317

Locking ...317

Metadata Considerations...318

Enscribe TAL and DDL Import (HP (Compaq) NonStop Only) 319

Environment Properties 322
comm Category...327

debug Category...327

miscellaneous Category ...329

odbc Category ...333

oledb Category.. 334

optimizer Category...334

queryProcessor Category ...335

transactions Category .. 337

tuning Category..338

Dynamically Changing an Environment Property... 339

Errors 340
Attunity Connect Standard Error Codes ..341

Attunity Connect Trace Return Codes.. 361

Events 373
Creating an Adapter Definition for the Event..374

Handling the Event..375

Setting Access Rights to an Event Queue...375

The Event Router Configuration...376

x Attunity Connect Reference
Exporting From the Repository 378

Extended Native Data Source Metadata 379

Firewalls 380

Flat Files Driver 380
Setting Up the Binding ..380

Metadata Considerations...381

Heterogeneous Joins 382

Hierarchical Data 382
Flattening Hierarchical Data Using SQL...384

Using Virtual Tables to Represent Hierarchical Data...................................388

Hierarchical Queries 390
Generating Hierarchical Results Using SQL ...391

Hierarchical Queries From an Application...392

Hot Server 400

Impersonation 401

Import Utilities 403

Importing to the Repository 404

IMS/DB DBCTL (OS/390 and z/OS Only) 404
Setting Up the Binding ..405

Metadata Considerations...406

IMS/DB DBDC Driver (OS/390 and z/OS Only) 408
Setting Up OTMA ..409

Setting Up the Binding ..410

Metadata Considerations...411

Contents xi
IMS/DB DLI Driver (OS/390 And Z/OS Only) 413
Setting Up the Binding ..413

Setting Up the Daemon Workspace ..414

Metadata Considerations...414

IMS/TM as a Client – Invoking an Application Adapter
(OS/390 and z/OS Only) 416

Setting Up the IBM OS/390 Machine ...416

Setting Up a Call to the Transaction ..416

Calling the Transaction ...419

The Transaction Output ..421

IMS/TM Application Adapter (OS/390 and z/OS Only) 422
Setting Up OTMA ..422

Setting Up the Binding ..424

The Adapter Definition ..424

Transaction Support ..425

Setting Up the Binding ..426

Mapping Informix Data Types .. 428

CREATE TABLE Data Types..429

Stored Procedures ..430

Transaction Support ..430

Isolation Levels and Locking ...430

Ingres and Ingres II (OpenIngres) Drivers 431
Setting Up the Binding ..431

Mapping Ingres and Ingres II Data Types ... 434

CREATE TABLE Data Types..435

Stored Procedures ..436

Transaction Support ..436

Isolation Levels and Locking ...437

Invoking APIs to Applications 437

xii Attunity Connect Reference
IRPCD 438

Isolation Levels 438

JCA 440

JDBC 440

Joining Data from Multiple Data Sources in a Single Query 440

Languages 441

Legacy Plug Adapter 441
Setting Up the Binding ..441

The Adapter Definition for a Legacy Plug Adapter..442

Local Data 443

LOCAL_COPY Metadata (Metadata Caching) 443

Locking Considerations 444
JDBC Locking Considerations...445

ODBC Locking Considerations..445

ADO Locking Considerations ..446

Logging 446

Metadata 447

Metadata ADD Utilities 448

Metadata Caching 448

Metadata Import Perspective 448
Importing Adapter Metadata ..450

Importing Data Source Metadata ...451

Importing Event Metadata ..452

Metadata Import Utilities for Data Sources 452

Contents xiii
Metadata Perspective 453
Adapter Metadata ..454

Data Source Metadata ...460

National Language Support (NLS) 471
Setting NLS Support..471

NLS Support at the Field Level ..476

NLS Support on OS/400 Platforms ...476

NLS Support Across Machines with Different Codepages477

NLS and XML .. 478

NLS and 7-Bit Hebrew ..480

SQL Functions For Use With Graphic Strings...480

Mapping to an Unsupported Codepage...481

Native Metadata 484

Natural/CICS Transactions (OS/390 and z/OS Only) 484
Writing a Natural Remote Procedure Call ... 485

Defining the Natural/CICS Transaction to Attunity Connect.......................490

Maintaining the CICS Environment for the Attunity Connect
Natural Agent ..495

NAV.SYN 501

NAV_UTIL 501

NAV_UTIL ADD_ADMIN 501

NAV_UTIL AUTOGEN 502

NAV_UTIL CHECK 503

NAV_UTIL CODEPAGE 506

NAV_UTIL DELETE 506
Deleting Data Source Objects from the Repository..507

NAV_UTIL EDIT 509

xiv Attunity Connect Reference
NAV_UTIL EXECUTE 512

NAV_UTIL EXPORT 517

NAV_UTIL GEN_ARRAY_TABLES 521

NAV_UTIL IMPORT 521

NAV_UTIL INFO 522

NAV_UTIL LOCAL_COPY 522

NAV_UTIL PASSWORD 523

NAV_UTIL REGISTER 523

NAV_UTIL TEST 523

NAV_UTIL UPD_DS 524

NAV_UTIL UPD_SEC 524

NAV_UTIL UPDATE 525

NAV_UTIL Utility 527
Nav_Util Options ...527

Running Nav_Util ..528

Running Nav_Util on a Remote Machine from a Local Machine529

Running Nav_Util from a Shell Environment..530

Running Nav_Util on a Java Machine..531

NAV_UTIL VERSION 532

NAV_UTIL VIEW 532

NAV_UTIL XML 535

NAVDEMO 537
The Demo Database ...538

Navmap File (HP (Compaq) NonStop Only) 542

NAVROOT 543

Contents xv
Network Communications 543

ODBC 544
ODBC API Conformance ...544

ODBC Data Types..548

ODBC Schema Rowsets ...550

Attunity Connect-Specific SQLGetInfo fInfoType..551

Attunity Connect-Specific SQLColAttributes fOption551

Support for Non-C Applications on Platforms Other than NT......................551

ODBC Connect String 552
Connect String Parameters ...554

ODBC Driver 559
Setting Up the Binding ..559

Mapping ODBC Data Types ..562

CREATE TABLE Data Types..562

Stored Procedures ..563

Transaction Support ..563

Isolation Levels ..563

Offline Design Mode 564

OLE DB 564
OLE DB Methods ...565

OLE DB Data Types ..567

OLE DB Properties ..568

OLE DB Schema Rowsets..573

OLEDB-FS Driver 574
Setting Up the Binding ..574

Data Provider Requirements...576

Data Source Properties ..577

Mapping OLE DB Data Types...577

xvi Attunity Connect Reference
Transaction Support ..578

Isolation Levels ..578

OLEDB-SQL Driver 579
Setting Up the Binding ..579

Data Provider Requirements ...580

Mapping OLE DB Data Types...582

Stored Procedures ..582

Transaction Support ..583

Isolation Levels ..583

One-Phase Commit 583

Oracle Driver 584
Setting Up the Binding ..584

Mapping Oracle Data Types ..586

CREATE TABLE Data Types..587

Stored Procedures ..588

Transaction Support ..588

Isolation Levels and Locking ...589

Passthru SQL 590
For a Specific SQL Statement ...590

For all SQL During a Session..593

Passthru Queries as Part of an SQL Statement ..595

Pathway Adapter (HP (Compaq) NonStop Only) 596
Setting Up the Binding ..596

The Adapter Definition for a Pathway..597

Support for TMF Transactions ..598

Perspectives 599

Prestarted Servers 599

Preferences 600

 xvii
Procedure Driver (Application Connector) 600
Setting Up the Binding ..601

Metadata Considerations...602

Executing a Procedure ...607

Procedures 610

Query Adapter 611
Setting Up the Binding ..611

Query Adapter Interactions...613

Query Analyzer 626
The Attunity Connect Analyzer GUI ..629

Working with an Optimization Plan...634

Query Governor 636

Rdb Driver (OpenVMS Only) 637
Setting Up the Binding ..637

Mapping Rdb Data Types ..639

CREATE TABLE Data Types..640

Stored Procedures ..641

Transaction Support ..641

Isolation Levels and Locking ...641

Recovery 642

Recovery Utility 642

Red Brick Driver 645
Setting Up the Binding ..645

Mapping Red Brick Data Types ..646

CREATE TABLE Data Types..647

Transaction Support ..647

Referential Integrity 647

Registering Attunity Connect 648

 xviii
Remove Command in Attunity Studio 649

Repository 649

Remote Data 649

Reserved Keywords 650

Reusable Server 651

RMS CDD Metadata Import (OpenVMS Only) 651

RMS Metadata Import from COBOL Copybooks
(OpenVMS Only) 653

RMS Driver (OpenVMS Only) 654
Setting Up the Binding ..654

CREATE TABLE Data Types..655

Transaction Support ..656

Locking ...656

Metadata Considerations...656

RRS (OS/390 and z/OS Platforms Only) 657

Runtime Perspective 658

Sample Data 662

Security 662
Design Time..662

Runtime ..665

Encrypting Network Communications ...672

Segmented Data Sources 677

Server Machine 679

Server Mode 680

Single Client 682

Snapshot of the Metadata 682

 xix
SQL 682

SQL Server (ODBC) and SQL Server Drivers 683
Setting Up the Binding ..684

Mapping SQL Server Data Types ...685

CREATE TABLE Data Types..686

Stored Procedures ..687

Transaction Support ..688

Isolation Levels and Locking ...688

SQL Syntax 689
The SELECT Statement ..691

The SELECT XML Statement...707

The INSERT Statement...708

The UPDATE Statement ...709

The DELETE Statement ...714

The CREATE TABLE Statement..718

The DROP TABLE Statement...721

The CREATE INDEX Statement ..722

The CREATE VIEW Statement ..723

The DROP VIEW Statement ...724

The CREATE PROCEDURE Statement ..725

The DROP PROCEDURE Statement ...727

The CALL Statement...728

The CREATE SYNONYM Statement ...730

The DROP SYNONYM Statement..731

The GRANT Statement ...732

Transaction Statements...733

Constant Formats ..733

Expressions <expr>..734

Functions ..735

Parameters ...748

 xx
Search Conditions and Comparison Operators .. 748

Passthru Query Statements (bypassing Attunity Connect
Query Processing) ..753

SQL/MP Driver 755
Setting Up the Binding ..755

Mapping SQL/MP Data Types...756

CREATE TABLE Data Types..758

Mapping SQL/MP Table Names..758

SQL/MP Primary Keys ..759

Partitioned Tables..759

Transaction Support ..760

Isolation Levels and Locking ...761

SQS 761

Stored Procedure 761

Subquery 762

Sybase Driver 762
Setting Up the Binding ..762

Mapping Sybase Data Types ...764

CREATE TABLE Data Types..766

Stored Procedures ..766

Transaction Support ..767

Isolation Levels and Locking ...767

Syntax File (NAV.SYN) 767

SYS 768

System Parameters (OpenVMS Only) 768

Text-Delimited File Driver 769
Setting Up the Binding ..769

Metadata Considerations...770

 xxi
Thin Client 771

Transaction Management 771
Distributed Transactions...776

Recovery..779

Troubleshooting 780
Checking and Specifying Log Files ...781

Communication Factors...781

Tuning 783

Tuxedo Adapter 788
Setting Up Tuxedo ...789

Setting Up the Binding ..789

The Adapter Definition ..789

Transaction Support ..791

Two-Phase Commit 792

UDL 793

User-Defined Data Type – UDT 793

User Information in Application Connect Strings 793

User Profiles 793

User Quotas (OpenVMS Only) 797

Virtual 799

Virtual Database 799
Setting Up the Binding ..801

Using a Virtual Database ..806

Virtual Driver 807
Setting Up the Binding ..807

Virtual Tables 810

 xxii
VSAM Driver 810
VSAM Data Source Restrictions ..810

Setting Up the Binding ..811

CREATE TABLE Data Types..812

Metadata Considerations...813

VSAM Under CICS Driver 814
Setting Up the Binding ..815

Transaction Support ..817

Metadata Considerations...818

Workspace 821
Workspace Configuration ..821

Workspace for HP NonStop Server Environment File (HP (Compaq)
NonStop Only) 823

Workspace for OS/390 Server Environment File (OS/390 and z/OS
Only) 824

Writing Queries Using Attunity Connect SQL 825

XML 827

XML Transports 827
Passing XML Documents via TCP/IP ...827

Passing XML Documents via HTTP (Using the NSAPI Extension)828

About this Manual

Attunity Connect is an information infrastructure solution that
provides built-in connectivity to data sources and applications across a
distributed environment that can encompass different platforms,
networks, and even the Internet.

In addition to a range of ready-to-use drivers, adapters and integration
software, Attunity Connect includes development and management
tools that make it easy to add applications and data sources to the
integrated enterprise.

Attunity Connect provides a flexible, dependable infrastructure for
web-enabling mainframe and other legacy solutions. The architecture
takes advantage of distributed processing and an array of industry
standards (such as XML, JCA, COM, JDBC, ODBC and OLE DB).

This manual describes Attunity Connect. The manual is organized
alphabetically, by topic.

Intended Audience This manual is intended for users of Attunity Connect who are:

! Developing applications that access applications or data through
Attunity Connect.

! System Administrators and those responsible for access to the
databases and applications at the site.

Related Information This manual assumes you are familiar with whichever of the following
you use to access data:

! Sun’s JDBC data access specification
! The Microsoft ODBC data access specification

! The Microsoft ActiveX Data Objects (ADO) specification
! Standard ANSI ’92 SQL

! Sun’s J2EE Connector Architecture (JCA)
! XML

 About this Manual 24
Typographic
Conventions

This document uses the following typographic conventions:

Syntax Diagram
Conventions

Two different syntax conventions are used in this manual:

! Syntax diagrams describing SQL

! Conventions for commands

Syntax Diagrams Describing SQL

The following diagrams describe the SQL syntax that is specific to
Attunity Connect:

 The beginning of an SQL statement.

 The continuation of an SQL statement from another line.

 The syntax is continued on another line.

 The end of an SQL statement.

Required items appear on the main path. Keywords are shown in
uppercase and must be typed as shown. Variables are shown in
lowercase. Syntax that is described in detail elsewhere is displayed in
angled brackets (<>):

A choice between items appears as a stack. If an entry is shown on the
main path, you must include an item in the stack:

Italics Italics denotes either a placeholder/variable for an
actual value or a new term.

!To do A bolded sentence starting with the word To is
followed by a procedure.

" This symbol prefaces a note to the main text.
Sample code This font denotes sample code and commands that

you type on the keyboard.
Xyz Platforms Grey shading highlights platform-specific

information within a topic.

KEYWORD required_variable <more_syntax>

KEYWORD required_variable1

required_variable2

 About this Manual 25
A optional choice between items appears as a stack below the main
path. Default values are shown in bold:

An option to repeat a part of the syntax appears as an arrow returning
to the left. Any syntax included between the beginning and end of the
returning arrow follows the normal syntax rules for that part of the
syntax diagram:

Aliases for keywords appear on either side of the path:

Punctuation marks, parentheses, arithmetic operators and other
symbols must be entered as part of the syntax.

Conventions for Commands

The following conventions are used to describe commands entered to
the keyboard or console:

! Keywords are shown in standard type.
! Variables are shown as italics.

! Square brackets ([]) enclose optional items.
! Vertical lines (|) separate between choices.

! Ellipses (...) indicate that the preceding item can be repeated.

KEYWORD

optional_variable2

optional_variable1

KEYWORD

repeat_variable2

repeat_variable1

AND

KEYWORD

ALIAS

 About this Manual 26
Related
Documentation

The Attunity Connect documentation set includes the following:

Attunity Connect Release Notes New features for the current Attunity Connect
version.

Getting Started with Attunity Connect A walk-through describing how to connect to data
using Attunity Connect.

Attunity Connect Installation Guides Guides describing how to install Attunity Connect
on HP (Compaq) NonStop, OpenVMS, OS/390 and
z/OS, OS/400, UNIX and Windows platforms.

Attunity Connect Reference This manual.
Attunity Connect User’s Guide A guide to using Attunity Connect application

adapters and data sources on all platforms.
Attunity Connect and Applications Tutorials demonstrating how to use

Attunity Connect with various applications, such
as IBM WebSphere.

Using the Attunity Connect Syntax File
(NAV.SYN)

Documentation detailing how to use the
Attunity Connect syntax file to control the way
SQL is processed by Attunity Connect.

Attunity Connect Developer SDK Documentation detailing the Attunity Connect
SDK, which enables you to build application
adapters and data adapters. In addition, you can
define custom data types and start-up functions.

ACX
See "Attunity Connect XML Protocol (ACX)" on page 105.

Adabas DDM Import
The Adabas DDM import utility produces ADD metadata from Adabas
DDM files.

" To import PREDICT metadata directly, use the NAV_UTIL EDIT utility with the
-native option (see page 509).

" To run this utility from within a DOS environment, the NAVROOT logical must
have been set previously. If NAVROOT has not been set, run the nav_login
batch file to define NAVROOT.

To generate the ADD metadata, use the appropriate command:

OS/390 and z/OS Platforms

Transfer the nsd files to another platform and run the command from
the other platform, using the "d" option to save the intermediate files.
Transfer these files back to the OS/390 or z/OS machine and run the
following:

NAVROOT.USERLIB(NAVCMD) and enter “addl_to_add ds_name
adl_file” at the prompt.

where:

ds_name – The name of an Attunity Connect ADABAS data source
defined in a binding configuration. The imported metadata is stored as
ADD metadata in the repository for this data source.

adl_file – The name of the intermediate file.

OpenVMS Platforms
$ DDM_ADL filelist ds_name [basename] [options]

" Activation of this utility, directly from DCL, is based on environment symbols
defined by the login file that resides in the BIN directory under the directory
where Attunity Connect is installed. You can always replace the environment
symbol with the appropriate entry.

 28

Adabas DDM Import
where:

filelist – The list of DDM files that are imported into ADD metadata. Only
DDM files generated from Predict can be used (and not DDM files
generated from custom reports written in Natural).

ds_name – The name of an Attunity Connect data source defined in the
binding configuration. The imported metadata is stored as ADD
metadata in the repository for this data source.

basename – A user defined name, used for the intermediate files used
during the import operation.

" On Windows NT platforms, the directories in the file’s pathname, and the
filename itself, are restricted to 8 characters.

options – Enables you to specify the following options:

d – Specifies that all intermediate files are saved. You can check
these files if problems occur in the conversion.

c – Specifies that column name is used for an array name, instead
of the concatenation of parent table name with child table name.
" If a column name is not unique in a structure (as when a structure includes

another structure, which contains a column with the same name as a
column in the parent structure), the nested column name is suffixed with
the nested structure name.

" To display online help for this utility, run the command as follows: DDM_ADL
HELP.

UNIX Platforms
ddm_adl -n ds_name [-b basename] [-d] [-c] filelist

" Activation of this utility, directly from the shell, is based on environment
symbols defined by the login file that resides in the BIN directory under the
directory where Attunity Connect is installed. You can always replace the
environment symbol with the appropriate entry.

Windows NT Platforms
ddm_adl filelist ds_name [basename] [d] [c]

OpenVMS Platforms
Separate the files in this list with commas.

UNIX Platforms
This parameter is at the end of the command. Separate the files in this
list with blanks.

Windows NT Platforms
The name of the file containing the list and the names of the files in the
list must be less than or equal to eight characters (with a suffix of three
characters). Separate the files in this list with commas.

 29

Adabas Driver
Adabas Driver
The following Adabas drivers are provided:

! ADABAS – This driver uses PREDICT metadata.
! ADD-ADABAS – This driver uses Attunity Connect metadata (ADD).

The following sections provide information about the Attunity Connect
Adabas drivers:

! Setting Up the Binding

! Mapping Adabas Data Types – To ADD data types (ADD is the
Attunity Connect Data Dictionary, which you use to store
metadata).

! Generating a Trace File
! Transaction Support

! Locking
! Metadata Considerations

In addition, the Adabas driver provides array handling – see
"Hierarchical Queries" on page 390. Attunity Connect treats as arrays
multiple value (MU) fields (such as ADRESS-LINE in the Adabas
Employees demo table) and periodic group (PE) fields (such as INCOME
in the demo table). A maximum of two levels of nesting is allowed. A
counter field for the field is automatically generated with the name
C-arrayname, where arrayname is the multiple value field name or
periodic group field name. This counter field is automatically
incremented when a new entry is made to the array. In addition to the
counter field, a maximum of 191 elements are allowed in an array. A
counter field is not generated for an MU field nested in a PE field.

" If the number of occurrences for the multiple value or periodic group field is not
defined in PREDICT, Attunity Connect uses either the value specified in the
defaultOccurrences parameter or, if the parameter is not defined, a default
value of 10. For details about defaultOccurrences, see page 31.

The Attunity Connect Adabas driver supports:

! ISN usage. The ISN can be used as a column in a WHERE clause.

! Multi-index query strategy.
! Descriptors and super descriptors. Attunity Connect can handle

queries having more than one descriptor and super descriptor.

If the super descriptor includes only part of a field, this is
represented in the ADD by a new field, which is also included in the
index. The new field has the format field-n-m, where n is the
beginning bit in the original field and m is the number of bits for the

 30

Adabas Driver
field. It is recommended that you do not attempt updates to fields
with this format. In queries to ADABAS you must use the new field
and not the original field. For example, if you have a field of length
six called DEPT with a super descriptor of the first four bits, a new
field is generated in ADD called DEPT-1-4. This new field is defined
in the ADD as an index for the record and must be used in the query
instead of the original field. For example, use a query such as
SELECT * FROM T1 WHERE "T1.DEPT-1-4" = ’aaaa’ instead of
SELECT * FROM T1 WHERE T1.DEPT LIKE ‘aaaa%’.

An index is automatically built when descriptor is defined on a
multiple value (MU) field or a periodic group (PE) field. The
descriptor index has the format:

predict_field_name-ACSEARCH-field_name

This value can be used in a WHERE clause, as in the following
example:

SELECT lang FROM employees->lang
 WHERE "AZ-ACSEARCH-LANG" = "ENG"

! Prefetch and multifetch are supported. The prefetch feature is
implemented automatically. The multifetch feature is controlled by
driver properties (see "Driver Configuration (When Using ADD
Metadata)" on page 33)

When several logical tables are stored in the same physical file, a query
over the physical file returns that contain NULL values, except for the
ISN number. To prevent this happening, if the ADABAS driver is being
used, specify a WHERE clause in the SQL (such as, WHERE NOT
(column_L IS NULL).

If the ADD-ADABAS driver is used, you can set the WHERE clause using
the filter attribute in the ADD (see page 51). Alternatively, when the
ADD-ADABAS driver is being used, you can specify the file number and
the descriptor as part of the dbCommand statement for the logical table
(such as <dbCommand>17;AA</dbCommand>. Each logical table will
have the same file number as the other tables in the file but a different
descriptor value (and the metadata for each table will include only the
fields relevant to that specific logical table). Thus the file can be
scanned using an Adabas L2 command (read logical) instead of the
usual L3 command (read physical), using the descriptor to access the
specific table.

" When accessing Adabas, do not specify multiClient as the server mode in the
daemon workspace.

 31

Adabas Driver
Setting Up the Binding

How you connect to the Adabas database is determined by whether you
are using PREDICT metadata or Attunity Connect ADD metadata.

! To connect to an Adabas data source with PREDICT metadata:

The Adabas (Predict) data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.

! Right-click Data source and choose the New data source option.

! Specify a name for the data source in the Name field.
! Select ADABAS (Predict) for the Type field.

! Specify the connect string as follows:

Database number – The Adabas database number. A database
number 0 refers to the default Adabas database.

PREDICT file number – The Adabas PREDICT file number.
" This number (FDIC) is the number associated with the specified database

and is part of the database that is installed. The predict file must exist for
Attunity Connect to connect to Adabas.

PREDICT database number – An Adabas database number specifying
another database that indicates where the PREDICT metadata
resides. Use this field when the PREDICT metadata from this other
database is used instead of the PREDICT metadata associated with
the database specified by the Database number field. Specify a
value only when the PREDICT file number is not the file number
associated with the database specified in the Database number
field.

Driver Configuration
Using Predict Metadata

After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

dbNumber="n" – (Database number in the connect string) The Adabas
database number. A database number 0 refers to the default Adabas
database.

defaultOccurrences="n" – The maximum number of occurrences of a
grouped or non-grouped array. If the PREDICT occurrences field for
multiple value fields or periodic group fields is not specified, either this
parameter's value is used or, if the parameter is not specified, the value
defaults to 10. If a record is retrieved with more occurrences than
specified, an error is returned.

 32

Adabas Driver
disregardNonselectable="true|false" – A descriptor defined on a
multiple value (MU) field or a periodic group (PE) field is ignored.

fileList="string" – The list of DDM files that are imported into ADD
metadata. Only DDM files generated from Predict can be used (and not
DDM files generated from custom reports written in Natural).

lockWait="true|false" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

multiDatabasePredict="true|false" – The SYSDIC_FI_ADA view is used to
determine which table to access from the multiple ADABAS databases.
When executing LIST TABLES the tables only of the relevant database
are displayed.

multifetch" type="n" – Attunity Connect uses a read-ahead buffer. The
size of the buffer can be controlled as follows:

! multifetch="1" - A read-ahead buffer of up to a maximum of 10K or
15 rows is used as required.

! multifetch="n" - Causes n rows to be read at a time, where n is a
number from 2 to 15.

! multifetch="-n" - A read-ahead buffer with a fixed size, where n is
less than or equal to 10000.

! multifetch="0" - Disables the read-ahead feature. Note that this is
equivalent to setting NOMULTIFETCH.

nullSuppressionMode="disabled | full | indexesOnly" – Controls how
empty Adabas fields are handled. The value set for this property is
generated automatically and should not be changed. Null suppressed
fields that are part of an index must have a predicate on all
null-suppressed segments of the form "is null" or "is not null".

predictDbNumber="n" – (PREDICT database number in the connect
string) An Adabas database number specifying another database that
indicates where the PREDICT metadata resides. Use this field when the
PREDICT metadata from this other database is used instead of the
PREDICT metadata associated with the database specified by the
Database number field. Specify a value only when the PREDICT file
number is not the file number associated with the database specified in
the Database number field.

predictFileNumber="n" – (PREDICT file number in the connect string)
The Adabas PREDICT file number.

" This number (FDIC) is the number associated with the specified database and
is part of the database that is installed. The predict file must exist for Attunity
Connect to connect to Adabas.

 33

Adabas Driver
traceValueBuffer="true|false" – Specifies whether the value buffer is
included in an Adabas trace.

userInfo="string" – The value passed as a null-terminated string to
Adabas as the seventh parameter. Can be referenced by Adabas
user-exits.

useUnderscore="true|false" – Converts hyphens (-) in table and column
names to underscores(_).

verifyMetadata="true|false" – Reads the metadata and verifies that the
fields and indexes specified in the metadata exist in the physical data.
Any discrepancies are written to the log.

! To connect to an Adabas data source with ADD metadata:

The Adabas (ADD) data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.

! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.

! Select ADABAS (ADD) for the Type field.
! Specify the ADABAS (ADD) connect string as follows:

Database number – The Adabas database number. A database
number 0 refers to the default Adabas database.

Driver Configuration
(When Using ADD
Metadata)

After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

dbNumber="n" – (Database number in the connect string) The Adabas
database number. A database number 0 refers to the default Adabas
database.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

disregardNonselectable="true|false" – A descriptor defined on a multiple
value (MU) field or a periodic group (PE) field is ignored.

fileList="string" – The list of DDM files that are imported into ADD
metadata. Only DDM files generated from Predict can be used (and not
DDM files generated from custom reports written in Natural).

 34

Adabas Driver
lockWait="true|false" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

multifetch="n" – Attunity Connect uses a read-ahead buffer. The size of
the buffer can be controlled as follows:

multifetch="1" – A read-ahead buffer of up to a maximum of 10K or
15 rows is used as required.

multifetch="n" – Causes n rows to be read at a time, where n is a
number from 2 to 15.

multifetch="-n" – A read-ahead buffer with a fixed size, where n is
less than or equal to 10000.

multifetch="0" – Disables the read-ahead feature. Note that this is
equivalent to setting noMultiFetch.

nullSuppressionMode="disabled | full | indexesOnly" – Controls how
empty ADABAS fields are handled.

disabled – Disables all null-suppression support.

full – Makes all null-suppressed fields appear as nullable and
exposes empty values as NULL. This behavior is not required for
null-suppressed fields that are not part of an index.

indexesOnly – Only null-suppressed fields that are also part of an
index appear as nullable and empty values only for fields that are
part of an index are exposed as NULL.

traceValueBuffer="true|false" – Specifies whether the value buffer is
included in an Adabas trace.

userInfo="value"– value is passed as a null-terminated string to Adabas
as the seventh parameter. It can be referenced by Adabas user-exits.

verifyMetadata="true|false" – Reads the metadata and verifies that the
fields and indexes specified in the metadata exist in the physical data.

Checking the Adabas Environment

Check that Adabas environment variables such as ADALNK, ADAVERS
and ADADIR are correctly defined and readable by Attunity Connect. If
necessary, define the variables in the startup script defined for the
workspace in the daemon configuration settings, such as
nav_server.script, or in the site_nav_login file (see the Attunity Connect
Installation Guide).

 35

Adabas Driver
Example

The following are UNIX environment variables defined in the Attunity
Connect account for an Adabas account named sag.

PATH=/users/sag/ada/v125:/users/sag/ada/v125/examples:
/users/sag/wcp/v132
SAG=/users/sag
ADADIR=/users/sag/ada
ADAVERS=v125
ADALNK=/users/sag/ada/v125/adalnk.sl

OS/390 and z/OS Platforms

If Adabas was not specified as a data source during installation, to
enable a connection to Adabas, make sure that the ADABAS = ON and
ADABAS_SVC = adabas_SVC_number lines are present in
NAVROOT.DEF.GBLPARMS.

where NAVROOT is the high level qualifier specified during installation
and adabas_SVC_number is the Adabas SVC number.

Configuring Attunity Connect to Run in Multi-client Mode

Thread sharing enables multiple clients to reuse a single ADABAS
thread, helping performance, specifically for high volume transactions.
Adabas provides a member, ADALNKR, which provides this ability.

When configuring Attunity Connect to run in multiClient mode against
an Adabas server, the Adabas link module ADALNKR must be installed
if it has not already been installed during normal Adabas installation.

" The ADALNKR module is a re-entrant version of the ADALNK module. If during
the initial installation of Adabas you made changes to the ADALNK source
(such as data base id or SVC number), make sure these changes are reflected
in the ADALNKR source as well.

Set Adabas for multi-user access as follows:

1. Assemble and link ADALNKR member in the Adabas source library
using the normal assemble/linkedit JCL provided by Software AG.
" If the version of Adabas does not include the source of ADALNKR as a

separate member in the Adabas source library, create it by editing the
ADALNK source (found in the Adabas source library) and locating the
&RENT conditional assembly variable about thirty lines into the program.
By default, &RENT is set to zero. To create a re-entrant version of
ADALNK, set &RENT to one (as in the next commented line in the file),
and save the changed program as ADALNKR. (Remember to include any
changes made to the ADALNK source, such as data base id or SVC
number.)

 36

Adabas Driver
Mapping Adabas Data Types

The following table shows how Attunity Connect maps Adabas data
types to ADD, OLE DB and ODBC data types.

2. Make the ADALNKR load module available to Attunity Connect:
either add ADALNKR to the Attunity Connect LOAD library or add
it to the STEPLIB in the NAVROOT.USERLIB(SERVER) JCL.

3. Configure the Attunity Connect workspace so that its Server
operates in multiClient mode. This is done by setting the daemon
configuration serverMode parameter to multiClient. Load
balancing can be achieved by tuning the other server related
parameters such as the initial number of servers and the maximum
number of servers.

Make these parameter changes in the Attunity Studio
Configuration perspective. For details, refer to "Workspace Server"
on page 238.

Adabas ADD OLE DB ODBC

Alphanumeric (A) String DBTYPE_STR SQL_CHAR

Binary (B2) int2 DBTYPE_I2 SQL_SMALLINT

Binary (B4) int4 DBTYPE_I4 SQL_INTEGER

Binary (B8) int8 DBTYPE_I4 SQL_INTEGER

DATE (D) ada_d_time DBTYPE_TIMESTAMP SQL_TIMESTAMP

Floating (F4) dfloat DBTYPE_R8 SQL_DOUBLE

Floating (F8) double DBTYPE_R8 SQL_DOUBLE

Integer (I2) int2 DBTYPE_I2 SQL_SMALLINT

Integer (I4) int4 DBTYPE_I4 SQL_INTEGER

Integer (I8) int8 DBTYPE_I4 SQL_INTEGER

Logical (L) string DBTYPE_STR SQL_CHAR

Packed Decimal (P) decimal DBTYPE_NUMERIC SQL_NUMERIC

Signed Unpacked
Decimal (NS,US)

numstr_zoned DBTYPE_NUMERIC SQL_NUMERIC

 37

Adabas Driver
Generating a Trace File

Set the debug environment generalTrace parameter to "true" to
generate entries in the standard Attunity Connect log tracing the
access to Adabas data. The entries in the log have the following format:

Transaction Support

The Attunity Connect Adabas driver supports one-phase commit. It can
participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Locking

Record level locking is supported.

Metadata Considerations

The Attunity Connect ADD-ADABAS driver requires Attunity Connect
ADD metadata. You can use the DDM_ADL import utility to import
Adabas nsd files to ADD (see page 27). You use the Metadata
perspective of Attunity Studio to maintain the ADD metadata and
update the statistics for the data.

TIME (T) ada_time DBTYPE_TIMESTAMP SQL_TIMESTAMP

Unpacked Decimal
(N, U)

numstr_zoned DBTYPE_NUMERIC SQL_NUMERIC

Adabas ADD OLE DB ODBC

(1) ADABAS: 0 L2 APT0 ISN(16,0,0) O(32,32) A1(0,0,0,0) A2(7d,0,b9,0) F(70,3)
(1) ADABAS Format(189)=AA,4,F,AB,25,A,AC,4,F,AD,152,A.
(1) ADABAS: 0 L2 APT0 ISN(17,0,0) O(32,32) A1(0,0,0,0) A2(6b,0,b9,0) F(70,3)
(1) ADABAS Format(189)=AA,4,F,AB,25,A,AC,4,F,AD,152,A.
...
(1) ADABAS: 3 L2 APT0 ISN(25,0,0) O(32,32) A1(0,0,0,0) A2(0,4e,b9,0) F(70,3)

Return code
(0 = successful)

Return code
(3 = end of file)

ADABAS
command

ISN(ISN,lower limit,quantity)

Command ID

Additions()

ADABAS
options(a,b)

Database
number

File
number

 38

Adapters
Handling More than
One Logical Table in
the Same Physical File

You can handle more than one logical table in the same physical file in
one of the following ways:

! Specify a filter attribute on the logical table in the ADD metadata.
In this case, every query involving the table must be valid once the
WHERE clause generated by the filter attribute is included.

! In the dbCommand statement in the ADD metadata for the table,
specify a descriptor or superdescriptor, as follows:

<dbCommand>"file_number;descriptor_name"
</dbCommand>

In this case, the descriptor or superdescriptor specified must cover
all the rows of the logical table, since it is used to scan the logical
table.

Adapters
Attunity Connect includes adapters to a number of applications.

Also see: "Application Adapter" on page 92.

ADD
The Attunity Connect data dictionary, used to stored metadata for data
sources whose metadata is not readable by Attunity Connect or which
do not have metadata.

Also see: "ADD Supported Data Types" on page 38, "ADD Syntax" on page 48.

ADD Supported Data Types
The following table lists data types supported by the Attunity Connect
Data Dictionary (ADD).

" Platform- and data source-dependent data types run only on their respective
platforms.

ADD Type OLE DB Type ODBC Type Details

ada_d_time DBTYPE_
TIMESTAMP

SQL_TIMESTAMP ADABAS date format

ada_decimal DBTYPE_NUMERIC SQL_NUMERIC OS/390 and z/OS ADABAS packed
decimal

 39

ADD Supported Data Types
ada_numstr_s DBTYPE_NUMERIC SQL_NUMERIC OS/390 and z/OS ADABAS signed
numeric string

ada_time DBTYPE_
TIMESTAMP

SQL_TIMESTAMP ADABAS timestamp format

apt_date DBTYPE_DBDATE SQL_DATE Date packed into a 4 character
string.
Format = DMYY
Example: 23-Jul-1998 is
represented by four bytes: 19, 98, 7,
and 23

apt_time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP ADD date-time format

based_date DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Customize this data type by
defining an environment variable
(UNIX) or logical (OpenVMS) having
the form:
NVDT_BASEDDATE=
yyyymmdd[/dttype[/dtlen
[/multiplier]]]
where:
yyyymmdd – start date
dttype – name of the data type
(int4 is the default)
dtlen – number of digits in the data
type (if not atomic)
multiplier – number of increments
per day
For example:
19700101/INT4//24 specifies the
number of hours since Jan 1 1970

binary DBTYPE_BYTES SQL_BINARY Unknown data type, string type,
length must be specified

ADD Type OLE DB Type ODBC Type Details

 40

ADD Supported Data Types
bit DBTYPE_I1 SQL_TINYINT Single bit within a byte.
Size = 1 byte
Format: datatype="bit"
onBit="n", where n specifies
which bit (within a byte) the field
uses.
If more than one bit is defined, the
additional bits may be defined
sequentially within the same byte
(or bytes, if the number of bits
requires this much space)

bits DBTYPE_I4 SQL_TINYINT A signed number of bits within a
byte.
Size = 1 bit to 1 byte
Format: <field name="name"
datatype="bits" onBit="n"
size="m"/>, where n specifies
which bit (within a byte) to start
from and m is the number of bits. If
n is not specified then n defaults to
1 for the first occurrence of the field
and is contiguous thereafter.
The maximum number of bits you
can map is 32

btrieve_date DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Btrieve date format
Size = 4 characters
Format = DMYY

btrieve_time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Btrieve time format
Size = 4 characters
Format = HSMS (the first "H"
represents hundreds)

cstring DBTYPE_STR SQL_VARCHAR A null-terminated string of
alphanumeric characters;
maximum length must be
specified. An extra byte is required
for the null flag

cv_datetime DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP CorVision date-time format

date DBTYPE_DBDATE SQL_DATE ODBC date format

ADD Type OLE DB Type ODBC Type Details

 41

ADD Supported Data Types
date6 DBTYPE_DBDATE SQL_DATE Date in a string having the form
YYMMDD

date8 DBTYPE_DBDATE SQL_DATE Date in a string having the form
YYYYMMDD

db400_date DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP DB2 UDB date format (AS/400
machine)

db400_
datetime

DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP DB2 UDB date-time format (AS/400
machine)

db400_time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP DB2 UDB time format (AS/400
machine)

decimal DBTYPE_NUMERIC SQL_NUMERIC Packed decimal
Maximum number of digits = 31
Maximum fractions = 11
Length = int (number of digits/2) +
1 bytes

dfloat DBTYPE_R8 SQL_DOUBLE Double floating point number
(D_FLOAT)
Size = 8 bytes
Range: 0.29E-38 to 1.7E38
Precision: 16 digits

double DBTYPE_R8 SQL_DOUBLE Double floating point number
(G_FLOAT)
Size = 8 bytes
Range: 0.56E-308 to 0.90E308
Precision: 15 digits

filler DBTYPE_BYTES SQL_BINARY Allocation for future use, string
type; length must be specified

fixed_cstring DBTYPE_
NUMERIC

SQL_NUMERIC A fixed null-terminated string of
numeric characters; length must be
specified. An extra byte is required
for the null flag

ieee_double DBTYPE_R8 SQL_DOUBLE IEEE double floating point number

ieee_float DBTYPE_R4 SQL_REAL IEEE single floating point number

image DBTYPE_STR SQL_CHAR Binary image (Binary Large
Object)

ADD Type OLE DB Type ODBC Type Details

 42

ADD Supported Data Types
int_date DBTYPE_DBDATE SQL_DATE Date in a four byte integer having
the form YYMMDD or YYYYMMDD
Example, 23-Jul-1998 has the
form: 980723 or 19980723

int1 DBTYPE_I4 SQL_TINYINT Signed byte integer
Size = 1 byte
Range: -128 to +127

int2 DBTYPE_I2 SQL_SMALLINT Signed word integer
Size = 2 bytes
Range: -32768 to +32767

int3 DBTYPE_I4 SQL_INTEGER Signed integer
Size = 3 bytes

int4 DBTYPE_I4 SQL_INTEGER Signed long integer
Size = 4 bytes
Range: -2147483648 to
+2147483647.

int6 DBTYPE_NUMERIC SQL_INTEGER Signed integer
Size = 6 bytes

int8 DBTYPE_NUMERIC SQL_NUMERIC Signed quadword
Size = 8 bytes
Range: -9,223,372,036,854,775,808
to +9,223,372,036,854,775,807

isam_decimal DBTYPE_NUMERIC SQL_NUMERIC CISAM and DISAM packed decimal

jdate DBTYPE_DBDATE SQL_DATE Julian date
Size = 2 bytes
! Bits 0-6: (non-century) year
! Bits 7-15: day of the year

logical DBTYPE_I4 SQL_INTEGER Signed long integer
Values: 1 for true, 0 for false

magic_pc_
date

DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Magic PC date format

magic_pc_
time

DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Magic PC time format

ADD Type OLE DB Type ODBC Type Details

 43

ADD Supported Data Types
mvs_date DBTYPE_STR SQL_CHAR OS/390 and z/OS date format

mvs_
datetime

DBTYPE_STR SQL_CHAR OS/390 and z/OS date-time format

mvs_time DBTYPE_STR SQL_CHAR OS/390 and z/OS time format

nls_string DBTYPE_STR SQL_CHAR String based on language and
driven by table

numeric_
cstring

DBTYPE_
NUMERIC

SQL_NUMERIC A null-terminated string of
numeric characters; maximum
length must be specified. An extra
byte is required for the null flag

numstr_bdn DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string. Sign is the
first character of the string.
Maximum number of digits = 31
Maximum fractions = 11.
! Note: the number of fractions

includes the decimal point

numstr_lse DBTYPE_NUMERIC SQL_NUMERIC Compaq NonStop signed numeric
string. A left overpunched sign is
implemented.
Maximum number of digits = 31
Maximum fractions = 11

numstr_nl DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string. Sign is the
first character of the string.
Maximum number of digits = 31
Maximum fractions = 11

numstr_nlo DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string. A left
overpunched sign is implemented.
Maximum number of digits = 31
Maximum fractions = 11

numstr_nr DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string. Sign is the
last character of the string.
Maximum number of digits = 31
Maximum fractions = 11

ADD Type OLE DB Type ODBC Type Details

 44

ADD Supported Data Types
numstr_s DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string. A right
overpunched sign is implemented.
Maximum number of digits = 31
Maximum fractions = 11

numstr_tse DBTYPE_NUMERIC SQL_NUMERIC HP (Compaq) NonStop signed
numeric string. A right
overpunched sign is implemented.
Maximum number of digits = 31
Maximum fractions = 11

numstr_u DBTYPE_NUMERIC SQL_NUMERIC Unsigned numeric string.
Maximum number of digits = 31
Maximum fractions = 11

numstr_zoned DBTYPE_NUMERIC SQL_NUMERIC Signed numeric string.
Maximum number of digits = 31
Maximum fractions = 11

ole_date DBTYPE_DBDATE SQL_DATE OLE DB date format

ole_decimal DBTYPE_NUMERIC SQL_NUMERIC OLE DB Packed decimal

ole_numeric DBTYPE_
NUMERIC

SQL_NUMERIC OLE DB numeric string

ora_time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Oracle time format

oracle time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Oracle time format

padded_str_
date

DBTYPE_STR SQL_CHAR Padded date format
Not null terminated

padded_str_
datetime

DBTYPE_STR SQL_CHAR Padded date-time format
Not null terminated

padded_str_
time

DBTYPE_STR SQL_CHAR Padded time format
Not null terminated

phdate DBTYPE_DBDATE SQL_DATE Size = 2 bytes
! Bits 0-6: (non-century) year
! Bits 7-10: number of month
! Bits 11-15: day of month

ADD Type OLE DB Type ODBC Type Details

 45

ADD Supported Data Types
scaled_int1 DBTYPE_NUMERIC SQL_NUMERIC Signed byte integer
Size = 1 byte
Range: -128 to +127
Maximum = 3

scaled_int2 DBTYPE_NUMERIC SQL_NUMERIC(5) Signed word integer
Size = 2 bytes
Range: -32768 to +32767
Maximum = 5

scaled_int3 DBTYPE_NUMERIC SQL_NUMERIC Signed integer
Size = 3 bytes

scaled_int4 DBTYPE_NUMERIC SQL_NUMERIC(10) Signed long integer
Size = 4 bytes
Range: -2147483648 to
+2147483647
Maximum = 10

scaled_int6 DBTYPE_NUMERIC SQL_NUMERIC Signed integer
Size = 6 bytes

scaled_int8 DBTYPE_NUMERIC SQL_NUMERIC(19) Signed quadword
Size = 8 bytes
Range: -9,223,372,036,854,775,808
to +9,223,372,036,854,775,807
Maximum = 19

scaled_uint1 DBTYPE_NUMERIC SQL_DOUBLE Unsigned byte integer
Size = 1 byte
Range: 0 to 254
Maximum=3

scaled_uint2 DBTYPE_NUMERIC SQL_NUMERIC(5) Unsigned word integer
Size = 2 bytes
Range: 0 to 65534
Maximum=5

scaled_uint4 DBTYPE_NUMERIC SQL_NUMERIC(10) Unsigned long integer
Size = 4 bytes
Range: 0 to 4,294,967,294
Maximum = 10

ADD Type OLE DB Type ODBC Type Details

 46

ADD Supported Data Types
single DBTYPE_R4 SQL_REAL Single floating point number
(F_FLOAT)
Size = 4 bytes
Range: 0.29E-38 to 1.7 E38
Precision: 6 digits

str_date DBTYPE_STR SQL_CHAR Atomic date string
Size = 10 characters
Format = YYYY-MM-DD

str_datetime DBTYPE_STR SQL_CHAR Atomic date-time string
Size = 19 characters
Format = YYYY-MM-DD
HH:MM:SS

str_time DBTYPE_STR SQL_CHAR Atomic date string
Size = 8 characters
Format = HH:MM:SS

string DBTYPE_STR SQL_CHAR String of alphanumeric characters;
length must be specified

tandem_date DBTYPE_DBDATE SQL_DATE Date in a string having the form
YYYY-MM-DD

tandem_
datetime

DBTYPE_DBTIME SQL_TIME Date and time in a string having
the form YYYY-MM-DD:
HH:MM:SS.FFFFFF

tandem_time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP Time in a string having the form
HH:MM:SS

text DBTYPE_STR SQL_CHAR Text data (Binary Large Object)

time DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP ODBC time format

timestamp DBTYPE_
DBTIMESTAMP

SQL_TIMESTAMP ODBC date-time format

ADD Type OLE DB Type ODBC Type Details

 47

ADD Supported Data Types
ubits DBTYPE_I4 SQL_TINYINT An unsigned number of bits within
a byte.
Size = 1 bit to 1 byte
Format: <field name="name"
datatype="bits" onBit="n"
size="m"/>, where n specifies
which bit (within a byte) to start
from and m is the number of bits. If
n is not specified then n defaults to
1 for the first occurrence of the field
and is contiguous thereafter.
The maximum number of bits you
can map is 31

uint1 DBTYPE_UI1 SQL_TINYINT Unsigned byte integer
Size = 1 byte
Range: 0 to +254

uint2 DBTYPE_I4 SQL_INTEGER Unsigned word integer
Size = 2 bytes
Range: 0 to +65534

uint4 DBTYPE_
NUMERIC

SQL_NUMERIC(11) Unsigned long integer
Size = 4 bytes
Range: 0 to +4,294,967,294

uint6 DBTYPE_NUMERIC SQL_NUMERIC Unsigned integer
Size = 6 bytes

unicode DBTYPE_WSTR SQL_VARCHAR A null-terminated alphanumeric
unicode string; maximum length
must be specified

varstring DBTYPE_STR SQL_VARCHAR 16 bit count, followed by a string

varstring4 DBTYPE_STR SQL_VARCHAR 32 bit count, followed by a string

vms_date DBTYPE_
DBTIMESTAMP

SQL_DATE OpenVMS date-time format

ADD Type OLE DB Type ODBC Type Details

 48

ADD Syntax
ADD Syntax
The Attunity Connect Data Dictionary is described using the following
syntax.

" The syntax is accessed in the Attunity Studio Metadata perspective, in the
Source tab for a data source.

The <table> Statement

The <table> statement describes general record or table attributes.

Syntax

<table name="table_name" attribute="value" ...>
 <fields>
 <field name="field_name" attribute="value"
 ... >
 <dbCommand>...</dbCommand>
 </field>
 ...
 </fields>
 <keys>
 <key name="param">
 attribute="value" ...>
 <segments>
 <segment name="param" attribute="value"
 ... />
 ...
 </segments>
 </key>
 ...
 </keys>
</table>

where table_name is the record/table name up to a maximum of 40
characters.

The <table> statement consists of the following components:

! An attributes list. See page 49.

! A <fields> statement, which includes the fields list. See page 54.
! Optionally, a <keys> statement, consisting of a list of keys. See page

68.

" Notes:
! The table_name entry must conform to standard ANSI ’92 SQL naming

conventions.

 49

ADD Syntax
! When you define the structure of a table for a non-relational data source,
you must include a <fields> statement.

! When both <keys> and <fields> statements are present, the <keys>
statement must come after the <fields> statement.

Example

<table name="nation" organization="index"
 filename="d:\demo\nation" datasource="DEMO">
 <fields>
 <field name="n_nationkey" datatype="int4" />
 <field name="n_name" datatype="string" size="25" />
 <field name="n_regionkey" datatype="int4" />
 <field name="n_comment" datatype="cstring" size="152" />
 </fields>
</table>

Table Attributes alias – Replaces the table name with a logical table name. Names
greater than 39 characters are truncated from the left.

Syntax

alias="name"

basedOn – Specifies the table (or virtual table) on which the current
table is based. This attribute is generated automatically when an array
in a record is generated as a virtual table.

Syntax

basedOn="table_name::array_name"

where:

table_name – The name of the table which contains the array. If the
array is nested in another array, this value is the name of the
parent array.

array_name – The name of the array in the table.

Example

<table name="EMP_CHLDRN" organization="index"
 basedOn="EMPLOYEE::CHILDREN"
 datasource="DEMO" />

Also refer to: "counterName" on page 62 and "dimension1" on page
63.

datasource – Specifies the data source name as specified in the binding
configuration. The repository for this data source is used to store the
ADD information. This attribute must be specified.

 50

ADD Syntax
Syntax

datasource="datasource_name"

Example

<table name="nation" filename="d:\demo\nation"
 organization="index" datasource="DEMO" />

delimited – Specifies the character that delimits fields. In order to get
the delimiter character into the data you must have the entire field
quoted (see "quoteChar" on page 52).

" If you do not specify this attribute, ADD assumes that a comma (,) functions as
the delimiting character.

Syntax

delimited="character"

Example

<table name="nation" filename="d:\demo\nation"
 organization="index" delimited="/"
 datasource="DEMO" />

description – Specifies an optional textual description.

Syntax

description="optional_user_supplied_description"

filename – The filename attribute specifies the full name and location of
the file.

Syntax

filename="full_filename"

where full_filename includes the full path to the file.
" Data source drivers require the file suffix, except for the CISAM and

DISAM drivers, where the suffix must not be specified.

RMS Example – filename="DISK$2:[DB]NATION.DAT"

Flat Files and Text Delimited Files on OS/390 and z/OS Platforms

When defining metadata for a flat file or text delimited file on
OS/390 and z/OS platforms, use the following syntax:

filename="’high_level_qualifier.filename’"

For example:

filename="’SYS1.AAA.AC.DATATEMP’"

 51

ADD Syntax
DISAM Example – filename="d:\demo\nation"

filter – Adds a WHERE clause to every query accessed using this table or
procedure. This attribute is useful when more than one logical table is
stored in the same physical file.

" If a query relates to data with a filter attribute defined, the Attunity Connect
Query Processor treats the query including the WHERE clause and will return
an error if the query is invalid because of the added WHERE clause.

To use the filter attribute, you must set the useTableFilterExpressions
environment property to "true". You specify this parameter in the
queryProcessor node of the environment properties for the relevant
binding configuration, in the Configuration perspective of Attunity
Studio.

Syntax

filter="sql_expression"

where sql_expression is a valid SQL expression combining one or
more constants, literals and column names connected by operators.

Column names must be prefixed by $$$ and the column must exist
in the current table.

Example

<table name="nation" filename="d:\demo\nation"
 organization="index"
 filter="$$$.RECORD_TYPE = 80"
 datasource="DEMO" />

name – Specifies the name of the record or procedure. This attribute
must be specified.

Syntax

name="name"

Example

<table name="nation" filename="d:\demo\nation"
 organization="index" datasource="DEMO" />

nBlocks – Specifies the approximate number of blocks in the table. It is
used by Attunity Connect to optimize query execution.

" If neither nBlocks nor nRows is specified for a table, queries over the table
might be executed in a non-optimal manner.

Syntax

nBlocks="numeral"

 52

ADD Syntax
nRows – Specifies the approximate number of rows in the table. It is
used by Attunity Connect to optimize query execution.

" The nRows attribute must be specified if the nBlocks attribute is specified. If
neither nRows nor nBlocks is specified for a table, queries over the table might
be executed in a non-optimal manner.

Syntax

nRows="numeral"

organization – Specifies the organization of a file system data provider.
The organization can be one of the following: indexed, sequential,
relative, or unstructured. The default is Sequential.

Syntax

organization="index" | "sequential" | "relative" |
"unstructured"

Example

<table name="nation" filename="d:\demo\nation"
 organization="index" datasource="DEMO" />

" The text-delimited and flat file drivers support a sequential organization.

Use unstructured for unstructured Enscribe files that are not indexed.
(Note that you must include a filler field, of size one, when having an
odd record size in an even unstructured Enscribe file.)

Access to a specific record number of a relative file is performed by
using a pseudo column to specify the record position. The hash symbol
(#) is used to specify a pseudo column. For example:

! SELECT * FROM colleges WHERE # = 6

! INSERT INTO
colleges(coll_id,coll_name,coll_status,#)
 VALUES(111,’New collage’,2,5)

! DELETE FROM colleges WHERE # = 15

quoteChar – Specifies the character that quotes a string field. In order
to quote a field the entire field must be quoted (leading and trailing
white space before and after the start and end quote characters,
respectively, are allowed). In particular you cannot start or end quoting
data in the middle of a field since the quote characters will be
interpreted as part of the data. In order to have a quote character in a
quoted field you must escape it by preceding it with a backslash.

Syntax

quoteChar="character"

 53

ADD Syntax
Example

<table name="nation" filename="d:\demo\nation"
 organization="index" quoteChar="‘"
 datasource="DEMO" />

recordFormat – Used only with RMS data, to identify the underlying RMS
record format.

" This attribute is for information purposes only. Within Attunity Connect, all
records are treated as fixed length.

Syntax

recordFormat="undefined" | "fixed" | "variable"

Example

<table name="nation" datasource="RMS"
 filename="DKA100:[USER.NAV.RMSDEMO]nation.INX"
 recordFormat="fixed" organization="index" />

size – Specifies the maximum size, in bytes, of a record. This attribute
is useful when you only want to use part of the record.

" This attribute is generated automatically for RMS, Enscribe, DISAM, CISAM
and Btrieve data. For these data sources, do not specify a size attribute.

" The size attribute is not supported for the Flat Files driver.

Syntax

size="n"

Example

<table name="nation" filename="d:\demo\nation"
 organization="index" size="500"
 datasource="DEMO" />

tableId – The record number within a DBMS user work area.

The DBMS_ADL utility (see "DBMS Import (OpenVMS Only)" on page
303) generates ADD metadata from DBMS and automatically creates a
tableId attribute.

" Do not change this attribute.

Syntax

tableId="record_number"

 54

ADD Syntax
The <dbCommand> Statement

The dbCommand statement is used to specify data source-specific
commands for the metadata and the rules for mapping an XML
document to a rowset.

Syntax

<dbCommand>text</dbCommand>

Example

<dbCommand>CMD=^PAK(K1,1)</dbCommand>

The syntax for the dbCommand attribute for an Attunity Connect
procedure is described in "Metadata Considerations" on page 602.

" The DBMS_ADL utility for generating ADD metadata from DBMS metadata
(see "DBMS Import (OpenVMS Only)" on page 303) creates a dbCommand
statement. For example, for a field, the dbCommand has the following form:

<dbCommand>
 field-type/set-name/record-name-of-paired-table/
 realm-of-paired-table/
 insertion-mode/retention-mode
</dbCommand>

Example as part of <key> Statement

<key unique="true">
 <dbCommand>{ AC }</dbcommand>
 <segments>
 <segment name="EMPID-2-4" />
 <segment name="EMPNAME-3-8" />
 </segments>
</key>

The <fields> Statement

The <fields> statement is used to list the field descriptions of fields in a
table or procedure. A field description can be one of the following:

! A <field> description
! A <group> description

! A <variant> field description

Syntax

<fields>
 <field name="field_name" attribute="value"

 55

ADD Syntax
 ...>
 <dbCommand>...</dbCommand>
 </field>
 <group name="field_name" attribute="value" ...>
 <fields>
 <field name="field_name" attribute="value"
 ... />
 </fields>
 </group>
 <variant name="field_name" attribute="value"
 ...>
 <case name="field_name" attribute="value"
 ...>
 <fields>
 <field name="field_name" attribute="value"
 ... />
 </fields>
 </case>
 ...
 </variant>
 ...
</fields>

For details of the specific syntax requirements for an Attunity Connect
procedure, see "EOS_VALUE (optional, for output arguments) – The
value that marks the end of stream. By default, the stream ends after
each fetch. If there are any EOS_VALUE arguments, then all must
match their respective field values to end the stream. This entry is case
sensitive." on page 607.

The <field> Statement

The field statement defines the characteristics of a field that is not
made up of other fields.

Syntax

<field name="field_name" attribute="value" ...>
 <dbCommand>...</dbCommand>
</field>

Example

The following code defines one field (N_NAME) and its two attributes
(datatype and size):

<field name="n_name" datatype="string" size="25" />

 56

ADD Syntax
Field Attributes autoIncrement – When true, specifies that this field is updated
automatically by the data source during an INSERT statement and
shouldn’t be explicitly specified in the INSERT statement. The INSERT
statement should include an explicit list of values. This attribute is
used for fields such as an order number field whose value is
incremented each time a new order is entered to the data source.

Syntax

autoIncrement="true|false"

Example

<field name="ORDER_NUM" datatype="string" size="6"
 autoIncrement="true" />

chapterOf – Used for DBMS metadata and specifies that the set member
field is a chapter of an owner table. This attribute must be included
when accessing a set member as a chapter in an ADO application.

For an example of chapters in DBMS see page 283.

The DBMS_ADL utility (see "DBMS Import (OpenVMS Only)" on page
303) generates ADD metadata from DBMS and automatically creates
this attribute.

Syntax

chapterOf="owner_table"

Example

<field name="_M_CLASS_PART" datatype="string"
 size="29" chapterOf="CLASS" nullable="true"/>

datatype – Specifies the data type of a field.

Syntax

datatype="datatype"

For the supported data types, see "ADD Supported Data Types" on page
38.

emptyValue – Specifies the value for the field during an insert operation,
when a value is not specified.

Syntax

emptyValue="value"

 57

ADD Syntax
Example

<field name="RECORD_TYPE" emptyValue="80"
 datatype="int4" />

explicitSelect – When true, specifies that this field is not returned when
you execute a "SELECT * FROM..." statement.

To return this field, you must explicitly ask for it (in a query such as
"SELECT NATION_ID, SYSKEY FROM NATION" where SYSKEY is a field
defined with explicitSelect).

Syntax

explicitSelect="true|false"

Example

<field name="_M_CLASS_PART" datatype="string"
 size="29" explicitSelect="true"
 nullable="true" />

" You can disable this attribute by specifying the disableExplicitSelect attribute
for the data source in the binding.

hidden – When true, specifies that the field is hidden from users. The
field is not displayed when a DESCRIBE statement is executed on the
table.

Syntax

hidden="true|false"

Example

<field name="CURRENT_SALARY" hidden="true"
 datatype="decimal" size="9" />

name – Specifies the name of the field. This attribute must be specified.

Syntax

name="name"

Example

<field name="EMP_ID" description="EMPLOYEE ID"
 datatype="int4" />

nonSelectable – When true, specifies that the field is never returned
when you execute a SQL statement. The field is displayed when a
DESCRIBE statement is executed on the table.

 58

ADD Syntax
Syntax

nonSelectable="true|false"

Example

<field name="EMP_ID" description="EMPLOYEE ID"
 datatype="int4" nonSelectable="true" />

nonUpdateable – When true, specifies that the field cannot be updated
(the default is false).

Syntax

nonupdateable="true|false"

Example

<field name="EMP_ID" description="EMPLOYEE ID"
 datatype="int4" nonupdateable="true" />

nRows – Specifies the approximate count of distinct column values in
the table. It is used by Attunity Connect to optimize query execution.

Syntax

nRows="numeral"

nullable – When true, specifies that the field can contain NULL values.

" An extra byte is required to store the NULL flag.

Syntax

nullable="true|false"

Example

<field name="_M_CLASS_PART" datatype="string"
 size="29" explicitSelect="true"
 nullable="true" />

nullSuppressed – When true, causes the query optimizer to ignore
strategies that use a key or segment that includes a field defined as
null-suppressed (that is, when rows whose value for this field is NULL
do not appear in the key).

For example, normally the query optimizer would use a key for a query
including an ORDER BY attribute on this field. If nullSuppressed is not
specified, the query may return incomplete results when the key is used
in the optimization plan. If nullSuppressed is true, the key is not used.

 59

ADD Syntax
To retrieve rows in a table for a field with the nullSuppressed attribute
specified and that have a NULL value, specify NULL in the WHERE
clause and not a value. That is, specify:

WHERE field = NULL

Specifying "WHERE field = 0" will return an incorrect result.

" This attribute is supported for Adabas databases and OLE DB providers. For
Adabas, the attribute is set at runtime according to the value returned by the
ADABAS LF command.

Syntax

nullSuppressed="true|false"

Example

<field name="AGE" nullSuppressed="true"
 datatype="int4" />

nullValue – Specifies the null value for the field during an insert
operation, when a value is not specified. The null value is used in
situations where the data source does not support null values to provide
a means of assigning a "null" value. A select statement returns the
value as NULL.

Syntax

nullValue="value"
" value is a string value.

Example

<field name="RETIRED" nullable="false"
 nullValue="-1" datatype="int4" />

offset – Specifies an absolute offset for the field in a record.

" When used with a field whose data type is BIT, the offset can be stated for the
first BIT data type. All following BIT data types refers to the same offset if
possible. When the last mapped bit is the 8th bit, the next bit is mapped to the
first bit in the next byte.

Syntax

offset="n"

Example

<field name="EMP_ID" offset="3" datatype="int1"/>
<field name="CHECK_DIGIT1" offset="3"
 datatype="bit" onBit="1" />
<field name="CHECK_DIGIT2" datatype="bit"/>

 60

ADD Syntax
onBit – The position of the bit in a field with data type BIT or the
starting position in a field with data type BITS.

Syntax

onBit="n"

where:

For the BIT data type – Specifies which bit the field uses.

For the BITS data type – Specifies which bit (within a byte) to start
from. If n is not specified then n defaults to 1 for the first occurrence
of the field and is contiguous thereafter.

scale – The number of characters or digits.

Syntax

scale="n"

where:

For decimal and numeric data types – The number of digits that are
fractions. The number of fractions must not be greater than the
number of digits. The default value is 0.

For scaled data types – The number of digits. The number must be
negative.

Example

<field name="SALARY" datatype="numstr_s" size="10"
 scale="2" />

size – The size of the field.

Syntax

size="n"

where n is the number of characters or digits. The digit must be
greater than 0.

For the BITS data type, n specifies the number of used bits, starting
from the value specified in the onBits attribute (see above).

subfieldOf – The value for the subfieldOf attribute is generated
automatically when you generate ADD metadata from ADABAS data
that includes a superdescriptor based on a subfield. A field is created to
base this index on, set to the offset specified as the value of the
subfieldStart attribute.

" If a subfieldStart attribute is not specified, the subfield is set by default to an
offset of 1.

 61

ADD Syntax
Syntax

<subfieldOf="parent_field" />

subfieldStart – The offset within the parent field where a subfield starts.

Syntax

<subfieldStart="offset_number"/>

" If a subfieldStart attribute is not specified, the subfield is set by default to an
offset of 1.

The <group> Statement

The <group> statement defines the characteristics of a field that is
made up of other fields, such as an array in a record.

Syntax

<group name="field_name" attribute="value" ...>
 <dbCommand>...</dbCommand>
 <fields>
 <field name="field_name" attribute="value"
 ... />
 </fields>
</group>

A <group> statement is handled as an array. Each of the array elements
contains all of the subordinate fields defined in the <group> statement.
The size of the array is the size of a single array element multiplied by
the dimension.

Example

An array containing information about an employee’s children can be
defined as follows:

<group name="CHILDREN" dimension1="4" >
 <fields>
 <field name="DATE_OF_BIRTH" datatype="vms_date" />
 <field name="NAME" datatype="string" size="16" />
 </fields>
</group>

The CHILDREN structure has 4 occurrences numbered from 0 to 3. Each
occurrence consists of two fields, DATE_OF_BIRTH and CHILD_NAME.
The size of the single structure occurrence is 20 (4 bytes for
DATE_OF_BIRTH and 16 bytes for CHILD_NAME), and the total size of
the CHILDREN array is therefore 80.

 62

ADD Syntax
Group Attributes alias – Used to replace the default virtual table name automatically
generated for an array. Virtual table names are generated by
appending the array name to the parent name (either the record name
or a parent array name). Thus, when an array includes another array
the name of the nested array is the name of the record and the parent
array and the nested array. When the default generated virtual table
name is too long to be usable or over 39 characters, specify an alias to
replace the long name. Names greater than 39 characters are truncated
from the left.

Syntax

alias="name"

Example

<group name="CHILDREN" alias="EMP_CHLDRN"
 dimension1="4" counterName="CHILD_COUNTER">
 ...
</group>

counterName – Specifies the name of a field that counts the number of
the elements stored in an array.

Syntax

counterName="field_name"

where field_name is the name of a field that counts the number of
elements stored in the array.

The counterName attribute cannot be used with an Attunity Connect
procedure.

" For an ADABAS database, you don’t need to define a counter field since one
is created automatically with the name C-arrayname, where arrayname is the
multiple value field name or periodic group field name in ADABAS.

Example XML with a counterName Attribute

An array containing information about an employee and the
employee’s children can be defined as follows:

<table name="EMPLOYEE" organization="index" nRows="4"
 filename="d:\disam\EMPLOYEE" datasource="DISAMDEMO">
 <fields>
 <field name="EMP_ID" description="EMPLOYEE ID" datatype="int4" />
 <field name="CHILD_COUNTER" datatype="int4" />
 <group name="CHILDREN" alias="EMP_CHLDRN" dimension1="4"
 counterName="CHILD_COUNTER">
 <fields>
 <field name="AGE" description="AGE" datatype="int4" />

 63

ADD Syntax
 ...
 </fields>
 </group>
 ...
 </fields>
</table>

description – Specifies an optional textual description.

Syntax

description="optional_user_supplied_description"

dimension1 – Specifies that the field is an array.

Syntax

dimension1="n"

where n is the number of elements in the array.

The dimension1 attribute cannot be used with an Attunity Connect
procedure.

" This syntax is for a one-dimensional array. For a two-dimensional array, you
specify dimension2="n".

Example XML with a dimension1 Attribute

An array containing information about an employee and the
employee’s children can be defined as follows:

<table name="EMPLOYEE" organization="index" nRows="4"
 filename="d:\disam\EMPLOYEE" datasource="DISAMDEMO">
 <fields>
 <field name="EMP_ID" description="EMPLOYEE ID" datatype="int4" />
 <field name="CHILD_COUNTER" datatype="int4" />
 <group name="CHILDREN" alias="EMP_CHLDRN" dimension1="4"
 counterName="CHILD_COUNTER">
 <fields>
 <field name="AGE" description="AGE" datatype="int4" />
 ...
 </fields>
 </group>
 ...
 </fields>
</table>

To create the EMP_CHLDRN child table, import the table metadata to
the Attunity Connect repository (by right-clicking the data source in the
Attunity Studio Metadata perspective and choosing Import XML

 64

ADD Syntax
definitions from the popup menu), and then run the NAV_UTIL
GEN_ARRAY_TABLES utility on the parent table (see page 517).

name – Specifies the name of the field. This attribute must be specified.

Syntax

name="name"

Example

<group name="CHILDREN" alias="EMP_CHLDRN"
 dimension1="4"
 counterName="CHILD_COUNTER">
 <fields>
 ...
 </fields>
</group>

offset – Specifies an absolute offset for the group.

Syntax

offset="offset"

The <variant> Statement

The <variant> statement specifies several definitions that map the
same storage area. The <variant> statement includes a <case>
statement.

Syntax

<variant name="field_name" attribute="value" ...>
 <case name="field_name" attribute="value" ...>
 <fields>
 <field name="field_name" attribute="value"
 ... />
 </fields>
 </case>
 <case
 ...
 </case>
</variant>

Example 1

<variant name="ADDRESS">
 <case name="LOCAL_ADDRESS">
 <fields>
 <field name="STREET" datatype="string"

 65

ADD Syntax
 size="20" />
 <field name="CITY" datatype="string" size="20" />
 </fields>
 </case>
 <case name="FOREIGN_ADDRESS">
 <fields>
 <field name="ADDRESS_LINE" datatype="string"
 size="160" />
 </fields>
 </case>
</variant>

Example 2

This example specifies a selector attribute. A selector attribute is a field
in the current table, which determines which of the alternate variant
definitions is used in the current record (row).

For a given value of the discriminating field, the chosen fields (columns)
are assigned values from the actual record, while all of the columns
from the other cases are given a null value. Note that you cannot
explicitly define a field in a <variant> as nullable. You can include
wildcard characters as part of the value, so that if the value of the
discriminating field doesn't match any of the other values specified in
the variant definition, the field description statement used with the
wildcard value will apply. Otherwise, if the value of the discriminating
field matches none of the values specified in the variant definition, all
of the columns in the <variant> are null.

<variant name="ADDRESS" selector="ADDRESS_CODE">
 <case name="CASE_1_1" value="L">
 <fields>
 <field name="STREET" datatype="string"
 size="20" />
 <field name="CITY" datatype="string" size="20" />
 </fields>
 </case>
 <case name="CASE_1_2" value="F">
 <fields>
 <field name="COUNTRY" datatype="string"
 size="20" />
 </fields>
 </case>
</variant>

" The size of a <variant> field is the amount of storage necessary to represent
the largest element. In the example 1 below, the size of the ADDRESS is 160
characters. In the example 2 below, the size of the ADDRESS is 20 characters.

 66

ADD Syntax
The different definitions of <variant> may be of different lengths.

Variant Attributes name – Specifies the name of the variant. This attribute must be
specified.

Syntax

name="name"

Example

<variant name="VAR_SEX" selector="SEX">
 <case name="CASE_1_1" value="M">
 <fields>
 <field name="M_SCHOOL" datatype="string"
 size="20" />
 </fields>
 </case>
 <case name="CASE_1_2" value="F">
 <fields>
 <field name="F_SCHOOL" datatype="string"
 size="20" />
 </fields>
 </case>
</variant>

selector – Specifies the name of a field whose value determines which of
the alternate variant definitions is used in the current record (row).

" When a selector attribute is specified, a value attribute must be specified in the
<case> statement.

Syntax

selector="field_name"

Example

<field name="SEX" datatype="string" size="1" />
<variant name="VAR_SEX" selector="SEX">
 <case name="CASE_1_1" value="M">
 <fields>
 <field name="M_SCHOOL" datatype="string"
 size="20" />
 </fields>
 </case>
 <case name="CASE_1_2" value="F">
 <fields>
 <field name="F_SCHOOL" datatype="string"
 size="20" />

 67

ADD Syntax
 </fields>
 </case>
</variant>

The <case> Statement

The <case> statement specifies an alternative definition that maps to
the same storage area. The <case> statement can include:

! A <field> statement.
! A <group> statement.

! Another <variant> statement.

Syntax

<case name="field_name" attribute="value" ...>
 <fields>
 <field name="field_name" attribute="value"
 ... />
 </fields>
</case>

Case Attributes name – Specifies the name of the case.

" When a selector attribute is not specified in the <variant> statement, a name
attribute must be specified here.

Syntax

name="name"

Example

<variant name="VAR_SEX" selector="SEX">
 <case name="CASE_1_1" value="M">
 <fields>
 <field name="M_SCHOOL" datatype="string"
 size="20" />
 </fields>
 </case>
 <case name="CASE_1_2" value="F">
 <fields>
 <field name="F_SCHOOL" datatype="string"
 size="20" />
 </fields>
 </case>
</variant>

 68

ADD Syntax
value – Specifies the value for a variant definition that is used in the
current record (row) for the field specified in the <variant> statement
via the selector attribute.

" When a selector attribute is specified in the <variant> statement, a value
attribute must be specified here.

Syntax

value="value"

Example

<case name="CASE_1_1" value="M">
 <fields>
 <field name="M_SCHL" datatype="string"
 size="20" />
 </fields>
</case>
<case name="CASE_1_2" value="F">
 <fields>
 <field name="F_SCHL" datatype="string"
 size="20" />
 </fields>
</case>

The <keys> Statement

The <keys> section of a table definition describes the keys of the table.
A list of key description statements is included in the <keys> statement.

Syntax

<keys>
 <key name="key_name" attribute="value" ...>
 <segments>
 <segment name="segment_name"
 attribute="value" ... />
 ...
 </segments>
</key>
 <key name="key_name" ...>
 <segments>
 <segment name="segment_name" ... />
 ...
 </segments>
 </key>
</keys>

 69

ADD Syntax
Example

<keys>
 <key name="nindex" unique="true">
 <segments>
 <segment name="n_nationkey" />
 </segments>
 </key>
</keys>

The <key> Statement

The <key> statement describes a key of the table. An optional list of key
attributes and a list of segment statements are included in the <key>
statement.

Syntax

<key name="key_name" attribute="value" ...>
 <dbCommand>...</dbCommand>
 <segments>
 <segment name="segment_name" attribute="value"
 ... />
 ...
 </segments>
</key>

Key Attributes bestUnique – When true, specifies that the query optimization chooses
an optimization strategy that uses this key in preference to any other
strategy. Use this attribute on keys containing a field which represents
a bookmark of the record (and consequently retrieval is assumed to be
faster than with other keys). Fields that represent a bookmark include
ROWID in Oracle, DBKEY in DBMS and ISN in ADABAS.

Syntax

bestUnique="true|false"

Example

<key unique="true" bestUnique="true" hashed="true">
 <segments>
 <segment name="ISN" />
 </segments>
</key>

clustered – When true, indicates that this key reflects the physical
organization of the table and is used to determine the query
optimization strategy used by Attunity Connect.

 70

ADD Syntax
Syntax

clustered="true|false"

Example

<key clustered="true">
 <segments>
 <segment name="DBKEY" />
 </segments>
</key>

descending – When true, specifies whether the order of the current key
is descending. If this attribute is not specified for the key, it can be
specified per segment of the key. The default is ASCENDING.

Syntax

descending="true|false"

Example

<key unique="true" descending="true" nRows="30">
 <segments>
 <segment name="EMPLOYEE_ID" />
 </segments>
</key>

description – Specifies an optional textual description.

Syntax

description="optional_user_supplied_description"

hashed – When true, indicates that this is a hash key and is used to
determine the query optimization strategy used by Attunity Connect.

Syntax

hashed="true|false"

Example

<key unique="true" bestUnique="true" hashed="true">
 <segments>
 <segment name="ISN" />
 </segments>
</key>

hierarchical – When true, specifies that the query optimization chooses
an optimization strategy that uses this key in preference to any other
strategy. Use this attribute for DBMS databases, on keys containing a

 71

ADD Syntax
DBKEY field which represents a bookmark of the record (and
consequently retrieval is assumed to be faster than with other keys).

Syntax

hierarchical="true|false"

Example

<key unique="true" hierarchical="true" >
 <segments>
 <segment name="DBKEY" />
 </segments>
</key>

indexIdn – Identifies the physical key for the record. You can use this
attribute only with the key and not with a segment. The use of the field
is data source dependent.

Syntax

indexId="previously_defined_key"

For an Enscribe alternate key, the indexId attribute is the ASCII value
corresponding to the 2 bytes of the key specifier surrounded by quotes.
For details, see page 318.

nRows – Specifies the approximate count of distinct key values in the
key. It is used by Attunity Connect to optimize query execution. For a
unique key, the nRows value must be equal to the nRows value for the
record (that is, the number of distinct key values is the same as the
number of rows).

Syntax

nRows="numeral"

nullSuppressed – When true, causes the query optimizer to ignore
strategies that use a key that includes a field defined as
null-suppressed (that is, when rows whose value for this field is NULL
do not appear in the key).

For example, normally the query optimizer would use a key for a query
including an ORDER BY attribute on this field. If nullSuppressed is not
specified, the query may return incomplete results when the key is used
in the optimization plan. If nullSuppressed is specified, the key is not
used.

 72

ADD Syntax
To retrieve rows in a table for a field with the nullSuppressed attribute
specified and that have a NULL value, specify NULL in the WHERE
clause and not a value. That is, specify:

WHERE field = NULL

Specifying "WHERE field = 0" will return an incorrect result.

" This attribute is supported for Adabas databases and OLE DB providers. For
Adabas, the attribute is set at runtime according to the value returned by the
Adabas LF command.

Syntax

nullSuppressed="true|false"

unique – When true, indicates that each key entry uniquely identifies
one row and is used to determine the query optimization strategy used
by Attunity Connect.

Syntax

unique="true|false"

Example

<key unique="true" bestUnique="true">
 <segments>
 <segment name="ISN" />
 </segments>
</key>

The <segments> Statement

The <segments> section of a table definition describes the segments of
the key. A list of <segment> statements is included in the <segments>
statement.

Syntax

<segments>
 <segment name="segment_name" attribute="value"
 .../>
 ...
</segments>

 73

ADD Syntax
The <segment> Statement

The <segment> statement describes a segment of the key. An optional
list of segment attributes are included in the <segment> statement.

Syntax

<segment name="segment_name" attribute="value"
 ...
 <dbCommand>...</dbCommand>
</segment>

Segment Attributes descending – When true, specifies the order of the current segment is
descending. The default is ASCENDING.

Syntax

descending="true|false"

Example

<key unique="true" nRows="30">
 <segments>
 <segment name="EMPLOYEE_ID" descending="true" />
 </segments>
</key>

name – Specifies the name of the segment. This attribute must be
specified.

Syntax

name="name"

Example

<key unique="true" nRows="30">
 <segments>
 <segment name="EMPLOYEE_ID" />
 </segments>
</key>

nRows – Specifies the approximate count of distinct segment values in
the key. It is used by Attunity Connect to optimize query execution.

Syntax

nRows="numeral"

 74

ADD Syntax
nullsLast – When true, causes value comparison operations to treat
nulls as the greater of the values being compared.

Syntax

nullsLast="true|false"

nullSuppressed – When true, causes the query optimizer to ignore
strategies that use a segment that includes a field defined as
null-suppressed (that is, when rows whose value for this field is NULL
do not appear in the key).

Syntax

nullSuppressed="true|false"

The <foreignKeys> Statement

The <foreignKeys> statement defines the foreign keys of the table. A
list of foreign key description statements is included in the
<foreignKeys> statement.

" The <foreignKeys> statement is not available in the Attunity Studio Metadata
perspective.

Syntax

<foreignKeys>
 <foreignKey name="key_name" attribute="value"
 ...>
 <fkeySegments>
 <fkeySegment attribute="value" ... />
 </fkeySegments>
 </foreignKey>
</foreignKeys>

The <foreignKey> Statement
" The <foreignKey> statement is not available in the Attunity Studio Metadata

perspective.

The <foreignKey> statement describes a foreign key of a table. The
<foreignKey> statement defines the following:

! The name of the foreign key.

! The external table referenced by the foreign key.
! The primary key of the referencing table.

! The segments of the foreign key.

 75

ADD Syntax
! The referential integrity rule to be implemented when the primary
key field in the referencing table is either updated or deleted.

Syntax

<foreignKey name="key_name"
 referencingTable="external_table"
 referencingPKey="external_table_
 primary_key"
 updateRule="cascade|restrict|setNull">
 deleteRule="cascade|restrict|setNull">
 <fkeySegments>
 <fkeySegment fname="local_table_field"
 pName="referenced_table_field"/>
 ...
 </fkeySegments>
</foreignKey>

Example

<foreignKeys>
 <foreignKey name="fkey1" referencingTable="table2"
 referencingPKey="table2_pkey" updateRule="cascade"
 deleteRule="setNull">
 <fKeySegments>
 <fKeySegment fName="col2" pName="table2_col3" />
 <fKeySegment fName="col5" pName="table2_col2" />
 </fKeySegments>
 </foreign_key>
 <foreignKey name="fkey2" referencingTable="table3"
 referencingPKey="table3_pkey" updateRule="restrict"
 deleteRule="restrict">
 <fKeySegments>
 <fKeySegment fName="col1" pName="table3_col1" />
 </fKeySegments>
 </foreignKey>
</foreignKeys>

foreignKey Attributes name – The name of the foreign key.

referencingTable – The name of the external table referenced by the
foreign key.

referencingPKey – The primary key of the external referencing table.

 76

ADD Syntax
updateRule – The referential integrity rule for the foreign key when the
primary key of the referenced table is updated. The specific option is
determined by the application accessing the data:

! cascade

! restrict
! setNull

For a general explanation, see "Referential Integrity" on page 647.

deleteRule – The referential integrity rule for the foreign key when the
primary row of the referenced table is deleted. The specific option is
determined by the application accessing the data:

! cascade

! restrict
! setNull

For a general explanation, see "Referential Integrity" on page 647.

fName – The name of the external field referenced in this foreign key
segment.

pName – The name of the local field referenced in this foreign key
segment.

The <primaryKey Statement>
" The <primaryKeys> statement is not available in the Attunity Studio Metadata

perspective.

The <primaryKey> statement describes the primary key of a table. The
<primaryKey> statement uses <pKeySegments> and <pKeySegment>
statements to define the segments constituting the primary key.

Syntax

<primaryKey name="name">
 <pKeySegments>
 <pKeySegment segment="name"/>
 ...
 </pKeySegments>
</primaryKey>

 77

ADD Syntax
The <pKeySegment> Statement
" The <pKeySegment> statement is not available in the Attunity Studio Metadata

perspective.

The <pKeySegment> statements define the segments that make up the
primary key of a table.

Syntax

<pKeySegments>
 <pKeySegment segment="name"/>
 ...
</pKeySegments>

Example

<primaryKey name="pk">
 <pKeySegments>
 <pKeySegment segment="col1">
 <pKeySegment segment="col2">
 </pKeySegments>
</primaryKey>

pKeySegment
Attributes

segment – The name of a segment constituting the primary key of a
table.

The <procedure> Statement

An Attunity Connect procedure definition begins with a <procedure>
statement.

Syntax

<procedure name="proc_name" attribute="value" ...>
 <dbCommand>...</dbCommand>
 <fields>
 <field name="field_name" attribute="value" .../>
 ...
 </fields>
 <parameters>
 <field name="param" attribute="value" ... />
 ...
 </parameters>
</procedure>

where proc_name is the Attunity Connect procedure name up to a
maximum of 40 characters.

 78

ADD Syntax
The <procedure> statement consists of the following components:

! An attributes list. See page 78.

! A <fields> statement, which includes the fields list. See page 54.
! Input parameters for procedures. See page 79.

" Notes:

! The proc_name entry must conform to standard ANSI ’92 SQL
naming conventions.

! You must include a <fields> statement.
! Use a <parameters> statement to specify input parameters.

Example

<procedure name="math_simple" filename="prc_samples">
 <dbCommand>LANGUAGE=C</dbCommand>
 <fields>
 <field name="sum1" datatype="int4">
 <dbCommand>order=1</dbCommand>
 </field>
 <field name="subtract" datatype="int4">
 <dbCommand>order=2</dbCommand>
 </field>
 <field name="multiply" datatype="int4">
 <dbCommand>order=3</dbCommand>
 </field>
 <field name="divide" datatype="int4">
 <dbCommand>order=4</dbCommand>
 </field>
 </fields>
 <parameters>
 <field name="oper1" datatype="int4">
 <dbCommand>mechanism=value; order=5</dbCommand>
 </field>
 <field name="oper2" datatype="int4">
 <dbCommand>mechanism=value; order=5</dbCommand>
 </field>
 </parameters>
</procedure>

Procedure Attributes alias – Replaces the procedure name with a logical procedure name.
Names greater than 39 characters are truncated from the left.

Syntax

alias="name"

 79

ADD Syntax
description – Specifies an optional textual description.

Syntax

description="optional_user_supplied_description"

filename – Specifies the full name and location of the file.

Syntax

filename="full_filename"

where full_filename includes the full path to the file.

name – Specifies the name of the procedure. This attribute must be
specified.

Syntax

name="name"

The <parameters> Statement

The <parameters> statement specifies a list of input parameters for a
procedure, each parameter defined by a <field> statement.

Syntax

<parameters>
 <field name="param" attribute="value" ...>
 <dbCommand>...</dbCommand>
 </field>
 <field name="param" attribute="value" .../>
 ...
</parameters>

Example

<parameters>
 <field name="oper1" datatype="int4">
 <dbCommand>mechanism=value; order=5</dbCommand>
 </field>
 <field name="oper2" datatype="int4">
 <dbCommand>mechanism=value; order=5</dbCommand>
 </field>
</parameters>

 80

ADDON file
ADDON file
The ADDON file is used for the following:

! When connecting to a data source using the ODBC driver on a
non-Windows platform. For details, see "Setting Up the Binding" on
page 559.

! When using the developer SDK (to define a custom data type, data
driver or application adapter). For details, see Attunity Connect
Developer SDK.

ADO
ADO is an application level interface to Microsoft's OLE DB.

ADO Methods and Properties

Attunity Connect supports the following objects, methods and
properties of ADO:

Object Methods Supported Properties
Supported

Properties Not
Supported

Command CreateParameter
Execute

ActiveConnection

CommandTexta

CommandType
Name
Prepared
State

CommandTimeout

Connection BeginTrans
Close
CommitTrans
Execute
Open
OpenSchema
RollbackTrans

Attributes
ConnectionString
ConnectionTimeout
CursorLocation
DefaultDatabase
IsolationLevel
Mode
Provider
State
Version

CommandTimeout

 81

ADO
Error Description
HelpContext
HelpFile
NativeError
Number
Source
SQLState

Field AppendChunk
GetChunk

ActualSize
Attributes
DefinedSize
Name
NumericScale
Optimize
OriginalValue
Precision
Type
Value

UnderlyingValue

Parameter Append
AppendChunk
Delete
Item
Refresh

Attributes
Count
Direction
Name
NumericScale
Precision
Size
Type
Value

Property Item
Refresh

Attributes
Count
Name
Type
Value
Version

Object Methods Supported Properties
Supported

Properties Not
Supported

 82

ADO
Field AppendChunk
GetChunk

ActualSize
Attributes
DefinedSize
Name
NumericScale
Optimize
OriginalValue
Precision
Type
Value

UnderlyingValue

Parameter Append
AppendChunk
Delete
Item
Refresh

Attributes
Count
Direction
Name
NumericScale
Precision
Size
Type
Value

Property Item
Refresh

Attributes
Count
Name
Type
Value
Version

Object Methods Supported Properties
Supported

Properties Not
Supported

 83

ADO
Notes

! The setting for the CacheSize property (indicating the number of
records from an ADO Recordset object that are cached locally)
should be equivalent to the value of the <oledb maxHRows>
Attunity Connect environment property. The smaller of the two is
used in practice. For example, if the ADO CacheSize property is set
to 100 and the <oledb maxHRows> environment property set to 50,
only 50 rows are retrieved at a time by Attunity Connect.

! Attunity Connect returns cursor type adOpenStatic when
adOpenKeyset or adOpenDynamic is specified for the CursorType
property.

! Attunity Connect returns adXactReadCommitted for the
IsolationLevel property. This property is read-only.

RecordSetb AddNew
CancelUpdate
Clone
Close
CompareBookmarks
Delete
GetRows
GetString
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
Open
NextRecordset
Requery
Save
Supports
Update
UpdateBatch

AbsolutePosition
ActiveConnection
BOF
Bookmark
CacheSize
CursorLocation
CursorType
DataMember
DataSource
EditMode
EOF
Filter
LockType
MarshalOptions
RecordCount
Sort
Source
State
Status
StayInSync

AbsolutePage
ActualSize
MaxRecords
PageCount
PageSize

a. You must qualify the command text with the data source name (for example, oCmd.Command-
Text = “sqlsrv:storedproc0”).

b. The following methods are not supported: CancelBatch, Next, Resync

Object Methods Supported Properties
Supported

Properties Not
Supported

 84

ADO
ADO Schema Recordsets

Attunity Connect supports the following ADO schema recordsets:

! adSchemaCatalogs

! adSchemaColumns
! adSchemaForeignKeys

! adSchemaIndexes
! adSchemaPrimaryKeys

! adSchemaProcedures
! adSchemaProcedureColumns

! adSchemaProviderTypes
! adSchemaStatistics

! adSchemaTables

Optimizing ADO

By reusing the same ADO command, you save time needed to create the
ADO object, making execution faster. To reuse commands you must use
a transaction as an envelope around the commands.

You can reuse commands for INSERT and SELECT statements
whenever SQL is repeated, with different parameter values for each
iteration of the SQL.

" Reusing commands for UPDATE and DELETE statements works only with
non-relational data sources.

The following code shows how to reuse code to insert rows into a table.
Two methods are shown: the first method inserts rows via parameters
and the second method uses constants. The second method is translated
internally by Attunity Connect to be the same as the first method and
is thus a little slower. Using either method is a matter of preference.

" Using constants works only for INSERT statements and not for SELECT
statements.

Dim conn As ADODB.Connection
Dim com As ADODB.Command
Dim dept_id(10) As String
Dim dept_budget(10) As Double

’Init values for the new rows
dept_id(1) = "DP11"
dept_id(2) = "DP12"
dept_id(3) = "DP13"

 85

ADO
dept_id(4) = "DP14"
dept_id(5) = "DP15"
dept_id(6) = "DP16"

dept_budget(1) = 11
dept_budget(2) = 22
dept_budget(3) = 33
dept_budget(4) = 44
dept_budget(5) = 55
dept_budget(6) = 66

On Error GoTo Error_Handler
Set conn = New ADODB.Connection
conn.Provider = "AttunityConnect"
conn.Open

’NOTE: 1. It is important to use a transaction in order
’ to enable the reuse.

’2. All the ADO commands for Attunity Connect to reuse
’ must be created within this transaction.

conn.BeginTrans

’Two methods for efficient insertion of rows. Each
’ method inserts 3 rows in a loop to the dept table

’ 1. Same command, reusing executed state, using parameters.
’===

Set com = New ADODB.Command
Set com.ActiveConnection = conn
com.CommandType = adCmdText

’We set the command text once and reuse it.

com.CommandText = "insert into dept values (?,?)"
com.Parameters.Append com.CreateParameter("p0", adChar, adParamInput, 4)

com.Parameters.Append com.CreateParameter("p1", adDouble, adParamInput,
0)

’Insert 3 new rows

For i = 1 To 3
com.Parameters(0) = dept_id(i)
com.Parameters(1) = dept_budget(i)

 86

ADO
com.Execute

’There is no need to create a new command or even to set
’ text again in every iteration.

Next i

’cleanup
Set com = Nothing

’2. Same command, reusing executed state, using constants.
’===

Set com = New ADODB.Command
Set com.ActiveConnection = conn
com.CommandType = adCmdText

’We don’t create a new command for every iteration,
’ just set the new command text

’Insert additional 3 new rows
For i = 4 To 6

com.CommandText = "insert into dept values (’" & dept_id(i) & "’,"
&dept_budget(i) & ")"
com.Execute
Next i

’cleanup
Set com = Nothing

’Finish
conn.CommitTrans
conn.Close
Exit Sub

Error_Handler:
If conn.Errors.count > 0 Then
 MsgBox conn.Errors.Item(0).Source & " : " &
conn.Errors.Item(0).Description
End If
conn.RollbackTrans
conn.Close
End Sub

 87

ADO Connect String
ADO Connect String
To specify Attunity Connect as the provider through ADO, use the Open
method of the Connection object. You can connect to Attunity Connect
as the provider using a Microsoft UDL, as follows:

connection.Open "file name=UDL_filename"

where UDL_filename is the full path of the UDL file.

Alternatively, you can use the following format:

connection.Open "provider=AttunityConnect
[;parameter=value[;parameter=value]...]"

For a description of the available parameters, refer to "Connect String
Parameters".

Examples

! The following connect string connects to Attunity Connect via a
UDL:

connection.Open "file name=c:\provider.udl"

! The following connect string specifies Attunity Connect as the data
provider and uses all the Attunity Connect defaults (such as the
location of binding information and the default user profile).

connection.Open "provider=AttunityConnect"

! The following connect string additionally specifies both the binding
and the user profile:

connection.Open "provider=AttunityConnect;
binding=production;
User ID=QAsmith;password=asdfaa"

Connect String Parameters

The connect string parameters can be one or more of the following:

Binding=name|XML_format – Specifies the data source connection
information.

name – The name of the binding configuration in the local
repository. This provides access to all data sources defined in this
binding configuration. For details, see "<datasource> Statement"
on page 131.

XML format – The binding configuration in Attunity Connect XML
format.

 88

ADO Connect String
" This version of the parameter defines specific data sources and eliminates
the need to define a local binding configuration in the repository.

" Only the data sources specified for the binding are accessed. If you want
to access the data sources in all the binding configurations on a remote
machine, use the BindURL parameter (see below).

 The settings include the following:
name – The name of a data source. For details, see
"<datasource> Statement" on page 131.
type – The driver used to access the data source if it resides on
the client machine, or the value REMOTE if the data resides on
a remote machine. If the value is REMOTE, the binding on the
remote machine is updated with the values of name, data source
type and configuration properties. For details, see
"<datasource> Statement" on page 131.
connect – If the type value is a driver, this value is the
connection information to the data source. If the type value is
REMOTE, this value is the address of the remote machine where
the data source resides and the workspace on that machine (if
the default workspace is not used).
Configuration properties – Properties specific to the data source.
For details, see "Driver Configuration Properties" on page 308.

Example

The following shows a connection to a local demo DISAM data
source, via ADO:

connection.Open "provider=AttunityConnect;
Binding="<?xml version=’1.0’ encoding=’iso-8859-1’?>
<navobj><datasources><datasource name=’demo’ type=’add-disam’
readOnly=’true’><config newFileLocation=’D:\disam’ audit=’true’/>
</datasource></datasources></navobj>""

The following shows a connection to a remote demo data source:

connection.Open "provider=AttunityConnect;
Extended Properties="BindFile=NAV;DEFAULTTDP=mysql;OPERATING_MODE=0;";
Binding="<?xml version=’1.0’ encoding=’iso-8859-1’?><navobj>
<datasources><datasource name=’demo’ connect=’develop/acme.com’
type=’remote’/></datasources></navobj>""

BindURL=[attconnect://][username:password@]host[:port][/workspace][&...][|...]
– Specifies a server that Attunity Connect connects to and whose data
sources, defined in a binding configuration on this server, are available.
This parameter eliminates the need to define a local binding with
entries for data sources on a server.

" If you want to access only a subset of the data sources on the server, use the
Binding parameter (see above).

 89

ADO Connect String
attconnect:// – An optional prefix to make the URL unique when the
context is ambiguous.

username:password@ – An optional user ID/password pair for
accessing the Attunity Connect server.

host – The TCP/IP host where the Attunity Connect daemon (IRPCD)
resides. Both numeric form and symbolic form are accepted.

port – An optional Attunity Connect daemon (IRPCD) port number.
This item is required when the daemon does not use the Sun RPC
portmapper facility.

workspace – An optional Attunity Connect workspace to use. If
omitted, the default workspace (“Navigator”) is used.

&… – Multiple BindURLs may be specified, using an ampersand (&)
as separator. Spaces between the BindURLs are not allowed. If one
of the machines listed is not accessible, the connect string fails.

|… – Multiple BindURLs may be specified, using an OR symbol (|)
as separator. Spaces between the BindURLs are not allowed. The
connect string succeeds as long as one of the machines listed is
accessible.

Note the following:

! A data source name may appear multiple times. Attunity Connect
resolves this ambiguity by using the first definition of any DSN and
disregarding any subsequent definitions. Thus, if a DSN called
SALES appears in the local binding and via the BindURL
parameter, the local definition is used.

! When using BindURL, Attunity Connect binds upon initialization
to all of the DSNs defined for the binding – regardless of which DSNs
are actually used. (Note that this may result in decreased
performance.)

! For each server specified in the BindURL connect string item,
Attunity Connect automatically adds a remote machine
(dynamically in memory) called BindURLn with n=1,2,…,
according to the order of the elements in the BindURL value.

For multiple BindURLs, use the following syntax to specify a
remote Attunity Connect query processor to use:

BindURLn=[attconnect://]…. where n is the number of the
BindURL specifying the remote machine whose query processor
you want to use.

Examples
! The following string shows an Attunity Connect server running

on nt.acme.com using the default workspace (Navigator), the
portmapper and an anonymous login.

 90

ADO Connect String
ADO
connection.Open
"provider=AttunityConnect;BindURL=nt.acme.com"

! The following string shows an Attunity Connect server running
on nt.acme.com using the ‘Prod’ workspace and logging on as
’minny’ (password ’mouse’).
BindURL=minny:mouse@nt.acme.com/prod

! The following string shows an Attunity Connect server running
on nt.acme.com using the default workspace (Navigator), using
the port 8888 and an anonymous login.
BindURL=nt.acme.com:8888

Database – The name of an Attunity Connect virtual data source that
this connection accesses. (The virtual data source presents a limited
view to the user of the available data such that only selected tables from
either one or more data sources are available, as if from a single data
source.)

defaulttdp=data source – The name of the single data source you want to
access as the default using this connection. Tables specified in SQL
statements are assumed to be from this data source. If this parameter
is not specified, SYS is the default; for tables from any other data source,
you must prefix each table name with the name of the data source,
using the format data source:tablename.

" Specifying defaulttdp is equivalent to setting the DefaultDatabase property in
ADO or the Default Data Source option in a UDL connecting to Attunity
Connect.

DSNPasswords=data_source|machine_alias=username/password[&data_sourc
e|machine_alias=username/password[&…]] – User profile information
(username and password) granting access to a data source or remote
machine via this connection. As an alternative to storing usernames
and passwords in the Attunity Connect user profile, this parameter
allows you to dynamically supply one or more pairs of username and
password values, with each pair assigned to a particular data source or
remote machine.

where:

data_source – A data source name defined in the binding
configuration (see "<datasource> Statement" on page 131).

machine_alias – A machine alias defined in the binding
configuration (see "<remoteMachine> Statement" on page 135).

username/password – a pair of user ID and password values needed
in order to access the indicated data source.

 91

ADO Connect String
Env-prop=value[,Env-prop=value[,Env-prop=value]...] – Environment values
that override the values in the binding environment on the client.

where:

Env-prop – The name of the environment property. For details of
these parameters see "Binding Configuration" on page 129.

Example

The following string sets the value of the noHashJoin parameter to
true, disabling the hash join mechanism during query optimization.

<optimizer noHashJoin="true"/>

Operating_Mode=1|0 – Specifies whether all SQL statements that do not
return rowsets during this connection will pass directly to the native
RDBMS data source parameter, without any parsing normally
performed by the Attunity Connect Query Processor. Specifying 1
enables passthru mode and causes Attunity Connect to open the
connection in single data source mode. This parameter can be used only
if the backend data source is an SQL-based driver. SQL executed in
passthru mode behave the same as individual passthru queries
specified with the “TEXT={{…}}” syntax; however, there is no way to
override passthru mode for a particular query. Use passthru mode to
issue queries that perform special processing not supported in Attunity
Connect, such as alter table and drop index.

" Attunity does not recommend using this option, since it impacts on every
DDL SQL statement, even if only some statements were intended.

Also refer to "For all SQL During a Session" on page 593.

" Specifying operating_mode is equivalent to setting the passthru option in a
UDL used to connect to Attunity Connect.

Also refer to "Passthru SQL" on page 590.

Password=password – Specifies the password required in order to access
the user profile. For details, see "User Profiles" on page 793.

" When using ADO, to prompt the user for the correct password via a dialog box,
use the ADO adPromptAlways attribute of the Properties method, as follows:

connection.Properties("Prompt")=adPromptAlways

Specify this line before the Open method. When the user tries to connect, a
dialog box requesting the password is always displayed.

SecFile=filespec – The name of an Attunity Connect user profile other
than the default (NAV).

 92

APIs to Application Adapters
" The SecFile entry is supported for backwards compatibility only. As of
Attunity Connect version 3.0, the User ID parameter (described below) is used
instead of SecFile.

User ID=userID – Specifies the name of a user profile in the repository.
If the user profile is not specified, the default user profile (NAV) is used.

APIs to Application Adapters
Attunity Connect includes APIs that enable invoking Attunity Connect
application adapters, either locally or on a remote machine directly
from a C or COBOL program. See "C and COBOL APIs to Applications"
on page 147.

Transactions calling the APIs are provided for CICS and IMS/TM. For
details, see "CICS as a Client – Invoking an Application Adapter
(OS/390 and z/OS Only)" on page 168 and "IMS/TM as a Client –
Invoking an Application Adapter (OS/390 and z/OS Only)" on page 416.

Application Adapter
Attunity Connect includes adapters to a number of application
adapters. Adapters are included with Attunity Connect for the
following:

Adapter Name Application Comment

BizTalk (page 138) Using Microsoft BizTalk Server Microsoft Windows NT

CICS (page 174) A program via a CICS EXCI transaction IBM OS/390 and z/OS

COM (page 186) Simple COM-based applications Microsoft Windows

Database (page 252) Attunity Connect data source drivers Using pre-defined queries
in the adapter definition

IMSTM (page 422) A program via an IMS/TM transaction IBM OS/390 and z/OS

LegacyPlug (page 441) Any legacy application

Pathway (page 596) A program via a Pathway transaction HP (Compaq) NonStop
Himalaya

Query (page 611) Attunity Connect data source drivers Queries defined in the
input.

 93

Application Adapter Definition
In addition, adapters are available to support events: the event adapter
and event router adapter. For details refer to "Events" on page 373.

If the application is not directly supported by one of these adapters,
Attunity Connect provides an SDK that allows you to write an adapter
for the specific application. For details, refer to Attunity Connect
Developer SDK.

Application Adapter Definition
The application adapter definition describes an application adapter,
providing the Attunity Connect with all the information it needs to use
the application adapter.

The adapter definition can be generated automatically for the following
adapters:

! CICS (see page 174), based on COBOL copybooks

! Database (see page 252)
! IMSTM (see page 422), based on COBOL copybooks

! Tuxedo (page 788), based on Tuxedo VIEW or JOLT files

For the other adapters, the adapter definition has to be defined in the
Attunity Studio Metadata perspective. For details, see "Metadata
Perspective" on page 453.

" If a COBOL copybook is available, an adapter definition can be generated from
it. For details, see "COBOL Copybook Import for Application Adapter
Definitions" on page 181.

Tuxedo (page 788) A program via a Tuxedo service UNIX and Windows
platforms

Adapter Name Application Comment

 94

Application Adapter Definition
A definition contains the following information:

! General Adapter Properties

This part defines various simple adapter properties such as name,
type, description, time-out values, etc.

! Interactions List

This part lists the interactions offered by the adapter. Information
items include the interaction name, its description and input and
output record names.

! Input and Output Records Schema

This part details the structure of all input and output records used
by the adapter.

The following diagram shows the schema of the adapter XML definition
document.

The adapter Element

The adapter element is the root element of the adapter definition XML
document.

! The attributes of the adapter element define simple adapter
properties (see below).

! The interaction elements under the adapter describe particular
interactions.

! The schema element under the adapter provides the schema of all
the records used within the adapter.

 95

Application Adapter Definition
The following table summarizes the attributes of the adapter element.

Attribute Type Default Description

authenticationMechanism enum basic-
password

The type of authentication implemented by
the adapter, as follows:
none – The adapter does not handle
authentication.
basic-password – The adapter implements
basic username-password authentication.

" Kerberos authentication will be supported in
future releases.

connect string Adapter-specific connect string.

connectionPoolingSize int The number of connections that can be held in
the connections pool simultaneously.

description string A description of the application adapter.

maxActiveConnections int The maximum number of simultaneous
connections an adapter may take (per
process).

maxIdleTimeout int 600 The maximum time, in seconds, that an active
connection can stay idle. After that time, the
connection is soft-closed and placed in the
connections pool or simply destroyed
(depending on the pooling settings).

maxRequestSize int The maximum size in bytes that an XML ACX
request or reply may span. Larger messages
are rejected with an error.

name string The name of the adapter definition. (This
name is normally the name of the adapter
specified in the binding configuration. If this
name differs from the name in the binding
configuration, the binding entry must include
a definition element set to the name specified
here.)

operatingSystem string The operating system the application adapter
runs under.

 96

Application Adapter Definition
Example

<adapter name="calc" description="Attunity Connect Calc Schema"
 transactionLevelSupport="0PC"
 authenticationMechanism="basic-password"
 maxActiveConnections="0" maxIdleTimeout="600"
 maxRequestSize="32000">

The interaction Element

The interaction element describes a single adapter interaction. The
interaction element is a child-element of the adapter element. The
following table summarizes the attributes of the interaction element.

poolingTimeout int 120 The maximum amount of time (in seconds)
that a connection is kept in the connections
pool before it is destroyed.

schemaName string The name of the schema used to define the
adapter.

transactionLevelSupport enum 1PC The level of transaction support, as follows:
0PC – no transaction support
1PC – simple (single phase) transactions
2PC – distributed (two phase) transactions

type string The name of the adapter executable.

Attribute Type Default Description

Attribute Type Default Description

description string A description of the interaction.

input string The name of the input record structure.

 97

Application Adapter Definition
Example

<interaction name="add" description="Add 2 numbers"
 mode="sync-send-receive" input="binput"
 output="output" />
<interaction name="display"
 description="Display msg in output stream"
 mode="sync-send-receive" input="inpmsg"
 output="outmsg" />

The schema Element

The schema element describes the structures used in the interactions.
The schema element is a child-element of the adapter element.Only one
schema is allowed per adapter. The following table summarizes the
attributes of the schema element.

mode enum sync-send-
receive

The interaction mode:
sync-send-receive – The interaction sends a request and
expects to receive a response.
sync-send – The interaction sends a request and does
not expect to receive a response.
sync-receive – The interaction expects to receive a
response.
async-send-receive – The interaction sends a request
and expects to receive a response that are divorced from
the current interaction.
async-send – The interaction sends a request that is
divorced from the current interaction. This mode is
used with events, to identify an event request.

name string The name of the interaction.

output string The name of the output record structure.

Attribute Type Default Description

Attribute Type Description

header string The include file generated by NAV_UTIL PROTOGEN.

initialization
header

string

name string The name of the adapter.

 98

Application Adapter Definition
Example

<schema name="calc" version="1.0" header="calcdefs.h">

The enumeration Element

The enumeration element defines an enumeration type for use in
interaction definitions.

The record Element

The record element defines a grouping of fields. The following table
summarizes the attributes of the record element.

noAlignment boolean Determines whether buffers are aligned or not.

version string The schema version.

Attribute Type Description

Attribute Type Description

EntryRef string (Used with the COM adapter.) The name of the method to be
invoked within that object.

IID string (Used with the COM adapter.) The UUID of a user defined type.
Used for user defined data types only.

libIID string (Used with the COM adapter.) The UUID of the library in which
the user defined data type is defined. Used for user defined data
types only.

noAlignment boolean Determines whether buffers are aligned or not.

name string The name of the record.

ObjectRef string (Used with the COM adapter.) Either a ProgID or a UUID of the
COM that this input record refers to.

ParamCount int (Used with the COM adapter.) The number of parameters passed
to that method.

program (OS/390
and z/OS only)

string (Used with the CICS adapter.) The name of the program to be
executed in a CICS transaction.

 99

Application Adapter Definition
Example

<record name="binput">
 <field name="p1" type="int" />
 <field name="p2" type="int" />
</record>
<record name="output">
 <field name="result" type="int" />
</record>
<record name="inpmsg">
 <field name="m" type="string" nativeType="string" length="512" />
</record>
<record name="outmsg">
 <field name="m" type="string" nativeType="string" length="512" />
</record>

Defining Hierarchies The variant record element can be used to define a hierarchical
structure. The hierarchical definition includes a record definition for
the child. The parent record includes a field record with the type name
that is used to define the child.

Example

<record name="parent">
 <field name="f1" type="child" />
 <field name="f2" type="int" />
</record>
<record name="child">
 <field name="c1" type="int" />
 <field name="c2" type="string" nativeType="string" length="20" />
 <field name="c3" type="string" nativeType="string" length="20" />
</record>

The XML used to access the adapter, must use the same structure as
specified in the interaction definition.

transaction
(OS/390 and
z/OS only)

string (Used with the IMSTM adapter.) The IMS/TM transaction name.

transid (OS/390
and z/OS only)

string (Used with the CICS adapter.) The CICS transaction id where the
program will run. The TRANSID must be EXCI or a copy of this
transaction.

Attribute Type Description

 100

Application Adapter Definition
The variant record Element

The variant record element defines a variant structure. The variant
definition includes a list of record definitions that define the variant
fields. The following table summarizes the attributes of the variant
element.

Example

<record name="v1">
 <field name="f1" type="string" nativeType="string" size="40" />
</record>
<record name="v2">
 <field name="f1" type="int" />
</record>
<record name="v3">
 <field name="f1" type="double" />
</record>
<variant name="unionRec" autoSelect="true" implicit="true">
 <field name="var1" type="v1" />
 <field name="var2" type="v2" />
 <field name="var3" type="v3" />
</variant>

The field Element

The field element defines single data item within a record or a variant.
The following table summarizes the attributes of the variant element.

Attribute Type Description

autoSelect boolean Determines the case (upper or lower). This attribute is for internal use
only.

implicit true For internal use only.

name string The name of the variant structure.

Attribute Type Description

array array An array field that is made up of other fields.

COMtype enum (Used with the COM adapter.) Specifies the field's data type as
recognized by COM, using explicit COM enumeration values (for
details, see "COM Application Adapter").

 101

Application Adapter Definition
counter int Runtime value holding the actual number occurrences in the array. A
field can be specified as a counter field.

default string The default value for the field. The default value for an integer is zero
(0) and for a string NULL.
Specifying a default value means that the field can be omitted from the
input XML.

" If a field isn’t nullable, when using the database adapter and a default value is
not supplied, an error occurs.

filter Filtering of extraneous, unwanted metadata. This attribute is for
internal use only.

length int The size of the field including a null terminator, when the data type
supports null termination (such as the cstring data type).

mechanism string (Used with the LegacyPlug adapter.) The method by which the field is
passed or received by the procedure (either byValue or byReference).

When a parameter is used for both input and output, the mechanism
must be the same for both the input and the output.
For outer-level (non-nested) parameters, structure parameters (for the
structure itself, and not structure members), and variant parameters,
the default value is byReference.

name string The name of the field.

nativeType string The Attunity Connect data type for the field. Refer to "ADD Supported
Data Types" on page 38 for a list of all supported native data types.

" When the type value is string, the nativeType value must also be specified as
string.

offset int An absolute offset for the field in a record.

paramnum int (Used with the LegacyPlug adapter.) The procedure argument number.
0 indicates the value is a return value. 1 indicates the value is the first
argument, and so on.
If paramNum is specified at the record level, it cannot be specified for
any of the record members (at the field level).

precision int The float data type precision. Used in conjunction with scale (see
below).

private boolean The value is hidden in the response.

Attribute Type Description

 102

Application Adapter Definition
Example

<field name="m" type="string" nativeType="string"
 length="512" private="true" />

reference boolean Used with array (see above), to identify a pointer.

required boolean A value is mandatory for this field.

scale int The float data type scale. Used in conjunction with precision (see
above).

size int The size of the field.

type string The data type of the field. The following are valid data types:
! Binary
! Boolean
! Byte
! Date
! Double
! Enum
! Float
! Int
! Long
! Numeric[(p[,s])]
! Short
! String – When the type value is string, the nativeType value must

also be specified as string.
! Time
! Timestamp

Usage string (Used with the COM adapter.) Explains what the COM adapter is about
to do with this field:
InstanceTag – Names an object instance.
Property – Treated as a property.
Parameter – The field value should be passed as a parameter to/from a
method.
RetVal – The field will hold a method's return value.

value string Internal code representing the field, used in the C program.

Attribute Type Description

 103

Attunity Connect Environment Prompt (Windows Only)
Attunity Connect Analyzer

See "Query Analyzer" on page 626.

Attunity Connect Environment Prompt (Windows Only)
The Attunity Connect Environment Prompt opens a DOS window with
the correct path and environment settings to run Attunity Connect
commands (such as NAV_UTIL). Run this command through the
Attunity Connect Environment Prompt menu item in the Attunity
Connect menu (Start|Programs|Attunity| Attunity Connect
Environment Prompt).

Attunity Connect Procedure
A user-written DLL, which is viewed by Attunity Connect as a data
source that returns a single rowset. An Attunity Connect procedure
enables the use of SQL to query the application.

Procedures are included with Attunity Connect for the following:

Attunity Studio
Attunity Studio is a GUI tool used to configure and manage the settings
of all machines running Attunity Connect. Studio contains a number of
perspectives used to manage Attunity Connect machines.

The following perspectives are available:

! Configuration – Used to configure Attunity Connect machines, data
sources and adapters.

See "Configuration Perspective" on page 206.

! Metadata – Used to view and modify Attunity Connect metadata for
data sources, application adapters and events.

See "Metadata Perspective" on page 453.

Adapter Name Application Comment

Natural/CICS (page 484) A NATURAL program via
a CICS EXCI transaction

IBM OS/390 and z/OS

Procedure (Application
Connector) (page 600)

Any legacy application Compare with the Legacy Plug adapter
to access the application using JCA,
XML or COM frontend applications.

 104

Attunity Studio
! Metadata Import – Used to import metadata for data sources that
require Attunity Connect metadata and for application adapters
and events.

See "Metadata Import Perspective" on page 448.
! Runtime Manager – Enables monitoring and managing the daemons

of any machine running Attunity Connect.

See "Runtime Perspective" on page 658.

The following is an example of Attunity Studio with the Configuration
perspective open:

A perspective consists of an explorer area and an editor area. The
explorer is used to navigate and manage the resources. The editor area
is used to perform the main tasks. The Properties panel displays
resource properties such as the location of the selected data source or
adapter.

" The Properties panel is useful to identify on what machine a data source or
adapter is located, especially when several data sources or adapters on
different machines have similar names. Identifying the location is particularly
useful in the Metadata and Metadata Import perspectives.

Opening a Perspective Open a perspective by clicking the Open a Perspective button and
selecting a perspective from the list, or via Window|Open

Open Tasks Editor

Properties
panel

Currently open
Perspective
(Configuration)

Explorer

 105

Attunity Studio Preferences
Perspective. The Attunity Studio opens with the Configuration
perspective displayed.

Attunity Studio Preferences
Attunity Studio preferences enable setting advanced features to use
within Attunity Connect, The preferences are set within Attunity
Studio by choosing Preferences from the Window menu item.

The window that is displayed includes settings under the Workbench,
Help and Install/Update nodes that are used to manage Attunity Studio
and must not be touched.

The Studio node enables you to set the following security, in the
security tab:

! A master password for use when opening Attunity Studio.
! Encryption for communication between Attunity Studio and any

server.

Use the Studio node Advanced tab to cause advanced binding
environment properties to be displayed. The default is that these
settings are not displayed. The settings should only be displayed in
coordination with Attunity Connect support.

Under the Studio node there are the following nodes:

Configuration – The options in this node enable you to set the following:
! To enable the same adapter definition to be used for more than

one adapter. When adding a new adapter an additional window
lists the current adapters in the same binding and enables you
to either use an adapter definition unique to the adapter or an
adapter definition from any of the other listed adapters.

! To enable administration authorization to be changed directly
in the source XML.

! To display the SYS data source, including and stored procedures
and views defined to it (via the Metadata perspective).

Runtime Manager – Enables a periodic machine check to be specified.

Attunity Connect XML Protocol (ACX)
You can use an Attunity Connect application adapter via the
Attunity Connect XML protocol (ACX). ACX is an XML-based
communication protocol. The ACX protocol is implemented as an
exchange of XML documents representing requests and responses.

 106

Attunity Connect XML Protocol (ACX)
An ACX request is made of one or more ACX verbs (operations). The
verbs are executed in sequence, as they appear in the request. As the
verbs are executed, Attunity Connect constructs the response
document.

" Some ACX verbs do not generate a response verb, though they may generate
an exception response verb within the ACX response document.

To write the adapter input and output xml to the log file, set the
acxTrace debugging element. For information regarding how to set
acxTrace, see "debug Category" on page 327.

The following sections describe XML verbs implemented in the Attunity
Connect XML Protocol (ACX):

! Overview of ACX request and response formats (below)
! Connection related verbs (page 107)

! Transaction related verbs (page 112)
! The execute verb (page 118)

! Metadata-related verbs (page 119)
! The ping verb (page 124)

! The exception response verb (page 125)

ACX Request and Response Documents

The following sections describe the general formats of the request and
response XML documents passed to and from Attunity Connect.

Request Document The general format for an ACX request document is as follows:

<?xml version="1.0" ?>
<acx type="request" id="request_id">
 ...acx_verbs...
</acx>

The id attribute is used for matching the ACX document with its
response document. The server does not use the id attribute value other
than in sending it back along with the response document.

Response Document The general format of an ACX response document is as follows:

<?xml version="1.0" ?>
<acx type="response" href="request_id">
 ...
</acx>

 107

Attunity Connect XML Protocol (ACX)
The href attribute is used for matching the ACX response document
with its request document (matching with the id attribute).

Connection Verbs

ACX defines XML format for the following verbs that handle the connect
and connection context for an ACX request:

! The connect Verb
! The setConnection Verb

! The disconnect Verb
! The reauthenticate Verb

! The cleanConnection Verb

There are two kinds of connections:

! Transient Connection

Transient connections are created for use within a single ACX
request. A transient connection is disconnected when an ACX
request ends, or when the connection context changes (that is, with
the connect, setConnection or disconnect verbs).

! Persistent Connection

Persistent connections can persist across multiple ACX requests or
connection context changes. Persistent connection are disconnected
upon an explicit disconnect verb or when a connection idle timeout
expires.

The connect Verb The connect verb establishes a new connection context. All the
interactions defined in ACX take place within a connection context.

A connection is associated with a single adapter resource. However,
more than one connection may be used within a single request (and so
more than one connection may share a given transport connection).

Upon a successful connect, a connection context is established and an
implicit setConnection is performed with the newly created connection
ID. A failed connect verb leaves the ACX request with no connection
context (that is, if a connection context was established prior to
invoking the connect verb, that connection context will no longer be in
effect).

Syntax

<connect adapter="adapter_name"
 idleTimeout="idle_timeout"
 persistent="false|true" >

 108

Attunity Connect XML Protocol (ACX)
 <passwordAuthenticator username="username"
 password="password" />
</connect>

where:

adapter (string) – Name of adapter with which to associate the
connection.

You can use the following syntax to set this adapter to run on a
particular workspace:

<connect adapter="workspace/adapter_name"
 ... />

where:

workspace – The name of the workspace where the adapter runs.

adapter_name – The name of the adapter.

idleTimeout (number) – A per-connection client idle timeout setting
(seconds). If the client does not use the connection for the specified
amount of time, the connection will be disconnect by the server and its
associated resources released. This setting is limited by the server side
maximum idle connection timeout setting. This parameter represents a
common behavior within application servers limiting the amount of
time a resource can be tied up by a client.

persistent (boolean) – Persistent connection indication. If 'true', a
persistent connection is created. Otherwise a transient connection is
created. The default is 'false'.

passwordAuthenticator – The authentication information required by
the resource adapter of the client that created the connection. The kind
of authentication information required by the resource adapter is
returned as a part of the resource adapter metadata. The definition for
the authentication information used for passwordAuthenticator is
shown above within the syntax.

Response

The connect verb matching response is only generated for a persistent
connection. It is defined as follows:

<connectResponse connectionId="connection_id"
 idleTimeout="idle_timeout" />

 109

Attunity Connect XML Protocol (ACX)
where:

connectionId (string) – A connection ID value representing the newly
created connection.

idleTimeout (number) – The actual idle timeout (seconds) in effect for the
new connection. This is determined by the server, possibly overriding
the setting on the client.

Exceptions

The following exceptions may result from a connect verb:

client.noSuchResource – The requested adapter (or workspace) is not
available on the server.

server.redirect – The resource adapter is available on a different server
whose details are given. The same ACX request should be directed at
that server.

" The scope of the redirection is only guaranteed for its first use. This means that
if you get a redirect, you should connect to the named server and use it. Once
you work with the socket and hold it, you can continue to connect to the server
(assuming you used a persistent connection). Later on, connecting to the
redirected server may or may not work. In many cases, once you get a physical
connection, you maintain it open and open a new one only if the connection is
dropped (for example, by a connection idle timeout), at which time you will
need to ask the daemon for a new one.

server.internalError – An error occurred on the server.

Example

<?xml version="1.0" encoding="UTF-8"?>
<acx type="request" id="try0001">
 <connect adapter="adapter_name">
 <passwordAuthenticator username="scott"
 password="tiger"/>
 </connect>
</acx>

The setConnection
Verb

The setConnection verb reestablishes the connection context for the
rest of the ACX request or until it is changed again by a setConnection,
connect or disconnect verb. Note that a connect verb also affects the
connection context by setting it to the newly created connection.

The setConnection verb enables multiplexing application connections
over a single physical transport connection. For example, via one
transport connection, you can access multiple application adapters.

 110

Attunity Connect XML Protocol (ACX)
Syntax

<setConnection connectionId=connection_id />

where:

connectionId (string) – A connection ID value, returned by a persistent
previous connect verb.

The setConnection verb does not generate a response.

Exceptions

The following exceptions may result from a setConnection verb:

client.noSuchConnection – The given connection is either invalid (was
not acquired via a connect verb) or represents a timed out connection.

server.internalError – An error occurred on the server.

* – Other, adapter specific, setConnection exceptions.

Example

<?xml version="1.0" encoding="UTF-8"?>
<acx type="request" id="try001">
 <connect adapter="adapter_name" persistent="true">
 <passwordAuthenticator username="scott"
 password="tiger"/>
 </connect>
</acx>

<?xml version="1.0" encoding="UTF-8"?>
<acx type="response" href="try001">
 <connectResponse connectionID="39275569"/>
</acx>

<?xml version="1.0" encoding="UTF-8"?>
<acx type="request">
 <setConnection connectionID="39275569"/>
</acx>

The disconnect Verb The disconnect verb destroys the current connection context. All the
resources associated with the current connection (persistent or
transient) are released.

Syntax

<disconnect/>

 111

Attunity Connect XML Protocol (ACX)
The disconnect verb does not generate a response.

Exceptions

The following exceptions may result from a disconnect verb:

server.internalError – An error occurred on the server.

The reauthenticate
Verb

The reauthenticate verb establishes a new client identity for the active
connection. Adapters are not required to support reauthentication. An
adapter that does not support reauthentication is required to produce
an exception if required to reauthenticate with an identity different
from the current one. Failure of the reauthentication prevents further
activity on the connection (other than retrying the authentication).
Once the reauthentication succeeds, the connection's client is
authorized based upon the authenticated identity established.

Syntax

<reauthenticate>
 <passwordAuthenticator username="username"
 password="password" />
</reauthenticate>

where:

username – The username of the new client of the connection.

password – The password of the new client of the connection.

The reauthenticate verb does not generate a response.

Exceptions

The following exceptions may result from a reauthenticate verb:

client.authenticationError – The given authentication information is not
valid.

server.notImplemented – The adapter does not support reauthentication.

server.internalError – An internal error has occurred.

The cleanConnection
Verb

The cleanConnection verb indicates that the client is working with
connection pooling and that the connection is being 'soft-closed'. That is,
the connection is being placed in a connections pool. The connection
should still be valid but various resources on it can be freed (for
example, objects related to local interactions).

 112

Attunity Connect XML Protocol (ACX)
Syntax

<cleanConnection />

Note that the adapter may forget the authentication information upon
a cleanConnection verb. This behavior is reflected in the adapter
metadata.

The cleanConnection verb does not generate a response.

Transaction Verbs

The ACX transaction verbs are used in the following scenarios:

Non-transacted operation – The adapter works in auto-commit mode.
Work is committed immediately and automatically upon execution.
This operation mode is the default operation mode when no transaction
verbs are used, or with the setAutoCommit verb setting auto-commit to
true.

Local transaction operation – With auto-commit set to false, the first
interaction starts a transaction that lasts until an explicit commit
(using the transactionCommit verb) or an explicit rollback (using the
transactionRollback verb) occurs. All interactions performed in
between are made as a part of that transaction. Note that 'local' is used
here to indicate the scope of the transaction, rather than its location -
using ACX, the local transaction may be running on a remote machine.

Distributed transaction operation – The ACX adapter participates in a
distributed transaction by exposing the appropriate XA methods. In
this scenario, the responsibility for invoking the different ACX verbs is
divided between the application component (performing the
interactions) and the application server (which, by means of the
transaction manager, manages the transaction and performs the
2-phase-commit protocol).

ACX defines the following verbs that handle transaction operations:

! The setAutoCommit Verb
! The transactionStart Verb

! The transactionPrepare Verb
! The transactionCommit Verb

! The transactionRollback Verb
! The transactionRecover Verb

! The transactionForget Verb
! The transactionEnd Verb

 113

Attunity Connect XML Protocol (ACX)
The setAutoCommit
Verb

The setAutoCommit verb sets the auto-commit mode of the connection.

Syntax

<setAutoCommit autoCommit="auto_commit_mode" />

where:

autoCommit (boolean) – New auto-commit mode of the connection. If set
to "true", each interaction immediately commits once executed. The
auto-commit mode must be turned off if multiple interactions need to be
grouped into a single transaction and committed or rolled back as a
unit.

When auto-commit is reset and no global transaction is in progress, any
interaction starts a local transaction. The client is required to use
transactionCommit or transactionRollback at the appropriate time to
commit or rollback the transaction.

The auto-commit mode is "true" by default and is reset if a distributed
(global) transaction is started.

The setAutoCommit verb does not generate a response.

Exceptions

The following exception may result from a setAutoCommit verb:

server.internalError – An error occurred on the server.

The transactionStart
Verb

The transactionStart verb starts operations under the given
transaction.

Syntax

<transactionStart>
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
 state="state"
</transactionStart>

where:

xid – A global transaction identifier, automatically assigned. If not
given (or empty), the transaction is assumed to be local. The xid
comprises of the following:

formatID (number) – Specifies the format of the xid.

globalTransactionID (hex string) – Defines the transaction ID. The
value must be less than 128.

 114

Attunity Connect XML Protocol (ACX)
branchQualifier (hex string) – Defines the transaction branch. The
value must be less than 128.

state (string) – The state of the given xid. May be "join", "resume" or
empty. If the state is empty the it assumed that the transaction is new.

The transactionStart verb does not generate a response.

Exceptions

The following exceptions may result from a transactionStart verb:

INTRANS – A transaction is already started.

UNKXID – An unknown xid was specified with transaction state of "join"
or "resume".

INTERR – An internal error has occurred.

The
transactionPrepare
Verb

The transactionPrepare verb prepares to commit the work done under
the (global) transaction in a 2-phase commit protocol.

Syntax

<transactionPrepare>
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
</transactionPrepare>

where:

xid – The global transaction identifier passed by the transactionStart
xid.

The transactionPrepare verb does not generate a response.

Exceptions

The following exceptions may result from a transactionPrepare verb:

NOTRANS – No matching global transaction is started.

UNKXID – An unknown xid was specified.

INTERR – An internal error has occurred.

 115

Attunity Connect XML Protocol (ACX)
The
transactionCommit
Verb

The transactionCommit verb commits the work done under the global
or local transaction.

Syntax

<transactionCommit onePhase=one_phase>
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
</transactionCommit>

where:

onePhase (boolean) – Specifies that the resource adapter should use a
one-phase commit protocol to commit the work done on the client's
behalf. onePhase is applicable only when the transaction is a global
transaction and includes a 1-phase commit data source. If true, this
option may be used by the transaction manager to optimize its
distributed transaction processing.

xid – The global transaction identifier passed by the transactionStart
xid.

The transactionCommit verb does not generate a response.

Exceptions

The following exceptions may result from a transactionCommit verb:

NOTRANS – No matching global transaction is started.

UNKXID – An unknown xid was specified.

INTERR – An internal error has occurred.

The
transactionRollback
Verb

The transactionRollback verb rolls back the work done under the
(global) transaction.

Syntax

<transactionRollback>
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
</transactionRollback>

where:

xid – The global transaction identifier passed by the transactionStart
xid.

The transactionRollback verb does not generate a response.

 116

Attunity Connect XML Protocol (ACX)
Exceptions

The following exceptions may result from a transactionRollback verb:

NOTRANS – No matching global transaction is started

UNKXID – An unknown xid was specified.

INTERR – An internal error has occurred.

The
transactionRecover
Verb

The transactionRecover verb lists the prepared transaction branches.

Syntax

<transactionRecover maxResultItems="max_result_items"
 scanOption="scan_option" />

where:

maxResultItems (number) – Indicates the maximum number of XIDs to
return. If omitted or zero, all XIDs are returned. If specified, and the
number of items is equal to or greater than this number, exactly this
number of items will be returned.

scanOption (string) – Indicates the XID scanning operation to be done.
It may be "start" (in which XID are returned from the first one), "end"
(where the scan is terminated and nothing is returned) or it may be
"next" or omitted, meaning that the scan should continue from the point
it reached in the last recover call.

The matching response is defined as:

<transactionRecoverResponse xid="xid" />

where:

xid – The global transaction identifier passed by the transactionStart
xid.

Exceptions

The following exceptions may result from a transactionRecover verb:

INTERR – An internal error has occurred.

 117

Attunity Connect XML Protocol (ACX)
The transactionForget
Verb

The transactionForget verb deletes the completed transaction branch
from the transaction log.

Syntax

<transactionForget>
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
</transactionForget>

where:

xid – The global transaction identifier passed by the transactionStart
xid.

The transactionForget verb does not generate a response.

Exceptions

The following exceptions may result from a transactionForget verb:

UNKXID – An unknown xid was specified.

INTERR – An internal error has occurred.

The transactionEnd
Verb

The transactionEnd verb completes or suspends work under the given
transaction. This verb is allowed only when a global transaction has
already been started.

Syntax

<transactionEnd state="success|suspend|fail">
 <xid formatID="id" globalTransactionID="id_string"
 branchQualifier="branch_string" />
</transactionEnd>

where:

state (string) – The state of the given xid. May be "success", "suspend"
or "fail". The default is success.

xid – A global transaction identifier (required).

The transactionEnd verb does not generate a response.

 118

Attunity Connect XML Protocol (ACX)
Exceptions

The following exceptions may result from a transactionEnd verb:

NOTRANS – No matching global transaction is started.

UNKXID – An unknown xid was specified.

INTERR – An internal error has occurred.

The execute Verb

The execute verb executes a given interaction against the application.

Syntax

<execute interactionName="interaction_name"
 interactionMode="interaction_mode">
 <input_record>
 ...
 </input_record
</execute>

where:

interactionName (string) – Name of interaction to execute. You can omit
the interactionName if it is identical to input_record (defined below).

interactionMode (string) – Describes the nature and direction of the
interaction.

input_record – Represents the interaction input information as an XML
element (with whatever content). The type of input-record is
determined by the interaction definition in the adapter schema. If the
interaction_name value is not given, the interaction name is assumed
to be the same as input_record name, while its attributes and content
are determined by the interaction input type.

Response

The matching response is defined as:

<executeResponse>
 <output_record>
 ...
 </output_record
</executeResponse>

 119

Attunity Connect XML Protocol (ACX)
where:

… – Represents the interaction result as an XML element (with
whatever content). The element name must match the interaction
output record (and so do the attributes and content).

Metadata Verbs

ACX defines XML format for the following verbs that handle metadata
operations for an ACX request:

! getMetadataItem

! getMetadataList

The getMetadataItem
Verb

The getMetadataItem verb requests information on resources available
via the resource adapter. It is expected that the getMetadataItem verb
typically is used in design-time rather than in run-time, though this is
not enforced.

Syntax

<getMetadataItem type="item_type" name="item_name" />

Or,

<getMetadataItem type="item_type">
 <name>item1_name</name>
 <name>item2_name</name>
 ...
</getMetadataItem>

where:

type (string) – Indicates the kind of item for which metadata is needed.
Supported item types are:

adapter – Provides information about a given adapter (or the
currently connected adapter).

interaction– Provides information about a given interactions.

schema – Returns the complete resource schema.

record – Returns a sub-schema containing the definition of the
requested records.

name (string) – Indicates the particular item(s) for which metadata is
needed, or a wildcard (using *,%) for getting metadata of multiple
items.

 120

Attunity Connect XML Protocol (ACX)
The matching response may be in one of the following forms:

! The adapter response. For details, see "The adapter response" on
page 120.

! The interaction response. "The interaction Response" on page 121.

The adapter response

The <adapter> response provides information on a particular adapter.

<getMetadataItemResponse>
 <adapter name="xsd:Name"
 description="xsd:string"
 version="xsd:string"
 type="xsd:Name"
 operatingSystem="xsd:string"
 vendor="xsd:string" />
 transactionLevelSupport="0|1|2"
 authenticationMechanism="basic-password"
 maxActiveConnections="xsd:integer"
 maxIdleTimeout="xsd:integer"
 maxRequestSize="xsd:integer"
 connectionPoolingSize="xsd:integer"
 poolingTimeout="xsd:integer"
 supportsReauthentication="xsd:boolean" />
</getMetadataItemResponse>

where:

name (string) – Name of the adapter.

description (string) – Description of the adapter.

version (string) – Version of the adapter.

type (string) – The type of the adapter, as specified in the adapter
definition.

operatingSystem (string) – Operating system on which the adapter runs.

adapterVendor (string) – Adapter vendor name.

transactionLevelSupport (number) – Indicates the transaction support
level:

0 – no transactions support (0PC)

1 – simple transactions support (1PC)

2 – distributed transaction support (2PC).

 121

Attunity Connect XML Protocol (ACX)
authenticationMechanism (string) – "basic-password" for authentication
based on username/password.

" In a future release support will be provided for "kerbv5", for Kerberos version 5
based authentication.

maxActiveConnections (number) – The maximum number of concurrent
connections supported by the adapter. This number may or may not be
enforced by the adapter but it serves as an indication for the effective
number of concurrent connections from the adapter's point of view. The
client can use this number to optimize its configuration.

maxIdleTimeout (number) – An ACX connection to an adapter is
terminated after the specified idle timeout expires (in seconds).

maxRequestSize (number) – ACX requests are restricted in their size to
prevent draining of the server system resources. Default limit of
request size is 65536 (64KB). This parameter specifies the maximum
request size in bytes.

connectionPoolingSize (number) – Size of connection pool maintained at
the server.

poolingTimeout (number) – Time in seconds a connection is pooled before
it is destroyed.

supportsReauthentication (Boolean) – Indication of whether or not the
adapter supports reauthentication.

The interaction Response

The <interaction> response provides information on a particular
interaction.

<getMetadataItemResponse>
 <interaction name="xsd:Name"
 description="xsd:string"
 mode="sync-send|sync-send-receive|
 sync-receive|async-send|
 async-send-receive"
 input="xsd:Name"
 output="xsd:Name" />
</getMetadataItemResponse>

where:

name (string) – Name of the interaction.

description (string) – Description of the interaction.

 122

Attunity Connect XML Protocol (ACX)
interactionVerb (string) – Describes the nature and direction of the
interaction.

mode (string) – The nature and direction of the interaction.

input (string) – The name of the record (from the adapter schema) used
for input to the interaction.

output (string) – The name of the record (from the adapter schema)
produced by the interaction.

The schema Response

The <schema> response describes the input and output of the
interactions.

<getMetadataItemResponse>
 <schema name="xsd:Name"
 version="xsd:integer"
 defaultNotDisplayed="xsd:boolean"
 open="xsd:boolean" >
 <record|enumeration|variant />
 </schema>
</getMetadataItemResponse>

where:

name (string) – Name of the interaction.

version (string) – Version of the schema definition.

defaultNotDisplayed (Boolean) – When 'true', data items having their
respective default values are omitted from the XML document.

open (Boolean) – When 'true', the XML to native transformation does
not throw an exception about unknown elements or attributes: they are
ignored.

record|enumeration|variant – Multiple record, variant and enumeration
definitions can appear in any order.

 123

Attunity Connect XML Protocol (ACX)
The getMetadataList
Verb

The getMetadataList verb requests information on resources available
via the resource adapter. It is expected that the getMetadataList verb
typically is used in design-time rather than in run-time, though this is
not enforced.

Syntax

<getMetadataList name="item_name type=item_type"
 maxResultItems="max_result_items"
 startItemName="start_item_name" />

where:

name (string) – Empty or a wildcard (using *,%) for reducing the names
returned on the list. Note that the entries are not necessarily returned
in alphabetical order of the item-names. However, there must be some
sort of order, even if it is entirely internal to the adapter (for example,
items might be returned in a list ordered an internal ID value).

type (string) – Indicates the kind of item for which listing is needed.
Supported item types are:

adapter – Useful when interacting with resource dispenser which
provides connections or redirections to multiple resources.

interaction – List of interactions of the currently connected resource.

record – List of records of the currently connected resource.

maxResultItems (number) – Indicates the maximum number of result
items that are returned. If the number of items is greater than or equal
to the number specified in this parameter, exactly this number of items
must be returned.

startItemName (string) – Indicates an item name starting from which
items are to be returned. If empty or not given, all items from the first
one (inclusive) are returned.

Response

The matching response is described below. Note that the list returned
might be affected by the authorization of the requester.

<getMetadataListResponse type="item_type" >
 <name>xsd:Name</name>
 <name>xsd:Name</name>
 ...
</getMetadataListResponse>

 124

Attunity Connect XML Protocol (ACX)
where:

type (string) – The type of items whose names were returned. The
following are valid values:

! adapter
! interaction
! record

name (string (array)) – Names of items on the list.

The ping Verb

The ping verb returns, in a pingResponse response, information about
an active adapter.

Syntax

<ping/>

Response

The <pingResponse> response provides information about an active
adapter accessed via the <ping> verb.

<pingResponse name="xsd:Name"
 description="xsd:string"
 version="xsd:string"
 type="xsd:Name"
 operatingSystem="xsd:string"
 vendor="xsd:string">
</pingResponse>

where:

name (string) – Name of the adapter the ping accessed.

description (string) – Description of the adapter.

version – The version number of the adapter.

operatingSystem – The operating system on which the adapter runs.

vendor – The vendor of the adapter.

 125

Attunity Connect XML Protocol (ACX)
Example

The following xml file is passed to nav_util xml:

<acx>
 <connect adapter=’adapter_name’/>
 <ping/>
</acx>

The following response is returned:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse></connectResponse>
 <pingResponse name=’adapter_name’
 description=’Adapter to access data’
 type=’Database’
 operatingSystem=’INTEL-NT’>
 </pingResponse>
</acx>

The exception Verb

The exception verb informs the recipient of an exception that has
occurred.

The Exception Element Application adapters report errors by returning an exception response.
An exception may be generated for every operation, including those
that do not normally produce a response.

The occurrence of an exception interrupts the execution of an ACX
request and result in an immediate response. The response contains all
the responses of the previous successful operations, followed by the
exception verb.

The exception verb has the following formats.

Syntax 1 – ACX Exceptions

<exception origin="xsd:Name" name="xsd:Name">
 <info>...</info>
</exception>

Syntax 2 – Application Exceptions

<exception origin="xsd:Name" name="xsd:Name">
 <application-exception>
</exception>

 126

Attunity Connect XML Protocol (ACX)
where:

origin (string) – The origin of the exception. The origin string has the
following format: adapter.interaction[.location]. Where adapter is the
adapter type, interaction is the interaction name and location is an
optional location within the interaction.

name (string) – The exception name. The exception name has the
following format: who.what where who is ’client’ if the exception
resulted from a client fault, or ’server’ if the exception resulted from a
server fault. It is important to use one of the common exception names
that appear in the table below so that applications can consistently
identify common exceptions and handle them.

info (string (array)) – Zero or more text strings containing a readable
description of the exception (the texts are ordered from the general to
the specific).

application-exception (record) – An application specific exception
element. The element’s tag identifies the schema record defining the
exception element structure.

The following table lists common error names and their meaning.
Specific adapters can include their own error names. Errors starting
with client indicate that the client side was probably responsible for the
error. Errors starting with server indicate that the server side was
probably responsible for the error.

Exception Name Description

client.authenticationError The authentication information provided with the request is not
valid.

client.noActiveConnection Exception occurred because the ACX XML request verb was
given without an active connection context.

client.noSuchConnection A connection has timed out or was otherwise dropped (for
example, the server was stopped between requests).

client.noSuchInteraction The requested interaction is not available on the current
adapter.

client.noSuchResource The adapter referred to in the request does not exist on the
server.

client.requestError The request sent by the client had semantic errors.

client.xmlError The ACX XML request sent by the client had XML parsing
errors.

 127

Attunity Connect XML Protocol (ACX)
server.internalError An internal error on the server. Additional information is
provided to explain the exception. No automatic handling is
expected is this case.

server.notImplemented A feature requested is not implemented in the current release.

server.redirect The server to which the request was referred cannot handle the
request and it should be issued to the server named in the <info>
element.

server.resourceLimit A resource limit was reached on the server. The same request
may succeed later on.

server.xmlError An XML parsing error was found in a server response

Exception Name Description

 128

BASIC Mapfiles Import (OpenVMS Only)
BASIC Mapfiles Import (OpenVMS Only)
The BAS_ADL import utility produces ADD metadata from BASIC
mapfiles.

To generate ADD metadata, use the following command line (activated
directly from DCL):

$ BAS_ADL filelist ds_name [basic_map_statement] [options]

" Activation of this utility is based on environment symbols defined by the login
file residing in the BIN directory under the directory where Attunity Connect is
installed. You can replace the environment symbol with the appropriate entry.

where:

filelist – A list of BASIC files containing file descriptions and text
libraries that will be converted into ADD. If you try to pass BASIC code
that is not part of the file descriptions, you will receive errors as the
utility tries to parse the additional information.

Separate the files in this list with commas (white space is not allowed).

" You can use wildcards for files in the file list.

ds_name – The name of an Attunity Connect data source defined in a
binding configuration. The imported metadata is stored as ADD
metadata in the repository for this data source.

basic_map_statement – The ordinal number of the BASIC map statement
containing the field definitions to be converted. (The default value is 3.)

options – Enables you to specify the following options:

d – Specifies that all intermediate files are saved. You can check
these files if problems occur in the conversion.

c – Specifies that the column name is used for an array name,
instead of the concatenation of the parent table name with the child
table name.
" If a column name is not unique in a structure (as when a structure includes

another structure, which contains a column with the same name as a
column in the parent structure), the nested column name is suffixed with
the nested structure name.

s – Specifies that periods in BASIC variable names are replaced
with underscores (_) in the ADD column names. If this is not
specified, all characters before and including the final period are
removed when determining the ADD column names.

" To display online help for this utility, run the command without any parameters,
as follows: BAS_ADL.

 129

Batching SQL Statements
Batching SQL Statements
You can process multiple queries within an ADO or ODBC application by
batching the SQL statements, one after the other, separated by
semi-colons (;), as in the following example:

sql1;sql2;sql3

Parameters are passed as a group for all the queries in the same order
as they appear in the individual queries.

" You cannot use this syntax to batch SQL statements from a Java application
or via the NAV_UTIL EXECUTE utility or ADO Demo application supplied with
Attunity Connect.

ADO Notes

! Set the Multiple Results connection property to enable multiple
results (before executing the compound query):

oConn.Properties("Multiple Results") = 1

! The results of the first query are displayed. To see the results of the
next query, request NextRecordSet.

Binding Configuration
The information needed by Attunity Connect for accessing data sources
and applications on the system is defined in a binding configuration. A
binding configuration contains:

! Data sources that can be accessed, including data source specific
driver properties.
" Within Attunity Studio, an orange database symbol represents a data

source that requires Attunity Connect metadata. A table symbol over an
orange database symbol represents a data source that does not require
Attunity Connect metadata. A white database symbol represents a data
source that uses the Attunity Connect Virtual driver.

! Adapters that can be accessed.
! Remote machines that can be accessed.

! Environment properties that apply to the data sources, adapters
and machines listed in the binding configuration. For details, see
"Environment Properties" on page 322.

You can create a new binding configuration or modify existing binding
settings using the Attunity Studio Configuration perspective.

 130

Binding Configuration
NAV is the default binding configuration for Attunity Connect. You can
use this configuration to define all the data sources and adapters you
want to access via Attunity Connect.

The binding settings in XML format can include the following
statements:

! A <datasources> statement, specifying the data sources that can be
accessed, via <datasource> statements.
! <datasource> statements, specifying the following for each data

source the client can access: the type of the data source and its
connection information.

! <config> statements, specifying specific driver properties for a
data source.

! A <remoteMachines> statement, specifying the remote machines
that can be accessed, via <remoteMachine> statements.
! <remoteMachine> statements, defining the remote machines

that the client can connect to.

! An <adapters> statement, specifying the application adapters that
can be accessed, via <adapter> statements.
! <adapter> statements, defining available Attunity Connect

application adapters.

! An <environment> statement, specifying the properties for the
specific binding configuration. For details, see "Environment
Properties" on page 322.

Data sources – You can set or change the binding settings for data
sources in the following ways:

! Using the Attunity Studio Configuration perspective.
! Using the NAV_UTIL EDIT utility (page 509).

! Using NAV_UTIL UPD_DS utility (page 524).
! Using the sp_config_datasource stored procedure as follows:

nav_proc:sp_config_datasource(’ds_name’,
’<config attribute="value"/>’)

Adapters – You can set or change the binding settings for adapters in the
following ways:

! Using the Attunity Studio Configuration perspective.
! Using the NAV_UTIL EDIT utility (page 509).

An example of binding settings in XML format is supplied on page 137.

 131

Binding Configuration
<datasources>
Statement

Lists the accessible data sources, via <datasource> statements.

<datasource>
Statement

A <datasource> statement specifies the name and type of the data
source and information required in order to connect to the data source.

The basic format is:

<datasource name="name" type="type">
 <config="configuration_property"/>
</datasource>

where:

name – The name of the data source that will be recognized by
Attunity Connect. The maximum length is 32 characters. The name
cannot include hyphens (“-”). It can include underscores (“_”). This
name cannot be the name of a machine specified in a
<remoteMachines> statement.

" When the Type (see below) is Oracle8, the maximum length is 16 characters.

type – The type of the data source to be accessed. This value is different
for each driver to a data source. Refer to a specific data source driver for
the value of this parameter. A data source residing on a remote machine
is specified in the client binding settings as REMOTE.

" The data source name cannot be used as the name of a remote machine in the
<remoteMachines> section.

config – Information required for binding to the data according to the
specific driver requirement.

" For driver-specific connection information, refer to a specific data source
driver.

For additional data source attributes, such as specifying the data as
read only, refer to "Additional <datasource> Attributes", below.

Attunity Connect SYS Data

Each Attunity Connect installation includes a system data source
(called SYS and of type Virtual) for its internal storage needs. This data
source does not have an entry in the binding. It can, however, be
displayed in Attunity Studio so that Attunity Connect stored
procedures can be saved in it.

Example

<datasources name="NAV">
 <datasource name="ADABAS" type="ADABAS">

 132

Binding Configuration
 <config dbNumber="3" predictFileNumber="7"/>
 <datasource name="DB2" type="DB2">
 <config dbname="person2"/>
 </datasource>
 <datasource name="DEMO" type="ADD-DISAM">
 <config newFileLocation="/users/nav/dis"/>
 </datasource>
 <datasource name="DISAM" type="ADD-DISAM">
 <config newFileLocation="/users/nav/dis"/>
 </datasource>
 <datasource name="SYBASE" type="SYBASE">
 <config server="SYB11_HP" dbName="personnel"/>
 </datasource>
</datasources>

Additional <datasource> Attributes

Each <datasource> statement can contain attributes specifying
additional information necessary to connect to the data source.

These attributes are set in Attunity Studio in the data source advanced
tab.

" The localCopy and noExtendedMetadata attributes are set automatically in the
Metadata perspective when changes are made to native metadata displayed
in this perspective. For more details, see "LOCAL_COPY Metadata (Metadata
Caching)" on page 443 and "Extended Native Data Source Metadata" on page
379.

In the following table, when the value of an attribute can be true or
false, not specifying the attribute is equivalent to a value of false. The
description when the value is true is provided in the table. The
following additional attributes are supported:

Title Attribute Description of Value

Default table owner owner="value" The name of the table owner that is used if an
owner is not specified as part of the SQL.

Read/Write
Information

readOnly=
"true| false"

Specifies read-only mode: all update and data
definition language (DDL) operations are
blocked.

Repository
Information
Repository
directory

objectStoreDir=
"value"

Specifies where the repository for a specific data
source resides.

 133

Binding Configuration
Repository
Information
Repository name

objectStoreName=
"value"

Specifies the name of a repository for a specific
data source. The name is defined as a data
source in the binding configuration with a type
of Virtual and is used to store Attunity Connect
views and stored procedures specific to the data
source, when this is wanted in preference to the
default SYS data.

Syntax name syntaxName="value" A section name in the NAV.SYN file, which
specifies SQL syntax variations for the data
source to be accessed.

" If you use a name greater than 15 characters, only
the first 15 characters are used.

The syntax file shipped with Attunity Connect
contains syntaxes for the following:
OLESQL driver and the SQL Server 7 OLE DB
provider (SQLOLEDB) – Specify the following:
syntaxName="OLESQL_SQLOLEDB"
OLESQL driver and JOLT – Specify the following:
syntaxName="OLESQL_JOLT"
Rdb driver and Rdb version 5 – Specify the
following: syntaxName="RDB5_SYNTAX"
ODBC driver and EXCEL data – Specify the
following: syntaxName="excel_syntax"
ODBC driver and SQL/MX data – Specify the
following: syntaxName="SQLMX_SYNTAX"
ODBC driver and SYBASE SQL AnyWhere data –
Specify the syntaxName="SQLANY5_SYNTAX"
Oracle driver and Oracle case-sensitive data –
Specify the following:
syntaxName="ORACLE8_SYNTAX"

Or,
syntaxName="ORACLE_SYNTAX"
When specifying case sensitive table and
columns names to Oracle, use quotes (") to
delimit the name and specify the case sensitivity
of the names precisely.
For more details about the syntax file, see Using
the Attunity Connect Syntax File (NAV.SYN).

Title Attribute Description of Value

 134

Binding Configuration
<config> statement

Specifies driver properties for the data source.

The basic format is:

<datasource name="name" type="type">
 <config attribute="value" attribute="value"
 ... />
</datasource>

where:

attribute – The name of the configuration property.

value – The value of the configuration property.

Example

<datasources>
 <datasource name="DEMO" type="ADD-DISAM">
 <config newFileLocation="/users/nav/dis"/>
 </datasource>
</datasources>

You can use the configuration properties attribute to set specific data
source properties as part of the binding settings for the specific data
source. Configuration properties are set in one of the following ways:

! Via the Attunity Studio Configuration perspective Properties tab
when editing the data source (right-click the data source and select
Edit data source).

! Directly in the binding settings via the NAV_UTIL EDIT utility (on
the machine where the data resides).

! Dynamically, using the Attunity Connect sp_config_datasource
procedure. For example, as follows:

call nav_proc:sp_config_datasource(’ds_name’,
’<config newDecimal="true"/>’);

where ds_name is the name of the data source in the binding
configuration.

Transaction type transactionType=
"trnLevelSupport"

The transaction level (0PC, 1PC or 2PC) that is
applied to this data source, irrelevant of what
level the data source supports. The default is the
data source default level, ("datasourceDefault").

Title Attribute Description of Value

 135

Binding Configuration
<remoteMachines>
Statement

The <remoteMachines> statement lists the names of the accessible
servers, via <remoteMachine> statements.

<remoteMachine>
Statement

The <remoteMachine> statement lists names and IP addresses of the
remote machines where data sources reside. The names are used as
aliases for the IP addresses in the <datasource> statements. This
enables you to redefine the location of a group of data sources (on a
given machine) by changing the IP address associated with this alias.
The format is:

<remoteMachine name="alias" address="address"
 port="port_number"
 workspace="workspace"
 encryptionProtocol="RC4|DES3"
 firewallProtocol="none|nat|fixednat"/>

where:

name – The name of the remote machine that will be recognized by
Attunity Connect. The maximum length is 32 characters and must start
with a character. This name cannot be the name of a data source
specified in a <datasources> statement.

" The name does not need to relate to the name of the machine on the network.

address – The IP address type of the remote machine.

port – The port on the remote machine where the Attunity daemon is
running. If you do not specify a port number, the system allocates the
default isg-uda-server port number 2551.

workspace – The specific working configuration specified for this
binding by the daemon. A workspace must be defined in the daemon
configuration on the remote machine.

encryptionProtocol – The protocol used to encrypt network
communications. Attunity Connect currently supports the RC4 and
DES3 protocols.

firewallProtocol – The firewall protocol used. Valid values are none, nat
or fixednat. The default is none. Specifying fixednat for this parameter
sets Attunity Connect to access this remote machine through a firewall
when the fixednat protocol is used. When the server address is returned
to the client and the client sees that the IP is not the same IP of the
daemon, it ignores the IP and uses the daemon's IP instead.

 136

Binding Configuration
Example

<remoteMachines>
 <remoteMachine name="ALPHA_ACME_COM"
 address="alpha.acme.com" />
 <remoteMachine name="SUN_ACME_COM"
 address="sun.acme.com
 port="8888" workspace="PROD" />
</remoteMachines>

<adapters> Statement Lists the accessible application adapters, via <adapter> statements.

<adapter> Statement An <adapter> statement specifies the name and properties of an
Attunity Connect application adapter.

The basic format is:

<adapter name="name" type="type"
 definition="definition_name">
 <config config_parameters/>
</adapter>

where:

name – The name of the adapter. The maximum length is 32 characters.

type – The name of the adapter executable. Any adapter supplied as
part of the Attunity Connect product and any adapter that is defined in
an ADDON.DEF file can be specified.

" For details of the ADDON.DEF file, refer to Attunity Connect Developer SDK.

connect – Adapter-specific connect string. This is available for older
versions of Attunity Connect. From Attunity Connect version 3.3, it is
recommended to use the <config> statement (see below).

definition – The name of the definition (interactions and schema) used
to define the adapter. If the value here is the same as the adapter name,
it can be omitted. Note that some adapters have an internal definition
and a value here must be omitted.

An <adapter> statement can include specific adapter configuration
attributes via a <config> statement (see below).

<config> Statement

A <config> statement specifies configuration properties of an
Attunity Connect application adapter. The configuration information is
specific to each adapter type.

 137

Binding Configuration
<config attribute="value"
 attribute="value"
 ... />

where:

attribute – The name of the configuration property.

value – The value of the configuration property.

Sample Binding The following is an example of binding information:

<?xml version="1.0" encoding="ISO-8859-1"?>
<navobj version="...">
 <bindings>
 <binding name="NAV">
 <datasources name="NAV">
 <datasource name="NAVDEMO" type="ADD-DISAM">
 <config newFileLocation="$NAVDEMO"/>
 </datasource>
 <datasource name="ORA_EXT" type="ORACLE8"
 connect="@ora8_ntdb"/>
 <datasource name="ORA" type="remote"
 connect="sun_acme_com"/>
 </datasources>
 <remoteMachines>
 <remoteMachine name="SUN_ACME_COM"
 address="sun.acme.com"
 workspace="PROD"/>
 </remoteMachines>
 <environment name="NAV">
 <debug generalTrace="true"/>
 <misc/>
 <queryProcessor/>
 <optimizer goal="none" preferredSite="server"/>
 <transactions/>
 <odbc/>
 <oledb/>
 <tuning/>
 </environment>
 <adapters name="NAV">
 <adapter name="MathLegacy" type="LegacyPlug">
 <config dllName="c:\legacy\prc_samples.dll"/>
 </adapter>
 </adapters>
 </binding>
 </bindings>
</navobj>

 138

BizTalk Adapter
This binding configuration provides information for the NAVDEMO
sample datasource and for a local data source (an ORA_EXT Oracle
database), one remote data source, and one adapter (named
"MathLegacy", which uses the Attunity Connect LegacyPlug adapter).

" The XML representation of the binding configuration is displayed in the Attunity
Studio Configuration perspective, by editing the specific binding configuration
and viewing the Source tab.

BizTalk Adapter
The Attunity Connect BizTalk adapter provides access to Microsoft
BizTalk Server 2002 from an application. The application is mapped via
an application adapter, which is used to pass an XML document to
BizTalk Server. BizTalk Server must be defined to accept the XML (via
the BizTalk Editor) and the XML output from the application can then
be included in the BizTalk Server application.

" Within BizTalk Server, to access Attunity Connect, use the Attunity Adapter
Suite for Microsoft BizTalk Server, as described in Attunity Connect and
Applications.

To build a BizTalk adapter you have to do the following:
! Specify an entry with the type “biztalk” in an <adapter> statement

in a binding configuration.

Via the Configuration perspective in Attunity Studio, set up the
binding configuration. Specify a unique Adapter Name to identify
the adapter and specify the Adapter Type as "biztalk".

! Run Nav_Util Autogen to generate the definition for the BizTalk
adapter:

Nav_Util autogen adapter -new answer.xml

where adapter is the name specified in the binding configuration for
the adapter. An XML file called answer.xml is generated. Fill in the
fields as necessary. For example, the following bolded fields are
changed in the generated template:

<autogen generateSample=’true’>
 <adapterSpec enableSubmitInteraction=’true’
 enableSubmitSyncInteraction=’false’/>
 <importEvents serverURL=’localhost:2551’
 username=’’ password=’’
 workspace=’events’
 adapterName=’ordersQueue’>
 <eventToAdd eventName=’*’>
 <interactionSpec channelName=’’ destID=’’
 destQualifier=’’

 139

BizTalk Adapter
 docName=’’ envelopeName=’’
 openness=’not_open’
 passThrough=’true’
 sourceID=’’
 sourceQualifier=’’
 submitSync=’false’/>
 </eventToAdd>
 </importEvents>
</autogen>

where:

generateSample – When set to true, NAV_UTIL AUTOGEN generates
interactions for the imported events.

enableSubmitInteraction – When set to true, applications can submit
documents asynchronously to BizTalk Server. Only a string buffer
or a file path is submitted as the document or interchange. The
structure of the document must be defined in BizTalk Server (via
the BizTalk Editor).

enableSubmitSyncInteraction – When set to true, applications can
submit documents synchronously to BizTalk Server. A synchronous
interchange bypasses all queues and executes all the components
required by the messaging port on the calling thread. Only a string
buffer or a file path is submitted as the document or interchange.
The structure of the document must be defined in BizTalk Server
(via the BizTalk Editor).

adapterName – The name of the adapter for the application that you
want to use with BizTalk Server. This adapter must also be defined
in the binding configuration.

importEvents – Enables specifying an adapter that is used with
events.

eventName – The name of the event from the adapter (specified in
adapterName) to be handled by BizTalk Server. If you set the
eventName to an asterisk (*), all events from the adapter are added.

channelName – The channel name defined in the BizTalk Messaging
Manager.

The other parameters can be left blank or with there default values.
These parameters only need specifying if a channel name is not

 140

BizTalk Adapter
provided. For details about the meaning of these parameters, see
"The Adapter Definition for a BizTalk Adapter" on page 140.

! Generate and import the adapter definition to the Attunity Connect
repository:

Nav_Util autogen adapter answer.xml

where adapter is the name specified in the binding configuration for
the biztalk adapter. An adapter definition called adapter is
generated and imported to the repository. The definition describes
the adapter definition used by biztalk adapter.

The interactions and schema definitions are generated based on the
adapter definition of the adapter that describes the application that
you want to use with BizTalk Server (specified in the adapterName
field in the answer.xml document).

The Adapter Definition
for a BizTalk Adapter

The <adapterSpec> statement specifies the way documents are sent to
BizTalk Server: either synchronously or asynchronously. The values
are generated in the adapter definition automatically, based on the
values specified in the answer file used to generate the definition.

<adapter name=’biztalk’ type=’biztalk’ ...>
 <adapterSpec enableSubmitInteraction=’true’
 enableSubmitSyncInteraction=’false’/>
 ...
</adapter>

The <interactionSpec> statement specifies the BizTalk specific
attributes. Refer to the BizTalk Server documentation for full details of
these attributes.

<interactionSpec channelName=’’ destID=’’
 destQualifier=’’ docName=’’
 envelopeName=’’
 openness=’not_open’
 passThrough=’true’ sourceID=’’
 sourceQualifier=’’
 submitSync=’false’/>

where:

channelName – The name of the BizTalk Channel object that is executed
for this document. This bypasses the normal processing in which the
parser tries to determine which messaging port/channel pair to execute,
based on routing information in the parameters or in the document.
This is an optional parameter unless the passThrough parameter is set
to true.

 141

BizTalk Adapter
destID – The qualifier of the destination organization. For example, if
the DestQualifier parameter is Telephone, this value is the telephone
number. If the Openness flag is set to destination, DestID is used as the
destination address. Note that the queue:// prefix must be used with an
open messaging port when a Message Queue is specified as the
destination address. The DestID parameter cannot be used if the
passThrough parameter is set to true. This is an optional parameter.

destQualifier – The qualifier of the destination organization. This
indicates how the DestID parameter is to be interpreted. Valid values
come from the organization identifier qualifiers that are created when
the user creates an alias for an organization. Common qualifiers
include the DUNS number, telephone number, and BizTalk. You must
specify a destID parameter. The default qualifier for all new
organizations is Organization Name and refers to the name of the
organization in the database. The DestQualifier parameter cannot be
used if the passThrough parameter is set to true. This is an optional
parameter.

docName – The name of the BizTalkDocument object associated with
the instance of the document submitted. The DocName parameter
cannot be used if the passThrough parameter is set to true. This is an
optional parameter.

envelopeName – The name of the envelope specification to use to break
the interchange into documents. When an envelope name is provided in
this parameter, the envelope must have a valid interchange
specification. This requirement is enforced for envelopes created for
Custom XML format also. This is an optional parameter.

openness – Indicates whether associated BizTalkPort objects can be
open. The value is assigned to the BIZTALK_OPENNESS_TYPE in
BizTalk Server. The following values are valid:

not_open – Specifies that this instance of the object is not open.

source – Specifies that the source organization of this instance of
the object is open.

destination – Specifies that the destination organization of this
instance of the object is open.

passThrough – The server processes the document. When this
parameter is set to true, no decryption, decoding, or signature
verification is performed on the document. When set to false, the
document is decrypted and decoded, and the signature is verified. When
using pass-through submission mode (true), the openness value must
be set to not_open and the channelName parameter must be specified.
In addition, the docName, sourceQualifier, sourceID, destQualifier, and
destID parameters cannot be specified with pass-through submission

 142

Btrieve DDF File Import (Windows Only)
mode. Pass-through submission mode should be used to prevent data
corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

sourceID – The value of the qualifier of the source organization. For
example, if the sourceQualifier parameter is Telephone, this value is
the telephone number. If the openness value is set to source, sourceID
is interpreted as the source organization name. The sourceID
parameter cannot be used if the passThrough parameter is set to true.
This is an optional parameter.

sourceQualifier – The qualifier of the source organization. This indicates
how the sourceID parameter is to be interpreted. Valid values come
from the organization identifier qualifiers that are created when the
user creates an alias for an organization. Common qualifiers include
the DUNS number, telephone number, and BizTalk. You must specify a
sourceID. The default qualifier for all new organizations is
Organization Name and refers to the name of the organization in the
database. The sourceQualifier parameter cannot be used if the
passThrough parameter is set to true. This is an optional parameter.

submitSync – When set to true, the interaction is passed to BizTalk
Server synchronously. Otherwise, the interaction is passed to BizTalk
Server asynchronously. The response, when set to true, is a handle
identifying the interaction and the response document. When set to
false a response document is not returned.

" For full details about the definition syntax, refer to "Application Adapter
Definition" on page 93.

Btrieve DDF File Import (Windows Only)
The BTR_ADL import utility produces ADD metadata from standard
data dictionary files (DDF) files used to hold Btrieve metadata.

The following Btrieve DDFs must be available:

! file.ddf
! field.ddf

! field_ext.ddf (if this file is not available, only a partial import is
performed)

To create ADD metadata from Btrieve (DDF) metadata, use the following
format:

BTR_ADL tablelist ds_name [ddf_dir] [basename] [d] [c]

 143

Btrieve Driver
where:

tablelist – A comma-delimited list of tables, or an asterisk (*) for all user
tables.

ds_name – The name of an Attunity Connect data source defined in a
binding configuration.

ddf_dir – Directory where the Btrieve DDF metadata resides. The
default directory is the CWD directory.

basename – A user defined name, used for the intermediate files used
during the import operation. The name specified must not be
recognized as an internal or external command, operable program or
batch file.

d – Specifies that all intermediate files are saved. You can check these
files if problems occur in the conversion.

c – Specifies aliasing for the Pascal Lstring Btrieve data type, so that a
child table name becomes the column name instead of the
concatenation of the parent table name with the child table name.

" To display online help for this utility, run the command without any parameters,
as follows: BTR_ADL.

Btrieve Driver
The following sections provide information about the Attunity Connect
Btrieve driver:

! Setting Up the Binding

! Mapping Btrieve Data Types – To ADD data types (ADD is the
Attunity Connect Data Dictionary, which you use to store
metadata).

! Transaction Support
! Metadata Considerations

The Btrieve driver supports array handling – see "Hierarchical
Queries" on page 390.

 144

Btrieve Driver
Setting Up the Binding

! To connect to Btrieve data:

Btrieve data is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the data resides.

! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.

! Select Btrieve for the Type field.
! Specify the Btrieve connect string as follows:

Data directory – The directory where the Btrieve files and indexes
you create with CREATE TABLE and CREATE INDEX statements
reside. You must specify the full path for the directory.
" The data files are specified in the Data file field of Metadata perspective in

Attunity Studio or, when using NAV_UTIL EDIT, via the filename attribute.
For tables created using the CREATE TABLE statement, the value
specified in the Data directory field is used to create the data files and is
specified in the ADD metadata to locate the data. If a value is not specified
in this field, the data files are written to the DEF directory under the
directory where Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

lockWait ="value" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

newFileLocation – (Data directory in the connect string) The directory
where the Btrieve files and indexes you create with CREATE TABLE and
CREATE INDEX statements reside. You must specify the full path for
the directory.

 145

Btrieve Driver
Mapping Btrieve Data Types

The following table shows how Attunity Connect maps the Btrieve data
types to Attunity Connect Data Dictionary (ADD) data types.

Btrieve ADD

AUTOINCREMENT int2 autoincrement or int4 autoincrement

BFLOAT dfloat

DATE btrieve_date, magic_pc_date, date6 or
date8 (depending on btrieve date type)

DECIMAL decimal

FLOAT dfloat

INTEGER (1) int1

INTEGER (2) int2

INTEGER (3) int3

INTEGER (4) int4

INTEGER (6) int6

INTEGER (8) int8

LOGICAL int1

LSTRING uint1 followed by string (uint1 is used as a
counter)

MONEY decimal (with 2 fractions)

NUMERIC numstr_s

STRING string

STS numstr_nr

TIME btrieve_time, magic_pc_time (depending
on btrieve time type)

UNSIGNED INTEGER (1) uint1

UNSIGNED INTEGER (2) uint2

 146

Btrieve Driver
Transaction Support

The Attunity Connect Btrieve driver supports one-phase commit. It can
participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Metadata Considerations

The Attunity Connect Btrieve driver requires Attunity Connect ADD
metadata. You can import existing Btrieve metadata using the
stand-alone BTR_ADL utility (see page 142). You use the Metadata
perspective of Attunity Studio to define new metadata and update the
statistics for the data.

UNSIGNED INTEGER (4) uint4

UNSIGNED INTEGER (6) uint6

ZSTRING cstring

Btrieve ADD

 147

C and COBOL APIs to Applications
C and COBOL APIs to Applications
Attunity Connect includes APIs that enable invoking Attunity Connect
application adapters, either locally or on a remote machine directly
from a C or COBOL program.

Transactions calling the APIs are provided for CICS and IMS/TM. For
details, see "CICS as a Client – Invoking an Application Adapter
(OS/390 and z/OS Only)" on page 168 and "IMS/TM as a Client –
Invoking an Application Adapter (OS/390 and z/OS Only)" on page 416.

Using the Attunity Connect API to Invoke Application Adapters

Using the API with C
Programs

To use the APIs in a C program, you must include the following in the
program:

! The ‘gap.h’ header – The GAP API declarations.

! The GAP_LOAD function – This function loads the API functions.

The function does not have any parameters and returns an integer:
0 for success and 1 for failure.
" When called, the function searches for the Attunity Connect shared library

and loads it. The current path and NAVROOT environment variable are
used in the function.
On Windows the NVBASE environment variable is the first to be searched.
On OpenVMS the NVBASESHR logical name is the first to be searched.
This function must be exposed.

Using the API with
COBOL Programs

To use the APIs in a COBOL program, you must include the following
in the program:

! The ACXAINIT function – This function loads the API functions.

The function does not have any parameters.

The APIs The following section describes the APIs and functions implemented in
Attunity Connect:

Connection Related APIs – see page 148.

Transaction Related APIs – see page 153.

The Execute Function – see page 156.

The ExecuteBatch Function – see page 156.

OS/390 and z/OS Platforms

To use the APIs under CICS, link the program with the stub
NAVROOT.FIXLIB(ACX3GL).

 148

C and COBOL APIs to Applications
The Get Event Function – see page 157.

The Get Adapter Schema Function – see page 157.

The Ping Function – see page 158.

The Get Error Function – see page 158.

" The syntax uses C terminology, followed by the equivalent COBOL function
name.

Connection APIs

The following functions handle the connection and connection context
for a request:

! connect
! cleanConnection

! disconnect
! reauthenticate

! retryConnection

There are two kinds of connections:

Transient Connection – Transient connections are created for use within
a single request. A transient connection is disconnected when a request
ends, or when the connection context changes (that is, with the connect,
setConnection or disconnect functions).

Persistent Connection – Persistent connections can persist across
multiple requests or connection context changes. Persistent
connections are disconnected upon an explicit disconnect function or
when a connection idle timeout expires.

The Connect Function The Connect function establishes a new connection context. All the
interactions defined take place within a connection context.

Upon a successful connect, a connection context is established and an
implicit setConnection is performed with the newly created connection
ID. A failed connect function leaves the request with no connection
context (that is, if a connection context was established prior to
invoking the connect function, that connection context will no longer be
in effect).

 149

C and COBOL APIs to Applications
The function returns an integer of 1 (TRUE) or 0 (FALSE), to determine
the success of the function.

Syntax

ACXAPI_CONNECT(
 char* ServersUrls,
 char* Username,
 char* Password,
 char* Workspace,
 char* AdapterName,
 int Persistent,
 long IdleTimeout,
 ACXAPI_CONNECT_MODE ConnectMode,
 char* DefinitionFileName,
 char* KeyName,
 char* KeyValue,
 void **ConnectHandle)

Function name in COBOL – ACXACNCT

Parameter Usage Description
ServersUrls Input The address of the server being connected

to. A series of servers, separated by
commas, can be specified. The connection
is made to the first server, in the list, that
is up. If the server goes down, the next
server is tried.
The format is one of the following:

server_name:port,server_name:port,...
Or:
TCP/IP_address:port,TCP/IP_addres
s:
port,...

Or:
acx://[user:password@]server[:port]/
workspace/adapter;...
In this case, the username, password,
workspace and adapterName
parameters are specified as part of the
url and any values passed for the
parameters are ignored.

Username Input The username required by the adapter.
Password Input The user password required by the

adapter.

 150

C and COBOL APIs to Applications
Workspace Input The name of the workspace where the
adapter associated to the connection runs.
The default workspace is Navigator.

AdapterName Input The name of the adapter to connect to.

" OS/390 and z/OS Platforms

To supply the adapter schema as a
parameter for the ACXAPI_CONNECT call,
build an ESDS VSAM file, which holds the
adapter definition. Insert the schema into
this VSAM file. Define the VSAM file under
CICS and use the file name as the input
parameter.

You can insert the schema into the VSAM
file, using Attunity Connect, by creating a
table with one column with a data type of
char X and use an INSERT INTO SQL
statement to enter the data.

Persistent Input Persistent connection indication. If 'true',
a persistent connection is created.
Otherwise a transient connection is
created. The default is 'false'.

IdleTimeouta Input A per-connection client idle timeout
setting (in seconds). If the client does not
use the connection for the specified
amount of time, the connection is
disconnected by the server and its
associated resources released. This
setting is limited by the server side
maximum idle connection timeout
setting.

ConnectMode Input The mode of the connection:
0 – Immediate connection.
1 – Deferred connection.

DefinitionFileName Input The name and path of the local definition
used for the adapter. If omitted, the API
queries the underlying adapter for the
metadata.
When the adapter is remote, save the
schema in a file (using nav_util
EXPORT adapter_def adapter_name
xml_file) and FTP the file to the local
machine.

KeyName Input The name of the encryption key.

Parameter Usage Description

 151

C and COBOL APIs to Applications
The Clean Connection
Function

This function is not available with COBOL.

The Clean Connection function indicates that the client is working with
connection pooling and that the connection is being 'soft-closed'. That is,
the connection is being placed in a connections pool. The connection is
still valid but various resources on it are freed (for example, objects
related to local interactions).

The function returns an integer, used to determine the success or
failure of the function.

Syntax

ACXAPI_CLEAN_CONNECTION(
 void* ConnectHandle
 int forgetAuthentification)

The Disconnect
Function

The Disconnect function destroys the current connection context. All
the resources associated with the current connection (persistent or
transient) are released.

Syntax

ACXAPI_DISCONNECT(
 void* ConnectHandle)

KeyValue Input The value associated with the encryption
key.

**ConnectHandle Output A pointer to the connection. A pointer is
always returned when the connection
fails. This enables calling the getError
function to determine what caused the
error.

" The Disconnect function must always be
called to clear the connection handle.

a. This parameter represents a common behavior within application servers limiting
the amount of time a resource can be tied up by a client.

Parameter Usage Description

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
forgetAuthentification Input Indicates the adapter should forget

the authentication information. This
behavior is reflected in the adapter
metadata.

 152

C and COBOL APIs to Applications
Function name in COBOL – ACXADSCO

The Reauthenticate
Function

This function is not available with COBOL.

The Reauthenticate function establishes a new client identity for the
active connection. Adapters are not required to support
reauthentication. An adapter that does not support reauthentication is
required to produce an exception if required to reauthenticate with an
identity different from the current one. Failure of reauthentication
prevents further activity on the connection (other than retrying
authentication). Once the reauthentication succeeds, the connection's
client is authorized based upon the authenticated identity established.

The function returns an integer, used to determine the success or
failure of the function.

Syntax

ACXAPI_REAUTHENTICATE(
 void* ConnectHandle
 char* Username,
 char* Password)

The Retry Connection
Function

This function is not available with COBOL.

The RetryConnection function is used to retry the connect function
when there has been a timeout to all the servers listed in the connect
function. The user can set the RetryConnection function to call a user
function which returns TRUE in order to repeat the connection attempt

Parameter Usage Description
ConnectHandle Input A pointer to the connection.

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
Username Input The user name of the new client of

the connection.
Password Input The password of the new client of the

connection.

 153

C and COBOL APIs to Applications
or FALSE to end the process. Thus in real-time the user can decide
whether to reattempt the connection.

Syntax

ACXAPI_SET_RETRYABLE_CONNECTION_HANDLER(
 void* ConnectHandle
 void* Retry)

Transaction APIs

Transaction APIs are used in the following scenarios:

Non-transacted operation – The adapter works in auto-commit mode.
Work is committed immediately and automatically upon execution.
This operation mode is the default operation mode when no transaction
APIs are used, or when the setAutoCommit function sets auto-commit
to true.

Local transaction operation – When auto-commit is set to false, the first
interaction starts a transaction that lasts until an explicit commit
(using the transactionCommit function) or an explicit rollback (using
the transactionRollback function) occurs. All interactions performed in
between are part of that transaction. Note that 'local' is used here to
indicate the scope of the transaction, rather than its location: using
ACX, the local transaction may be running on a remote machine.

ACX defines the following functions that handle transaction operations:

! setAutoCommit
! transactionCommit

! transactionRollback

The Set Autocommit
Function

The Set Autocommit function sets the auto-commit mode of the
connection.

Syntax

ACXAPI_SET_AUTO_COMMIT(
 void* ConnectHandle
 int AutoCommit)

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
Retry Input Call to a user function that returns a

boolean result.

 154

C and COBOL APIs to Applications
Function name in COBOL – ACXASCMT

The Transaction
Commit Function

The Transaction Commit function commits the work done under the
global or local transaction.

Syntax

ACXAPI_TRANSACTION_COMMIT
 void* ConnectHandle
 ACX_XID *Xid)

Function name in COBOL – ACXACMIT

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
AutoCommit Input New auto-commit mode of the

connection. If set to "true", each
interaction immediately commits
once executed. The auto-commit
mode must be turned off if multiple
interactions need to be grouped into
a single transaction and committed
or rolled back as a unit.
When auto-commit is reset and no
global transaction is in progress, any
interaction starts a local
transaction. The client is required to
use transactionCommit or
transactionRollback at the
appropriate time to commit or
rollback the transaction.
The auto-commit mode is "true" by
default and is reset if a distributed
(global) transaction is started.

Parameter Usage Description
ConnectHandle Input A pointer to the connection.

 155

C and COBOL APIs to Applications
The Transaction
Rollback Function

The Transaction Rollback function rolls back the work done under the
(global) transaction.

Syntax

ACXAPI_TRANSACTION_ROLLBACK(
 void* ConnectHandle
 ACX_XID *Xid)

Function name in COBOL – ACXARBCK

*Xid Input A global transaction identifier,
automatically assigned. If not given
(or empty), the transaction is
assumed to be local. The Xid
comprises of the following:
formatID – Specifies the format of the
Xid.
globalTransactionID – Defines the
transaction ID. The value must be
less than 128.
branchQualifier – Defines the
transaction branch. The value must
be less than 128.

Parameter Usage Description

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
*Xid Input A global transaction identifier,

automatically assigned. If not given
(or empty), the transaction is
assumed to be local. The Xid
comprises of the following:
formatID – Specifies the format of the
Xid.
globalTransactionID – Defines the
transaction ID. The value must be
less than 128.
branchQualifier – Defines the
transaction branch. The value must
be less than 128.

 156

C and COBOL APIs to Applications
The Execute Function The Execute function executes a given interaction against the
application.

Syntax

ACXAPI_EXECUTE(
 void* ConnectHandle
 char* InterationName
 void* BufferIn
 void* BufferOut
 long BufferOutLen)

Function name in COBOL – ACXAEXEC

The Execute Batch
Function

This function is not available with COBOL.

The ExecuteBatch function executes all the operations specified since
the function was called with the START operation. The output of batch
execution includes the outputs of the individual operations (those that
produce an output) in XML format.

Syntax

ACXAPI_EXECUTE_BATCH(
 void* ConnectHandle
 char* Operation
 void* BufferOut
 long BufferOutLen)

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
InteractionName Input Name of interaction to execute.
BufferIn Input A pointer to the input record.
BufferOut Output A pointer to the output record.
BufferOutLen Output The length of the output record.

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
Operation Input The operation to be performed:

START – Start batching
ACXAPI_EXECUTE operations.
EXECUTE – Execute all the batched
operations.
RESET – Clear the input buffer of all
interaction information.

BufferOut Output A pointer to the output record.

 157

C and COBOL APIs to Applications
The Get Adapter
Schema Function

This function is not available with COBOL.

The GetAdapterSchema function returns the schema of the application
adapter that is currently connected.

Syntax

ACXAPI_GET_ADAPTER_SCHEMA(
 void* ConnectHandle
 void** *Definition)

The Get Event Function The Get Event function determines the event to wait for and how long
to wait. When an event is received, the function returns the results of
performing the event.

Syntax

ACXAPI_GET_EVENT(
 void* ConnectHandle
 char* EventName
 long Wait
 int Keep
 void* BufferOut
 long BufferOutLen)

Function name in COBOL – ACXAGTEV

BufferOutLen Output The length of the output record.
Parameter Usage Description

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
Definition Output The adapter definition listing.

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
EventName Input Name of event to wait for.
Wait Input Length of time to wait to receive the

event, in seconds.
Keep Input Whether the event should be stored

in the repository or deleted once
finished. The default is false (to
delete the event).

BufferOut Output A pointer to the output record.
BufferOutLen Output The length of the output record.

 158

C and COBOL APIs to Applications
The Ping Function

The Ping function returns, in a pingResponse response, information
about an active adapter.

Syntax

ACXAPI_PING(
 void* ConnectHandle
 void** OutputStruct)

Function name in COBOL – ACXAPING

The Get Error Function

The Get Error function returns error information.

Syntax

ACXAPI_GET_ERROR(
 void* ConnectHandle
 char* *Error
 long *Status)

Function name in COBOL – ACXAGTER

Example Programs Using Attunity Connect APIs to Invoke Application
Adapters

The following code uses the API to place a new order and then find the
order. The functions are bolded within the code.

C Program Example

#include <stdio.h>
#include <stdlib.h>

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
OutputStruct Output The return information describing

the structure of the adapter.

Parameter Usage Description
ConnectHandle Input A pointer to the connection.
Error Output The error message returned by the

function.
Status Output The status of the returned error.

 159

C and COBOL APIs to Applications
#include <string.h>

#include "gap.h"

GAP_HELP_DEFINE;

#include "scm.h"

struct _SYS_ placeIn = {0, "Julian W",
 {"Julian White", "Oxford St.", "London", "12345", "UK",
 "ENGLAND",3
 {
 {1, "Red book", 1, 31.2},
 {2, "Green book", 1, 31.2},
 {3, "Tarzan book", 3, 5.2},
 }
 };

/* Returns the real length of the string in a buffer
 the buffer is padded with spaces.
*/

int bufStrLen(char* Buffer, int Len) {
 int i;

 for (i=Len; i>1; i--) {
 if (Buffer[i-1] != ’ ’) {
 return i;
 }
 }

 return 0;
}

void display(struct _SYS_*) {

 int i;

 printf(" details:\n");
 printf(" ID = %i\n", ->i_ID);
 printf(" By = %.*s\n", bufStrLen(->sED_BY, 64),
 ->sED_BY);
 printf(" Address: %.*s\n", bufStrLen(->ADDRESS.sADDRESSEE, 64),
 ->ADDRESS.sADDRESSEE);
 printf(" Street: %.*s\n", bufStrLen(->ADDRESS.sSTREET, 64),
 ->ADDRESS.sSTREET);

 160

C and COBOL APIs to Applications
 printf(" City: %.*s\n", bufStrLen(->ADDRESS.sCITY, 64),
 ->ADDRESS.sCITY);
 printf(" ZIP: %.*s\n", bufStrLen(->ADDRESS.sZIP, 5),
 ->ADDRESS.sZIP);
 printf(" State: %.*s\n", bufStrLen(->ADDRESS.sSTATE, 2),
 ->ADDRESS.sSTATE);
 printf(" Country: %.*s\n\n", bufStrLen(->ADDRESS.sCOUNTRY, 64),
 ->ADDRESS.sCOUNTRY);

 printf(" Lines %i:\n", ->iN_LINES);

 for(i=0; i<->iN_LINES; i++) {
 printf(" %i. Item Name = %.*s, Quantity = %i, Price = %f\n",
 ->LINES[i].iLINE_NO,
 bufStrLen(->LINES[i].sITEM_NAME, 64),
 ->LINES[i].sITEM_NAME,
 ->LINES[i].iQUANTITY,
 ->LINES[i].dITEM_PRICE);
 }

}

void report_error(void *pCh, char *pError)
{
 char *pAcxError;
 ACXAPI_GET_ERROR(pCh, &pAcxError, NULL);

 printf("%s, %s\n", pError, pAcxError);
}

long main(int argc, char** argv)
{
 int ret_code = 0;
 int i = 0;
 void *pCH;
 char hostname[128];

 struct _SYS_ ;

 struct _SYS_FIND_ find;
 struct _SYS_PLACE__RESPONSE placeOut;

 if (argc > 1)
 strcpy(hostname, argv[1]);
 else
 strcpy(hostname, "localhost:2551");

 161

C and COBOL APIs to Applications
 if (!GAP_LOAD()) {
 printf("Failed to load the ACX API\n");
 exit(1);
 }

 printf("\nConnecting to %s...\n\n", hostname);

 if (!ACXAPI_CONNECT(hostname,
 "", "", "",
 "s", TRUE,
 0, 0x01,
 NULL,
 NULL,
 NULL,
 &pCH))
 {
 printf("Failed to connect\n");
 return 1;
 }

 printf("Place an with %i items.\n\n", placeIn.iN_LINES);

 if (!ACXAPI_EXECUTE(pCH,
 "place",
 &placeIn,
 &placeOut,
 sizeof(placeOut))) {

 report_error(pCH, "ACXAPI_EXECUTE failed");
 return 1;
 }

 printf(" was accepted, ID = %i was returned.\n\n", placeOut.i_ID);

 printf("Retrieve an, ID = %i.\n\n", placeOut.i_ID);

 find.i_ID = placeOut.i_ID;
 if (!ACXAPI_EXECUTE(pCH,
 "find",
 &find,
 &,
 sizeof()))
 {
 report_error(pCH, "ACXAPI_EXECUTE failed");
 return 1;
 }

 162

C and COBOL APIs to Applications
 display(&);

 printf("\nDisconnect...\n");

 ACXAPI_DISCONNECT(pCH);
 pCH = NULL;

 return 0;
}

COBOL Program Example

identification division.
 program-id. ACX3GL_TEST.
 data division.
 working-storage section.
 01 AA-ORDER.
 03 AA-ORDER-ID pic s9(8) comp.
 03 AA-ORDERED-BY pic x(64).
 03 AA-ADDRESS.
 05 AA-ADDRESSEE pic x(64).
 05 AA-STREET pic x(64).
 05 AA-CITY pic x(64).
 05 AA-ZIP pic x(5).
 05 AA-STATE pic x(2).
 05 AA-COUNTRY pic x(64).
 03 AA-N-LINES pic s9(8) comp.
 03 AA-LINES occurs 0 to 30 times depending on AA-N-LINES.
 05 AA-LINE-NO pic s9(8) comp.
 05 AA-ITEM-NAME pic x(64).
 05 AA-QUANTITY pic s9(8) comp.
 05 AA-ITEM-PRICE usage is comp-2.

 01 AA-ORDER-CONFIRM.
 03 AA-NEW-ORDER-ID pic s9(8) comp.
 01 AA-ORDER-CONFIRM-LEN pic s9(8) comp.

 01 CONNECT-PARM.
 03 CP-SERVERS-URL pic x(256) value is "localhost:2551".
 03 CP-USERNAME pic x(64) value is low-value.
 03 CP-PASSWORD pic x(64) value is low-value.
 03 CP-WORKSPACE pic x(64) value is low-value.
 03 CP-ADAPTER pic x(64) value is "orders".
 03 CP-PERSISTENT pic s9(8) value is 0.
 03 CP-IDLE-TIMEOUT pic s9(8) value is 0.
 03 CP-CONNECT-MODE pic s9(8) value is 0.
 03 CP-SCHEMA-FILE pic x(256) value is "".
 03 CP-ENC-KEY-NAME pic x(64) value is low-value.

 163

C and COBOL APIs to Applications
 03 CP-ENC-KEY-VALUE pic x(256) value is low-value.
 03 CP-CON-ID pic s9(8) comp.

 01 GETERR-PARM.
 03 GE-STATUS-CODE pic s9(8) comp.
 03 GE-ERROR-TEXT pic x(256).

 01 EXEC-PARM.
 03 EP-INTERACTION-MODE pic s9(8) comp value is 0.
 03 EP-INTERACTION-NAME pic x(64).
 03 EP-OUT-LENGTH pic s9(8) comp.

 77 RET-CODE pic s9(8) comp.

 procedure division.
 acx3gl-main section.
 main-start.
 display "Initializing ACX3GL API".
 call "ACXAINIT".

 display "Connecting to the Orders system".
 call "ACXACNCT" using
 CP-SERVERS-URL CP-USERNAME CP-PASSWORD
 CP-WORKSPACE CP-ADAPTER CP-PERSISTENT
 CP-IDLE-TIMEOUT CP-CONNECT-MODE
 CP-SCHEMA-FILE CP-ENC-KEY-NAME CP-ENC-KEY-VALUE
 CP-CON-ID
 giving RET-CODE.

 if RET-CODE = 0
 perform report-error thru report-error-x.

 display "Placing an order...".
 perform fill-order thru fill-order-x.
 move "placeOrder" to EP-INTERACTION-NAME.
*- Some COBOLs have a LENGTH function...
 compute AA-ORDER-CONFIRM-LEN = 4.
 call "ACXAEXEC" using
 CP-CON-ID
 EP-INTERACTION-MODE
 EP-INTERACTION-NAME
 AA-ORDER
 AA-ORDER-CONFIRM
 AA-ORDER-CONFIRM-LEN
 giving RET-CODE.

 if RET-CODE = 0

 164

C and COBOL APIs to Applications
 perform report-error thru report-error-x.

 display "New order ID is " AA-NEW-ORDER-ID with conversion.

 display "Disconnecting...".
 call "ACXADSCO" using
 CP-CON-ID.

 stop run.
 main-end.
 exit program.

 report-error.
 call "ACXAGTER" using
 CP-CON-ID GE-STATUS-CODE GE-ERROR-TEXT.

 display "Error: " GE-ERROR-TEXT.

 stop run.
 report-error-x. exit.

 fill-order.
 move 0 to AA-ORDER-ID.
 move "Julian W" to AA-ORDERED-BY.
 move "Julian White" to AA-ADDRESSEE.
 move "Oxford St." to AA-STREET.
 move "London" to AA-CITY.
 move "12345" to AA-ZIP.
 move "UK" to AA-STATE.
 move "ENGLAND" to AA-COUNTRY.

 move 1 to AA-LINE-NO(1).
 move "Red Book" to AA-ITEM-NAME(1).
 move 12 to AA-QUANTITY(1).
 move 19.90 to AA-ITEM-PRICE(1).

 move 2 to AA-LINE-NO(2).
 move "Gold Book" to AA-ITEM-NAME(2).
 move 5 to AA-QUANTITY(2).
 move 124.90 to AA-ITEM-PRICE(2).

 move 2 to AA-N-LINES.
 fill-order-x. exit.

 end program ACX3GL_TEST.

 165

Change Data Capture
Change Data Capture
Change Data Capture (CDC), enables updates to tables to be and
captured for additional processing.

When the change capture mechanism is defined in Attunity Studio, a
separate binding is created containing the following:

! A data source events adapter. This adapter polls the data source for
updates and is defined with an interaction type of async-send.

! A copy of the data source to be polled.

In addition, a workspace to manage the change capture event queue is
created.

! To define Change Data Capture:

1. Right-click the data source which includes tables that you want to
capture changes.

2. Choose Add change capture from the popup menu.

3. Enter a name for the change capture and click Finish.

A window opens informing you that changes have been made to the
daemon configuration and prompts you to reload the daemon
configuration. The change to the daemon is the addition of the new
workspace to manage the data source event queue.

4. Click Yes. The change capture mechanism is defined and the
binding, adapter, data source and workspace described above are
created.

 166

Change Data Capture
5. Right-click the adapter under the change capture binding and
choose Edit metadata from the popup menu.

6. In the Metadata perspective, right-click the Interaction node under
the capture change adapter and choose New from the popup menu.

A window is displayed where you provide a name for the
interaction.

7. Click Next. A window is displayed where you can build a select
statement that checks for changes to a data source table.

The query is built as follows:

Selecting tables
! In the left pane, expand the data source.
! Select the table and click the right button to move the table to

the right pane of selected tables.

Selecting Columns
! In the left pane, expand the data source and the table

containing the column.
! Open the Columns tab in the right pane.
! Select the column and click the right button to move the column

to the right pane.

Adding conditions in a WHERE clause

WHERE clauses are set in the Where tab.
! Select and move the column you are setting the WHERE clause

for to the right pane.
! Set the operator and value conditions as needed.

Other features available (such as sorting the results) are not
relevant to building the query which checks for changes to the
data).

8. Click Next. A window is displayed where you specify interaction
properties:

passThrough – Whether the query is passed directly to the backend
database for processing or processed by the Attunity Connect query
processor.

Reuse compiled query – Whether the query is saved in a cache for
reuse.

Encoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.
hex – Sets hexadecimal encoding.

 167

Chapters
Event – The interaction mode is async-send.

Fail on no rows returned – Whether an error is returned if data is not
returned.

Root element – The root element name for records returned by the
query, using the format <root>\<record>.

Record element – The record element name for records returned by
the query, using the format <root>\<record>.

Max. records – The maximum number of records returned by the
query.

NULL string – The string returned in place of a null value. If not
specified, the column is skipped.

9. Click Next. A window is displayed where you specify the starting
value to check in the table. Only when the criteria for this starting
value is met is the data in the table captured. Specify a field from
the table which is used to , the operator to use with this field and
the initial value to check in the table.

10. Click Finish.

The change capture mechanism polls the database using the specified
query and when a change is encountered that meets the initial criteria,
the relevant data is written to the event queue, where it can then be
further processed.

Chapters
A chapter is an OLE DB term, denoting a group of rows within a
hierarchical rowset. The chapter constitutes a collection of children of
some row and column in a parent rowset (and is meaningful only in the
context of the parent rowset). The column in the parent rowset is called

 168

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
a chapter column and contains a chapter identifier. The column’s name
is also the name identifying the child rowset (which is meaningful only
in the context of the parent rowset).

" An ADO Recordset is equivalent to an OLE DB chapter. In ADO you refer to a
child Recordset.

In ODBC and JDBC, Attunity Connect provides functionality to enable support
for chapters.

Also see: "Hierarchical Queries From an Application" on page 392.

CICS as a Client – Invoking an Application Adapter (OS/390
and z/OS Only)

Attunity Connect includes a CICS transaction that can be called from a
C or COBOL program that enables invoking an application adapter. The
CICS transaction is used instead of using the C or COBOL APIs directly.

" For details of the APIs, see "C and COBOL APIs to Applications" on page 147.

In order to invoke an application adapter using a CICS transaction, you
need to perform the following tasks:

! Configuring the IBM OS/390 Machine
! Using a CICS Transaction to Invoke an Application Adapter

Chapter column

Chapter
identifier

Chapter
(ADO Recordset)

Chapter
(ADO Recordset)

Child Rowset

Parent Rowset

 169

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
Configuring the IBM OS/390 Machine

Before using the CICS transaction, you need to configure the IBM
OS/390 machine using the following procedure:

1. Copy NAVROOT.LOAD(ATTCICSD) to a CICS DFHRPL library.
2. Copy NAVROOT.LOAD(TRANS3GL) to a CICS DFHRPL library.

" Make sure that the CICS Socket Interface is enabled by issuing the following
CICS command:
EZAO START CICS
If you are not sure if the system is configured with the Socket Interface, try
running the EZAC transaction. If the transaction produces a screen, you should
be able to run the EZAO startup transaction. If not, see if the transaction has
been defined in a group that has not been installed, for example: CEDC V
TRANS(EZAC) G(*).
If it is defined in a group, install that group and try running EZAO again. If not,
you have to configure CICS as outlined in the TCP/IP V3R2 For MVS: CICS
Sockets Interface Guide.

3. Set up the CICS resource definitions for the C or COBOL program.

The following JCL can be used as a template and modified according
to the guidelines below.
//ATTCSD JOB ’ATTUNITY’,’CSD’,MSGLEVEL=1,NOTIFY=&SYSUID
//STEP1 EXEC PGM=DFHCSDUP,REGION=512K,
// PARM=’CSD(READWRITE),PAGESIZE(60),NOCOMPAT’
//STEPLIB DD DSN=<HLQ1>.SDFHLOAD,DISP=SHR
//DFHCSD DD UNIT=SYSDA,DISP=SHR,DSN=<HLQ2>.CSD
//OUTDD DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
*/**/
/ ATTUNITY CICS DEFINITIONS */
*/**/

* NOTE: INSTALL GROUP(ATT) - CEDA IN G(ATT)*
*IF YOU ARE RERUNNING THIS, UNCOMMENT THE DELETE COMMAND. *

*
* START ATTUNITY RESOURCES:
*
* DELETE GROUP(ATT)
 DEFINE PROGRAM(ATTCICSD) GROUP(ATT) LANGUAGE(C)
DATALOCATION(ANY)
 DE(ATTUNITY DLL)
 DEFINE PROGRAM(TRANS3GL) GROUP(ATT) LANGUAGE(C)
DATALOCATION(ANY)
 DE(ATTUNITY DLL)
 DEFINE PROGRAM(<PROG>) GROUP(ATT) LANGUAGE(<LANG>)
DATALOCATION(ANY)
 DE(ATTUNITY)
 DEFINE TRANSACTION(<ATTTRAN>) GROUP(ATT) PROGRAM(<PROG>)
 TASKDATAL(ANY)
 DE(ATTUNITY TRAN ID)

 170

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
 LIST GROUP(ATT)
*
* END ATTUNITY RESOURCES
*
/*
//

Modify the JCL, as follows:
! Change the JOB card to suit the site.
! Change <HLQ1> to point to the CICS SDFHLOAD library.
! Change <HLQ2> to point to the CICS CSD dataset.
! Change <LANG> to the LANGUAGE: C or COBOL.
! Change <PROG> to the COBOL program name.
! If you are calling the C or COBOL program from a CICS

transaction, change <ATTTRAN> to the CICS transaction name
that calls the COBOL program.

4. Install the ORA group, from CICS, by issuing the following
command:
CEDA IN G(ATT)

Using a CICS Transaction to Invoke an Application Adapter

You can use a CICS transaction to invoke an application adapter,
instead of using the C or COBOL APIs directly.

" For details of the APIs, refer to "C and COBOL APIs to Applications" on page
147.

A buffer is set in the CICS COMMAREA that contains the information
needed to trigger an event and then calls the TRANS3GL transaction to
send the interaction.

The buffer is formatted as follows:

Parameter Size Description

Version 4 The version of the APIs used. The expected value is 4.

ServersUrl 256 The URL of the OS/390 machine and the port number
where the Attunity Connect daemon runs. For
example, IP1:2551, where IP1 is the URL and 2551 is the
port.

Username 64 A valid username to access the OS/390 machine.

Password 64 A valid password for the user name.

Workspace 64 A daemon workspace. The default is Navigator.

 171

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
AdapterName 64 The name of the adapter.

SchemaFileName 256 For future use. Leave blank.

EncKeyName 64 For future use. Leave blank.

EncKeyValue 256 For future use. Leave blank.

InteractionName 64 The name of the interaction in the application
definition.

Flags 4 The following flags are available:
1 – A trace of the XML is performed.
2 – A trace of the communication calls is performed.
3 – Both the XML and communication calls are traced.
4 – The NAT firewall protocol is used, with a fixed
address for the daemon.
5 – A trace of the XML is performed and the NAT
firewall protocol is used, with a fixed address for the
daemon.
6 – A trace of the communication calls is performed and
the NAT firewall protocol is used, with a fixed address
for the daemon.
7 – Both the XML and communication calls are traced
and the NAT firewall protocol is used, with a fixed
address for the daemon.

Input format 4 The following formats are available:
0 – Input is provided as XML.
1 – Input is provided using parameters.

Parameter Size Description

 172

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
COBOL The following template can be used to set the COBOL data buffer:

*
* COBOL COPY OF DATA BUFFER
*
01 COMM-DATA-BUFF PIC X(5000).

01 COMM-DATA-BUFF-ERROR REDEFINES COMM-DATA-BUFF.
 05 COMM-ERROR-STATUS PIC S9(8) COMP SYNC.
 05 COMM-ERROR-MSG PIC X(256).

01 COMM-DATA-BUFF-INPUT REDEFINES COMM-DATA-BUFF.

 05 INPUT-COMMAREA-3GL.
 10 INCOM-VERSION PIC S9(8) COMP SYNC.
 10 INCOM-SERVERS-URLS PIC X(256).
* /* IP1:PORT[,IP2:PORT] [,...] */
 10 INCOM-USER-NAME PIC X(64).
 10 INCOM-PASSWORD PIC X(64).
 10 INCOM-WORKSPACE PIC X(64).
 10 INCOM-ADAPTER-NAME PIC X(64).

Input – The size of the input depends on the value specified in
the Input size parameter.
If the Input format is set to 0 (XML), the input is
formatted as follows:
! The first four bytes specify the size of the input XML

string.
! The next 64 bytes specifies the name of the record

used for the output (the inbound interaction).
! The next bytes (to the exact length specified in the

first four bytes) specify the input XML string. For
example: <findorder ORDER_NO=’17’ /> where
findorder is the inbound interaction name.

If the Input format is set to 1 (the input is done using
parameters), the input is formatted as follows:
The first four bytes specify the number of parameters.
The next 4 bytes specify the maximum size of any
parameter value.
! The next 64 bytes specify the name of the record used

for the output (the inbound interaction).
! The next 32 bytes specify the name of the parameter.
! The next bytes (to the exact length specified in the

first four bytes) specify the input parameter.
! The following bytes repeat the last two entries until

all the parameters are specified.

Parameter Size Description

 173

CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
 10 INCOM-SCHEMA-FILE-NAME PIC X(256).
 10 INCOM-ENC-KEY-NAME PIC X(64).
 10 INCOM-ENC-KEY-VALUE PIC X(256).
 10 INCOM-INTERACTION-NAME PIC X(64).
 10 INCOM-DW-FLAGS PIC S9(8) COMP SYNC.
 10 INCOM-INP-FORMAT PIC S9(8) COMP SYNC.
 10 INCOM-EXEC-INPUT.
 15 INCOM-XML-BUFF.
 20 INCOM-XML-ILEN PIC S9(8) COMP SYNC.
 20 INCOM-XML-INTER-OUTREC-NAME
 PIC X(64).
*====>>> CHANGE ??? TO LEN SPECIFIED IN INCOM-XML-ILEN
 20 INCOM-XML-INPUT PIC X(???).
 15 INCOM-PARAM-BUFF REDEFINES INCOM-XML-BUFF.
 20 INCOM-PARAM-COUNT PIC S9(8) COMP SYNC.
 20 INCOM-PARAM-VALUE-LEN PIC S9(8) COMP SYNC.
 20 INCOM-PARAM-INT-OUTREC-NAME PIC X(64).
*====>>> CHANGE ?? TO COUNT SPECIFIED IN INCOM-PARAM-COUNT
 20 INCOM-PARAM-NAME-VALUE OCCURS ?? TIMES.
 25 INCOM-PARAM-NAME PIC X(32).
*====>>> CHANGE ?? TO LEN SPECIFIED IN INCOM-PARAM-VALUE-LEN
 25 INCOM-PARAM-VALUE PIC X(??).

01 COMM-DATA-BUFF-OUTPUT REDEFINES COMM-DATA-BUFF.

 05 COMM-OUT-STATUS PIC S9(8) COMP SYNC.
 05 COMM-OUT-LENGTH PIC S9(8) COMP SYNC.

 05 COMM-OUT-DATA PIC X(4992)

Calling the Transaction

The TRAN3GL transaction is called as follows:

EXEC CICS LINK PROGRAM("TRANS3GL")
 COMMAREA(commDataBuff)
 LENGTH(iCommSize);

where:

commDataBuff – The buffer with the interaction details, used in the
COMMAREA.

iCommSize – The size of the buffer. This value is also used to determine the
size of the output string. Thus make sure the value is big enough for the
expected output.

After defining the COMMAREA and calling the TRAN3GL transaction in
the COBOL program, compile and move the COBOL program to a CICS
DFHRPL (LOAD) library.

 174

CICS Application Adapter (OS/390 and z/OS Only)
The Transaction Output

The output includes a 4 byte success flag: Zero for success, otherwise
failure. The output overrides the input. If the result is failure, an error
message with a length of 256 bytes is returned.

If XML was specified for the input and the result is success, the output
is formatted as XML, as follows:

! The first four bytes specify the size of the output.
! The following bytes make up the XML output.

If parameters were specified for the input and the result is success, the
output is formatted as follows:

! The first four bytes specify the size of the output.
! The next 32 bytes specify the name of the output attribute.

! The next bytes (to the exact length specified for the input string in
the) specify the output value.

! The following bytes repeat the last two entries until all the output
is specified.

CICS Application Adapter (OS/390 and z/OS Only)
You can execute a program via a CICS EXCI transaction with
Attunity Connect using the Attunity Connect CICS adapter.

The following sections provide information about the Attunity Connect
CICS adapter:

! Setting Up the Binding

! The Adapter Definition
! Transaction Support

Setting Up the Binding

! To connect to CICS:

The CICS adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.

! Specify a name for the adapter in the Name field.
! Select CICS for the Type field.

 175

CICS Application Adapter (OS/390 and z/OS Only)
After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

targetSystemApplid – The VTAM applid of the CICS target system.
" You can determine this value by activating the CEMT transaction on the

target CICS system. On the bottom right corner of the screen appears the
legend APPLID=target_system.

vtamNetname – The VTAM netname of the specific connection being
used by EXCI (and MRO) to relay the program call to the CICS target
system.

For example, if you issue to CEMT the following command:

CEMT INQ CONN

You see on the display screen that the netname is BATCHCLI (this
is the default connection supplied by IBM upon the installation of
CICS). If you plan to use the IBM defaults, then specify BATCHCLI
as the VTAM_netname parameter, otherwise, define a specific
connection (with EXCI protocol) and use the netname you provided
there for this parameter.
" Attunity provides a netname, ATYCLIEN, which can be used after the

following procedure is followed:

Either, use the JCL in the NAVROOT.USERLIB(CICSCONF) member to
submit the DFHCSDUP batch utility program to add the resource
definitions to the DFHCSD dataset (see the IBM CICS Resource Definition
Guide for further details) or, use the instream SYSIN control statements in
the NAVROOT.USERLIB(CICSCONF) member as a guide to defining the
resources online using the CEDA facility.

After the definitions have been added (via batch or using the CEDA
facility), logon to CICS and issue the following command to install the
resource definitions under CICS:

CEDA INST GROUP(ATYI)

Henceforth, specify "ATYCLIEN" as the NETNAME.

exciTransid – The CICS TRANSID. This value must be EXCI or a copy
of this transaction.

transactionSupport – The level of transaction support for this
adapter that is reported to the transaction manager.
" To set transaction support, refer to "Transaction Support" on page 176.

 176

CICS Application Adapter (OS/390 and z/OS Only)
The Adapter Definition

After setting up the binding, write an adapter definition for the CICS
adapter, which describes, for each required interaction, the program
that should be run via a CICS transaction.

Importing an Adapter
Definition

If COBOL copybook files describing the adapter are available, you can
import the adapter definition by running the metadata import in the
Attunity Studio Metadata Import perspective.

The following steps are used to import metadata for the adapter.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

" For details about the definition XML syntax, refer to "Application Adapter
Definition" on page 93.

Transaction Support

The Attunity Connect CICS procedure adapter supports two-phase
commit and can fully participate in a distributed transaction when the
transaction environment property convertAllToDistributed is set to
true.

To use Attunity Connect with 2PC, you must have RRS installed and
configured and have CICS TS 1.3 or higher installed.

DESCRIPTION

Get Input Files Specify COBOL copybooks defining the adapter.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Add Interactions For each interaction, you specify the input and output records taken
from the COBOL copybook and the program to execute.

Generate Final
Metadata

Prepares the final XML defining the schema for the adapter.

Import Metadata The metadata is imported to the machine where the adapter resides.
This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 177

CISAM Driver
" If RRS is not running, the data source can participate in a distributed
transaction, as the only one-phase commit data source, if the logFile
parameter is set to NORRS in the transactions node of the binding properties
for the relevant binding configuration, in the Configuration perspective of the
Attunity Studio. The XML representation is as follows:

<transactions logFile="log,NORRS" />

where log is the high level qualifier and name of the log file. If this parameter is
not specified, the format is the following:

<transactions logFile=",NORRS" />

That is, the comma must be specified.

For further details about setting up a data source to be one-phase commit in a
distributed transaction, refer to "The CommitConfirm Table" on page 779.

CISAM Driver
The following sections provide information about the Attunity Connect
CISAM driver:

! Setting Up the Binding

! CREATE TABLE Data Types
! Transaction Support

! Locking
! Metadata Considerations

The CISAM driver provides array handling – see "Hierarchical Queries"
on page 390.

Setting Up the Binding

! To connect to CISAM data:

The CISAM data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.

! Specify a name for the data source in the Name field.
! Select CISAM for the Type field.

! Specify the CISAM connect string as follows:

 178

CISAM Driver
Data directory – The directory where the CISAM files and indexes you
create with CREATE TABLE and CREATE INDEX statements reside.
You must specify the full path for the directory.
" The location of the data file for each table is specified in the ADD

metadata. These data files can have a physical file name or an
environment variable name (which is translated before accessing the
data). This is useful if the data is distributed among several physical files.
For example, under UNIX the environment variable can be similar to the
following:

setenv ALL_EMPLOYEES /users/db/boston/emp.dat,
 /users/db/paris/emp.dat

when the employees table name is set in the data dictionary to
$ALL_EMPLOYEES.

The data files are specified in the Data file field of Metadata perspective of
Attunity Studio or, when using NAV_UTIL EDIT, via the filename attribute.
For tables created using the CREATE TABLE statement, the value
specified in the Data directory field is used to create the data files and is
specified in the ADD metadata to locate the data. If a value is not specified
in this field, the data files are written to the DEF directory under the
directory where Attunity Connect is installed.

Log file – The path and name of an existing log file for use when
CISAM is used as a one-phase commit data source.

" Only CISAM version 7.6 and above support one-phase commit.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

audit="true|false" – Activates an audit file for each table.

auditFile="string" – The audit filename is the concatenation of the value
specified for the "name" attribute of the <table> statement and an
".aud" suffix.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

filepoolCloseOnTransaction="true|false" – Specifies that all files in the
filepool for this data source close at each end of transaction (commit or
rollback).

filepoolSize="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

 179

CISAM Driver
filepoolSizePerFile="n" – Specifies how many instances of a file from the
filepool may be open concurrently for each file.

lockWait="true|false" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

newFileLocation="string" – (Data directory in the connect string) The
directory where the CISAM files and indexes you create with CREATE
TABLE and CREATE INDEX statements reside. You must specify the full
path for the directory.

transactionLogFile="string"– The name of the file where the transaction
log is written.

useGlobalFilepool="true|false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to CISAM data types:

CREATE TABLE CISAM

Char[(m)] Char[(m)]

Date Date+time

Double Double

Float Float

Image –

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text –

Tinyint Tinyint

Varchar(m) Varchar(m)

 180

Client Machine
Transaction Support

The Attunity Connect CISAM driver supports one-phase commit for
CICAM version 7.6 and above. It can participate in a distributed
transaction if it is the only one-phase commit data source being updated
in the transaction.

A log file must exist and the path and name of this log file must be
specified in the data source configuration, in the binding configuration.
For details, refer to "Driver Configuration" on page 178.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Locking

Record level locking is supported.

Metadata Considerations

The Attunity Connect CISAM driver requires Attunity Connect ADD
metadata. You use the Metadata perspective of Attunity Studio to
define metadata and update the statistics for the data.

" The "filename" attribute in ADD must not include the file suffix (this suffix is
included with all the other drivers). For details of the filename attribute, see
page 50.

Client Machine
A client machine is a machine running an application that calls
Attunity Connect via one of its standard interfaces: ODBC, JDBC,
OLE DB/ADO, XML, JCA or COM.

A machine that can supply data to other machines is called a server, and
a machine that requests data from a server is a client. (Note that a
server machine can also be a client of other servers.)

COBOL APIs to Applications
See "C and COBOL APIs to Applications" on page 147.

 181

COBOL Copybook Import for Data Source Metadata
COBOL Copybook Import for Data Source Metadata
You can generate metadata for any data source where a COBOL
copybook exists that describes the data.

" Importing metadata for Enscribe, RMS and VSAM from a COBOL copybook is
performed in Attunity Studio using customized import wizards in the Metadata
Import perspective.

The following steps are used to import metadata from COBOL
copybooks.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

COBOL Copybook Import for Application Adapter Definitions
You can generate an application definition (metadata) for any adapter
where a COBOL copybook exists that describes the input and output
record structures required by the application.

DESCRIPTION

Get Input Files If COBOL copybooks are available defining the application input or
output: Specify the copybooks.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables, identified from the COBOL, you want to import
metadata for from the list of tables.

Resolve Table
Names

In cases where there are multiple tables with the same name, the
source COBOL file that describes each specific table is specified.

Generate Final
Metadata

Prepares the final XML defining the metadata.

Import Metadata The metadata can be imported to the machine where the data source
resides. This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 182

COBOL Copybook Import for Application Adapter Definitions
" Importing an application adapter definition for CICS and IMS/TM adapters or
for events, using COBOL copybooks, is performed in Attunity Studio using
customized import wizards in the Metadata Import perspective.

The following steps are used to import metadata from COBOL
copybooks.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files If COBOL copybooks are available defining the application input or
output: Specify the copybooks.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Add Interactions For each interaction, you specify the input and output records used by
the interaction. The records are generated from the COBOL copybooks.

Generate Final
Metadata

Prepares the final XML defining the schema for the application
adapter.

Import Metadata The application definition can be imported to the machine where the
adapter resides. This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 183

COBOL Data Types to Attunity Data Types
COBOL Data Types to Attunity Data Types
The following table shows how Attunity Connect maps COBOL data
types to Attunity data types.not

COBOL Data
Type

COBOL
Flavor

COMP-6
Switch

Storage
Mode

Fractional ADD Data Type

BINARY MICROFOCUS NOIBMCOMP Y scaled_int or string
according to the
number of digits

N int or string
according to the
number of digits

IBMCOMP Y scaled_int

N int

other Y scaled_int

N int

BINARY-CHAR int

BINARY-SHORT int

BINARY-LONG int

BINARY-DOUBLE int

COMP AS400 decimal

other Y scaled_int

N int

COMP-1 single

COMP-2 dfloat

COMP-3 decimal

COMP-4 Y scaled_int

N int

 184

COBOL Data Types to Attunity Data Types
COMP-5 MICROFOCUS NOIBMCOMP Y scaled_int or string
according to the
number of digits

N int or string
according to the
number of digits

IBMCOMP Y scaled_int

N int

other Y scaled_int

N int

COMP-6 MICROFOCUS COMP-6"1" NOIBMCOMP Y scaled_int or string
according to the
number of digits

N int or string
according to the
number of digits

IBMCOMP Y scaled_int

N int

COMP-6"2" decimal

COMP-X MICROFOCUS Y scaled_int or string
according to the
number of digits

N int or string
according to the
number of digits

other Y scaled_int

N int

FLOAT-SHORT single

FLOAT-LONG dfloat

FLOAT-EXTENDED dfloat

COBOL Data
Type

COBOL
Flavor

COMP-6
Switch

Storage
Mode

Fractional ADD Data Type

 185

COBOL Data Types to Attunity Data Types
When mapping COBOL data types not listed in the above table, Attunity
Connect maps PIC clauses containing the format characters X, B, A, or
N map to string.

A PIC clause containing a format character ’+’, ’-’ or ’S’ maps as follows:
! If the PIC clause contains the format character ’.’, it maps to

string.
! If the PIC clause does not contains the format character ’.’ and

the COBOL flavor is HP NonStop, it maps to numstr_tse while
other COBOL flavors map to numstr_s.

A PIC clause not containing a format character ’+’, ’-’ or ’S’ maps as
follows:

! If the PIC clause contains the format character ’.’, it maps to
string.

! If the PIC clause does not contains the format character ’.’, it
maps to string numstr_u.

INDEX int

SIGN [IS] LEADING a

SIGN [IS] LEADING SEPARATE [CHARACTER] b

NATIVE-2 HP NonStop int

NATIVE-4 HP NonStop int

NATIVE-8 HP NonStop int

PACKED-DECIMAL decimal

POINTER int

POINTER-64 int

a. A PIC clause containing the format character ’.’, maps to string. A PIC clause not containing the format character ’.’ and
the COBOL flavor is HP NonStop, maps to numstr_lse while other COBOL flavors map to numstr_nlo.

b. A PIC clause containing the format character ’.’, maps to numstr_bdn. A PIC clause not containing the format character
’.’, maps to numstr_nl.

COBOL Data
Type

COBOL
Flavor

COMP-6
Switch

Storage
Mode

Fractional ADD Data Type

 186

Codepage
All other data types that define only a PIC clause, are mapped as
follows:

! A PIC clause containing a format character ’+’, ’-’ or ’S’ maps as
follows:
! If the PIC clause contains the format character ’.’, it maps to

string.
! If the PIC clause does not contains the format character ’.’

and the COBOL flavor is HP NonStop, it maps to numstr_tse
while other COBOL flavors map to numstr_s.

! A PIC clause not containing a format character ’+’, ’-’ or ’S’ maps
as follows:
! If the PIC clause contains the format character ’.’, it maps to

string.
! If the PIC clause does not contains the format character ’.’, it

maps to string numstr_u.

Codepage
See "National Language Support (NLS)" on page 471.

COM Application Adapter
The Attunity Connect COM Adapter enables access to simple
COM-based applications via XML.

COM objects are defined with interfaces, which group public methods
into sets. The Attunity Connect COM application adapter treats each
COM method as an interaction, specified in an adapter definition. The
definition functions as the glue linking the COM application adapter
and the COM object accessed by the adapter. This definition provides
the run-time executable of the adapter with definitions for the
following:

! The COM object the adapter accesses.
! The interactions/methods the adapter invokes.

! The COM object’s properties accessible to the adapter.
! The parameters of the COM object.

The following sections provide information about the Attunity Connect
COM adapter:

! Registering the COM Application

! Setting Up the Binding
! The Adapter Definition for a COM Adapter

 187

COM Application Adapter
! COM Adapter Supported Data Types

Registering the COM Application

Register the COM application to Windows. In the Run dialog box
(accessed via Start | Run...) enter the following:

regsvr32 dll

Where dll is the name of the COM application.

Setting Up the Binding

! To connect to a COM object:

The COM adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.

! Specify a name for the adapter in the Name field.
! Select COM for the Type field.

The Adapter Definition for a COM Adapter

Attunity Connect provides a utility to generate a template adapter
definition, which you can modify and then import as a valid adapter
definition to the Attunity Connect repository.

! To generate the definition for the database application adapter:

1. Run Nav_Util Autogen with the -new option, as follows:

Nav_Util autogen adapter -new answer.xml

where adapter is the name specified in the binding configuration for
the adapter. An XML file called answer.xml is generated with the
following content:

<autogen ProgId="sample_Prog_Id" />
2. Change sample_Prog_Id to the program id of the COM object, as

defined in the Windows registry. For example:

<autogen ProgId="trig.TrigCls" />

3. Import the definition to the Attunity Connect repository:

Nav_Util autogen adapter answer.xml

 188

COM Application Adapter
where adapter is the name specified in the binding configuration for
the adapter. An adapter definition called adapter is generated and
imported to the repository. The definition describes the COM object
whose program id is specified in the answer file.

The COM Adapter
Definition

The methods specified in the COM object are listed as interactions in
the adapter definition. There are groups of definitions:

! Super-methods by which the application can Get/Put properties
values collectively:

<interaction name='comPropertyGet' description='Get properties from COM'
 mode='sync-send-receive' input='comPropertyGet'
 output='comPropertyGetResponse'/>
<interaction name='comPropertyPut' description='Put properties onto COM'
 mode='sync-send-receive' input='comPropertyPut'
 output='comPropertyPutResponse'/>

! A list of the interactions that correspond to methods found in the
COM object.

The definition uses the Attunity Connect XML protocol described in
"Application Adapter Definition" on page 93.

The following attributes are specific to the COM adapter and are used
at the Record level:

EntryRef – The name of the method to be invoked within that object.

IID – The UUID of a user-defined type. Used for user-defined data types
only.

libIID – The UUID of the library in which the user-defined data type is
defined. Used for user-defined data types only.

ObjectRef – Either a ProgID or a UUID of the COM that this input
record refers to.

ParamCount – The number of parameters passed to that method.

The following attributes are specific to the COM adapter and are used
at the Field level:

Usage – Explains what the COM adapter is about to do with this field:

InstanceTag – Names an object instance.

Property – Treated as a property.

Parameter – The field value should be passed as a parameter to/from
a method.

 189

COM Application Adapter
RetVal – The field will hold a method's return value.

COMtype – Specifies the field's data type as recognized by COM, using
explicit COM enumeration values (for details, see "COM Adapter
Supported Data Types", below).

" For details about the definition syntax, refer to "Application Adapter Definition"
on page 93.

COM Adapter Supported Data Types

The following table lists the supported COM data types and their
equivalent data types in Attunity Connect:

COM Named Type Value C/Windows Type ACX Generated Type

VT_I1 16 char type="int" nativeType="int1"

VT_I2 2 short type="int" nativeType="int2"

VT_I4 3 long type="int" nativeType="int4"

VT_I8 20 __int64 type="int" nativeType="int8"

VT_R4 4 float type="float"

VT_R8 5 double type="double"

VT_CY 6 CY N/A - type="string"

VT_DATEa 7 DATE type="int" nativeType="ole_date"

VT_BSTR 8 BSTR type="string"

VT_ERROR 10 SCODE type="int" nativeType="uint4"

VT_BOOL 11 VARIANT_BOOL type="Boolean"

VT_DECIMAL 14 DECIMAL type="ole_decimal"

VT_UI1 17 BYTE type="int" nativeType="uint1"

VT_UI2 18 USHORT type="int" nativeType="uint2"

VT_UI4 19 ULONG type="int" nativeType="uint4"

VT_UI8 21 unsigned _int64 N/A type="string"

VT_INT 22 int type="int" nativeType="int4"

 190

COM Application Adapter
Defining Data Types The COM adapter supports user-defined data types. The data type is
defined as a record structure in the schema part of the adapter
definition.

The following is a Visual Basic definition of a user-defined type, which
is a part of a COM object:

Public Type PersonRecord
 ID As Integer
 firstName As String
 lastName As String
 birthDate As Date
End Type

Running NAV_UTIL AUTOGEN against this code produces the following
definition:

<record name=’PersonRecord’ IID=’{F81A190B-F903-424F-898D-9F23B7BD5EB6}’
 libIID=’{C140C9C8-0F9C-41DA-ADBA-B367DA66791B}’>
 <field name=’ID’ type=’int’ nativeType=’int2’ required=’true’
 COMtype=’2’/>
 <field name=’firstName’ type=’string’ nativeType=’string’
 required=’true’ COMtype=’8’/>
 <field name=’lastName’ type=’string’ nativeType=’string’
 required=’true’ COMtype=’8’/>
 <field name=’birthDate’ type=’date’ nativeType=’ole_date’
 required=’true’ COMtype=’7’/>
</record>

VT_UINT 23 UINT type="int" nativeType="uint4"

VT_USERDEFINEDb 29 struct type=nameOfUserDefinedTtype

VT_HRESULT 25 HRESULT type="int" nativeType="uint4"

VT_LPSTR 30 char * type="string"

VT_LPWSTR 31 wchar_t* type="string"

a. Dates are interpreted according to the user defined locale definitions.
b. Defining a user-defined data type is described below.

COM Named Type Value C/Windows Type ACX Generated Type

 191

ComACX – Attunity Connect COM Component for XML
ComACX – Attunity Connect COM Component for XML
You can use an Attunity Connect application adapter via the
Attunity Connect COM component. This component, ComACX, enables
accessing Attunity Connect from any COM-based application.

Full details of the Attunity Connect COM implementation are provided
in the Attunity Connect thin client documentation.

Communication Errors
Many difficulties relate to communications because of the wide variety
of platforms, system configurations, TCP/IP protocol stacks and possible
Attunity Connect configurations.

A lot happens behind-the-scenes when an application uses Attunity
Connect to access a remote data source. By understanding these
behind-the-scenes steps you may find the one that failed and with that,
the best hint to solving the problem.

How Communication
Between Machines is
Handled

The following describes the steps Attunity Connect takes to connect to
a remote data source. The scenario listed here assumes a Windows
client trying to access an Attunity Connect data source CORPSALES
defined as a remote data source located on a host CORPHOST.

Client Server

Client Application

ADO/OLE DB/
ODBC/JDBC

Attunity Connect

Binding
(in repository)

Attunity Connect
Server

Attunity Connect
Daemon
(IRPCD)

(start)(register)

#$

% &'(

) *

Binding
(in repository)

Client Server

Client Application

ADO/OLE DB/
ODBC/JDBC

Attunity Connect

Binding
(in repository)

Attunity Connect
Server

Attunity Connect
Daemon
(IRPCD)

(start)(register)

#$

% &'(

) *

Binding
(in repository)

 192

Communication Errors
1. Look up the data source

Attunity Connect looks up the data source in the binding
configuration. The data source appears in a <datasource>
statement and specifies REMOTE for the type.

If access is to an application adapter, the connection information,
includes the adapter name and the host where the adapter resides.

2. Look up the host where the data source resides

Attunity Connect looks for a remote machine name in the connect
attribute for the data source. The remote machine name is then
used to look up the address for the machine in a <remoteMachine>
statement.

The address may be a symbolic TCP/IP hostname
(host.domain-name) or a numeric IP address. If workspace is not
given, the default workspace, Navigator, is assumed.

3. Find the port number for IRPCD, the Attunity Connect
daemon on the host machine

If the remoteMachine definition in the previous step specified a port
number, that port number is used. Otherwise, the Attunity Connect
default port number, 2551, is assumed.

4. Login to IRPCD

Attunity Connect connects to the daemon process listening on the
port number found on the host machine and issues a login request.
If the client’s user profile had an entry for the remote machine
name that was used, the corresponding username and password are
used for logging in. Otherwise an anonymous login is attempted.

5. Ask for workspace information

Attunity Connect asks the daemon for information about the data
source’s workspace specified in step 2 (or the default, if no
workspace is defined). The daemon verifies that such a workspace
exists and provides information about it – in particular, the daemon
tells the Attunity Connect client how long should it wait for a server
to start before assuming the connection failed (the ‘connectTimeout’
attribute specified in the daemon configuration information).

6. Ask for a server

Attunity Connect asks the daemon for a server for the workspace.
If the daemon has an available server for the requested workspace,
it immediately returns with the location of that server.

If no server is available, the daemon starts a new server process and
expects the new server to connect to the daemon and provide its
location. Once the new server has provided the daemon with its

 193

Communication Errors
location, the daemon returns to the client with the new server
location.

7. Connect to the server

Attunity Connect uses the server location to connect to the
workspace server. Then the Attunity Connect client starts
communicating directly with the Attunity Connect server.

8. Disconnect from the server

The following table describes the various scenarios that may exist
when an Attunity Connect client disconnects from an
Attunity Connect server.

Server Process Connected to Client

Idle (Not Processing a Client
Request)

Processing a Client Request

Explicit
Disconnect
(client explicitly
closes connection
or client program
terminates)

The server is immediately
notified of the disconnect and
either becomes available for use
by another client or terminates
(if it is not reusable).

The server does not know that the client
has disconnected and continues
processing. When processing completes,
the server tries to reply to the client and
immediately gets an error that the
connection was lost. The server either
becomes available for use by another
client or terminates (if it is not
reusable).

Abrupt
Disconnect
(client closed
without proper
shutdown or
client system
hanged and
communication
disconnected)

The server does not know that
the client has disconnected and
remains in the idle state.
After timing out based on
whichever comes first of the
value for the clientIdleTimeout
daemon workspace parameter
or the TCP/IP KEEPALIVE
parameter, the server is notified
of the disconnect and either
becomes available for use by
another client or terminates (if
it is not reusable).

The server does not know that the client
has disconnected and continues
processing. When processing completes,
the server tries to reply to the client.
After an interval (typically several
minutes, depending on the TCP/IP
configuration), during which the TCP/IP
subsystem retries sending the message
to the client, the server assumes that
the client is dead and notifies the server
that the connection has been closed. The
server either becomes available for use
by another client or terminates (if it is
not reusable).

 194

Communication Errors
To troubleshoot Attunity Connect client/server communication
problems, you need to be familiar with the following:

! The daemon configuration settings.

! Attunity Connect security.
! The TCP/IP subsystem. Attunity Connect uses TPC/IP for internal

intermachine communications.

! System details, such as the account name and password of the
administrator account, the IP address of the machines involved and
whether a portmapper is being used.

Resolving Specific
Errors

The following table lists error messages that relate to client/server
communication.

Code Message & Explanation Possible Action

C000 Cannot shutdown a non-local IRPCD with a
signal.
Explanation – The "oper" parameter in
the "irpcd shutdown" command is
available only with a local daemon.

! Check that a remote machine was not
specified in the -l [host[:port]] parameter
of the irpcd shutdown command.

! Check that the port number specified in
the irpcd shutdown command is correct.

C001 Failed to open the IRPCD PID file.
Explanation – The daemon could not open
the irpcd[_port].pid file to find the
process ID of the daemon to shut down.

" The irpcd[_port].pid file is located in the
BIN directory under the directory where
Attunity Connect is installed.

Check that the daemon has permission to
access the irpcd[_port].pid file.

C002 Cannot shutdown IRPCD, PID cannot be
found.
Explanation – The shutdown operation
failed because the irpcd[_port].pid file
was not found in the BIN directory
under the directory where Attunity
Connect is installed.

! Check whether the irpcd[_port].pid file
exists (it may have been deleted
manually).

! Check that the daemon is running
(another user may have shut down the
daemon). Run the following command
from a PC connected to the network:
nav_util check
irpcd(hostname[:port])

C003 Invalid PID in the IRPCD PID file (%s).
Explanation – The shutdown failed
because the irpcd[_port].pid file in the
BIN directory under the directory where
Attunity Connect is installed was
corrupted.

Kill the daemon with a system command.

 195

Communication Errors
C004 Failed to create a PID file (%s).
Explanation – The daemon was not able
to create the irpcd[_port].pid file in the
BIN directory under the directory where
Attunity Connect is installed. Attunity
Connect still runs, and problems will
occur only when shutting down the
daemon ("irpcd shutdown oper" will not
work).

Check that the account where the daemon
runs has permission to access the
irpcd[_port].pid file.

C005 Could not open the IRPCD log file for write.
Explanation – The daemon was not able
to create or write to its log file.

! Check that the account where the
daemon runs has permission to
generate/write to the log file.

! Check the path specified for the log file
in the daemon configuration.

! Check that there is no existing log file
owned by another user at the specified
location.

! Ensure that the disk device is not full.

C007 Server initialization failed.
Explanation – The daemon failed to start
its network service.

! Check the processes being run on the
system to see whether another daemon
or program is using the port specified in
the -l [host[:port]] parameter of the
irpcd start command. (The netstat
program on most platforms shows this
information.)

! Check the TCP/IP subsystem on the
current machine by trying to ping it or
run ftp or telnet to or from it.

! Check whether the daemon has
privileges to use the TCP/IP services on
the current machine with the
designated port number.

C008 Setting server event handler failed.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C009 IRPCD process has been terminated by
user request.
Explanation – This message is
informational only. The daemon
successfully shut down.

No action required.

Code Message & Explanation Possible Action

 196

Communication Errors
C00A Application %s not found.
Explanation – The requested workspace
does not exist.

Check that the workspace defined in the
client binding is also defined in the
daemon configuration on the target server.
Use the following command from a PC to
check the workspace:
nav_util check server(hostname,
workspace)
where:
hostname – The host name with an
optional port number (the port number is
specified after a colon).
workspace – The name of the workspace as
defined in the client binding.

C00B Invalid IRPCD client context.
Explanation – A non-Attunity Connect
program is trying to connect to the
daemon.

Check the processes and kill the relevant
process with a system command.

C00C Daemon request requires a server login.
Explanation – A non-Attunity Connect
server or program was trying to use a
daemon service reserved for Attunity
Connect servers.

Check the processes and kill the relevant
process with a system command.

C00D Daemon request requires a client login.
Explanation – The requested daemon
requires a valid client login, which was
not supplied.

! Reissue the command and specify a
username/password.

! Edit the User Profile in Attunity Studio
to specify a valid username and
password for the remote machine.

C00E Daemon request requires an administrator
login.
Explanation – The requested daemon
service requires an administrative
login.

! Reissue the irpcd command using the -u
parameter and a valid administrator
username/password.

! Edit the User Profile in Attunity Studio
to specify a valid administrator
username and password for the remote
machine.

Code Message & Explanation Possible Action

 197

Communication Errors
C00F Anonymous client logins are not allowed.
Explanation – The daemon is configured
to require a valid username and
password, which were not supplied.

! Reissue the irpcd command using the -u
parameter and a username/password.

! Enable anonymous client access by
setting the AnonymousClientAllowed
parameter to TRUE in the Security
section of the daemon configuration.

! Edit the User Profile in Attunity Studio
to specify a valid username and
password for the remote machine.

C010 Anonymous server logins are not allowed.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C011 Client has already timed out.
Explanation – A server process was
started on behalf of a client and the
client has timed out before the server
completed its startup.

Increase the ConnectTimeout value for the
server workspace in the Workspace xxx
section of the daemon configuration.

C012 Invalid username/password.
Explanation – Invalid
username/password supplied when
logging on to the daemon.
On Windows platforms, the daemon is
not registered correctly.

! Reissue the irpcd command using the -u
parameter and a username/password.

! See the daemon log file for the reason
that the username/password were not
accepted.

! Edit the User Profile in Attunity Studio
to specify a valid username and
password for the remote machine.

! Make sure the daemon is started from
an account that is allowed to check for
system usernames and passwords. On
some platforms, only a privileged
account can check for authentication.

! On Windows platforms, register the
daemon as described in "Starting the
Daemon" on page 214.

Code Message & Explanation Possible Action

 198

Communication Errors
C014 Client connection limit reached - try later.
Explanation – The maximum number of
server processes for the workspace has
been reached, and none of the active
servers could accept the client
connection.

! Under OS/390 and z/OS, increase the
number of sub-tasks per address space
in the NsubTasks parameter in the
Workspace xxx section of the daemon
configuration.

! Under UNIX, increase the value of the
MaxNActiveServers and/or
MaxNClientsPerServer parameters in
the Workspace xxx section of the
daemon configuration.

! Try running the command later.

C015 Failed to start server process.
Explanation – The Attunity Connect
daemon failed to start a server process
or the started server failed upon
starting up.

See the daemon and server log files for the
reason the server did not start.
For example, if you receive a message
similar to the following:
[C015] Failed to start NAVIGATOR
server process: No server account
name defined for anonymous
client; code: -1601: SQL code: 0
If you use impersonation, check the user
profile on the client. Also see C069, below.

C016 Unexpected server state.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C017 Active daemon clients exist. Shutdown
canceled.
Explanation – One or more clients are
still connected to the daemon.

! Wait until all the clients log off the
daemon and then retry the shutdown
operation.

! Force a shutdown by using the irpcd
shutdown abort command.

C019 Request is not granted because someone
else is locking it.
Explanation – A request to lock a
resource managed by the daemon was
denied because another user has locked
the resource.

Wait for the other user to release the
resource.

C01A Lock %s not found.
Explanation – A request to free a
resource was denied because the caller
did not lock that resource (for example,
another user shut down the daemon you
are working with).

Contact Attunity support. Email the local
support center or support@attunity.com

Code Message & Explanation Possible Action

 199

Communication Errors
C01B Unexpected error in %s.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C01C Cannot update configuration without
_APPLICATIONS lock.

Contact Attunity support. Email the local
support center or support@attunity.com

C01D Need to lock the application first.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C01F Cannot set configuration of a deleted
application.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C020 Failed in looking up host name
(gethostname())
Explanation – Cannot connect to the
remote machine.

! Check that the name specified for the
machine in the binding is correct.

! Check that a domain name server (DNS)
is available to look up the host name.

! Check the TCP/IP subsystem on the
machine by trying to ping it or run ftp or
telnet to or from it.

C021 Required variable %s not found
Explanation – An environment variable
required by the Attunity Connect server
was not defined when the server started
up.

! Check whether the startup script makes
any changes to the environment
variables used by Attunity Connect.

! Check whether the system-defined
environment size is sufficiently large for
Attunity Connect.

Code Message & Explanation Possible Action

 200

Communication Errors
C022 Server failed to connect and register with
the daemon.
Explanation – An Attunity Connect
server started by the daemon was not
able to connect or register back with the
daemon.

! Try to connect again.
! Increase the clients's ConnectTimeout

value for the target server workspace (in
the Workspace xxx section of the
daemon configuration).

! Check that the startup script for the
workspace launches the correct version
of Attunity Connect.

! Under OS/390 and z/OS, increase the
number of sub-tasks per address space
in the NsubTasks parameter in the
Workspace xxx section of the daemon
configuration.

! Under UNIX, increase the value of the
MaxNActiveServers and/or
MaxNClientsPerServer parameters in
the Workspace xxx section of the
daemon configuration.

C023 Call made to unregistered module %d.
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C024 Failed to create a socket.
Explanation – An error occurred within
the TCP/IP subsystem.

! Check whether you have sufficient
system privileges.

! Check the TCP/IP subsystem on the
machine by trying to ping it or run ftp or
telnet to or from it.

C025 Failed to set socket option %s
Explanation – An error occurred within
the TCP/IP subsystem.

! Check whether you have sufficient
system privileges.

! Check the TCP/IP subsystem on the
machine by trying to ping it or run ftp or
telnet to or from it.

C026 Failed to bind server to port %s
Explanation – An Attunity Connect
server or daemon was not able to bind to
the specified port.

! Check whether another program is
holding the port that was specified.

! Check whether you have sufficient
system privileges.

C027 Cannot create TCP service for %s
Explanation – An error occurred within
the TCP/IP subsystem

Check the TCP/IP subsystem on the
machine by trying to ping it or run ftp or
telnet to or from it.

Code Message & Explanation Possible Action

 201

Communication Errors
C028 Unable to register (%s, %d, tcp)
Explanation – This error may happen
when a portmapper is used (host:a) but
the portmapper is not available.

! Enable the portmapper.
! Avoid using the portmapper (by not

using “:a” when starting the daemon).

C029 Failed to create a server thread
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C02A Server thread failed to start
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C02B Stopping the %s server - no client
Explanation – A server that was started
by the Attunity Connect daemon to
service a client did not get a client
connection request within one minute.
The server terminates.

In most cases, the client was terminated
by a user request, so no specific action is
required.
If no client can connect to the server, it
may be that the server has multiple
network cards and the Attunity Connect
daemon is not aware of this. In this case,
start the daemon with an IP address.

C02C Unexpected event - a termination signal
intercepted
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C02D Modified transport, context
unknown/lost
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C02E Call made to non-existing procedure %d
Explanation – This error typically is
caused by a client of a newer version
calling an old server.

Verify that the client and server are using
the same version of Attunity Connect.

C02F Corrupted arguments passed to
procedure
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C030 Unable to free arguments for %s() of %s
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C031 Cannot register a non-module RPC %s
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

Code Message & Explanation Possible Action

 202

Communication Errors
C032 An IRPCD program is required
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C033 An IRPCD super-server is required for
module events
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C034 An invalid super-server module ID was
specified, %d
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C035 out of memory
Explanation – Not enough memory to
service a client request.

Increase process memory quota and/or add
memory to the system.

C036 Failed to register RPC procedure
module %s
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C037 Failed to register an invalid RPC
procedure number %x
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C038 Cannot re-register RPC procedure
number %x
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C042 Remote call to %s failed; %s
Explanation – Remote call to API failed.

Check the daemon log file.

" If necessary, change the level of detail
written to the log file to help resolve the
problem. (Change the level of detail in the
daemon configuration and run the irpcd
reloadini command.)

C043 Failed to connect to host %s;%s
Explanation – The remote host is not
correctly defined to Attunity Connect or
is not working.

! Check the remote machine definition in
the binding configuration.

! Check the daemon is up on the remote
machine (NAV_UTIL CHECK).

! Check the network connection by trying
to ping the host machine or run ftp or
telnet to or from it.

Code Message & Explanation Possible Action

 203

Communication Errors
C045 Failed to create a service thread
Explanation – The server failed to create
a thread to service a client request.

A system or process quota limit has been
exceeded. Either increase the quota or
lower the NClientsPerServer setting for
the server in the Workspace xxx section of
the daemon configuration.

C047 %s out of memory
Explanation – Not enough memory was
available to Attunity Connect to
complete a requested operation.

! Kill unnecessary processes running on
the server.

! Add more memory to the system.
! Allow the process to use more memory.
! Limit the number of processes the

daemon may start. If the demand for
servers exceeds the number of available
servers, clients get a message telling
them the maximum number of servers
has been reached and asking them to try
again later.

C066 Communication error with the server%s
Explanation – Connection to the Attunity
Connect daemon or server failed, or an
established session with a server has
failed.

! Check the remote machine definition in
the binding configuration.

! Check the daemon is up on the remote
machine (NAV_UTIL CHECK).

! In case of a network problem, check the
network connection by trying to ping the
host machine or run ftp or telnet to or
from it.

C067 unexpected error occurred in server
function %s
Explanation – One of the server functions
has exited with an exception (such as an
Access Violation (a GPE), or an Invalid
Instruction).

If the server contains user code (such as an
Attunity Connect procedure, a
user-defined datatype, or a user-written
provider), verify that this code is not
causing the exception.
Otherwise, contact Attunity support.
Email the local support center or
support@attunity.com

C068 fail to login daemon
Explanation – The daemon is not running
on the server machine.

! Use the following command from a PC to
check whether a daemon is running on
the server:
irpcd -l hostname[:port] test

! Have the system administrator
re-install Attunity Connect on the
server.

Code Message & Explanation Possible Action

 204

Communication Errors
C069 Fail to get server
Explanation – The Attunity Connect
daemon (IRPCD) on the server machine
could not start a server process to serve
the client. A separate message provides
more detail on why the server process
could not start.
There are many possible causes of this
error. If the cause is not clear from the
related message, see the Attunity
Connect daemon log file on the server

The resolution to this error is highly
dependent on the particular cause. The
following are some typical causes and
resolutions.
! Some process creation quota was

exceeded. Either try again later or
increase the quota or the other relevant
system resources.

! The server startup script failed. This
could be caused by some instructions in
the process logon script (such as
LOGIN.COM on OpenVMS, .cshrc on
UNIX, etc.)

! The username given is not allowed to
use the requested server. Use an
authorized username.

! A limit on concurrent clients for a server
has been reached. Try again later.

! If you use impersonation, check the user
profile on the client. Also see C015,
above.

C06A Failed to connect to server
Explanation – The server assigned to the
client did not accept the client
connection. A separate message
provides more detail about why the
server process did not accept the
connection.

See the daemon and server log files for the
reason that the server was not available to
accept its assigned client.

" If a multi-threaded server is used and many
clients are trying to connect to it at the same
time, some may get a Connection Refused
error if the TCP/IP request queue fills up.

C06B Disconnecting from server
Explanation – A network failure, or a
server machine failure or a server
program failure caused the connection
to abort. The currently active
transaction is aborted as well.

Attunity Connect will automatically try to
re-establish a connection with a server
upon the next SQL command issued
against the server.
Once the network or machine failure is
corrected, the connection to the daemon is
re-established automatically.

C06C No conversion between server codepage
%s and client codepage %s
Explanation – Client and server
machines use different codepages.

Using the codepage environment variable
in the Attunity Connect environment
settings, synchronize the codepages used
on the server and client.

Code Message & Explanation Possible Action

 205

Communication Errors
C06D Too many codepages in use, cannot load
any additional codepages
Explanation – Multiple codepages are
specified for the server.

Delete one or more of the codepages
specified in the codepage environment
variable of the server environment
settings.

C06E Versions of Attunity Connect client (%d)
and server (%d) do not match
Explanation – A new version of Attunity
Connect was installed on either the
client or server without using the
upgrade installation procedure.

Reinstall the new version of Attunity
Connect following the directions for the
upgrade installation procedure.

C06F There is no codepage defined in the
server
Explanation – The codepage environment
variable is not specified in the
environment settings.

Specify the codepage environment
variable in the Attunity Connect
environment settings.

C070 Server failed to send reply to the client
Explanation – Server terminated
unexpectedly.

Unless the client was intentionally
stopped (for example, using Control-C),
contact Attunity support. Email the local
support center or support@attunity.com

C071 Connection to server %s was
disconnected. Cursors state was lost.
Explanation – Either a network failure, a
server machine failure or a server
program failure caused the connection
to abort. The currently active
transaction is aborted as well.

Normally, Attunity Connect automatically
tries to create a new session with the
server upon the next attempt to access the
server. If the network and server are
accessible, the next operation should
succeed.
Otherwise, the network and/or server
machine should be fixed before connection
can be resumed.
In case of a server crash not related to
callable user code, please contact Attunity
support. Email the local support center or
support@attunity.com

C072 Reconnect to server %s
Explanation – This is an informational
message only. The client has
reestablished its connection with the
server.

No action required.

Code Message & Explanation Possible Action

 206

Configuration Perspective
Configuration Perspective

The Attunity Studio Configuration perspective enables configuring
access to Attunity Connect machines and to data and applications on
those machines. Access to a machine is configured by defining the
name, port and login information for the machine, defining the daemon

C073 The parameters passed to the admin
server are invalid: %s
Explanation – Internal error.

Contact Attunity support. Email the local
support center or support@attunity.com

C074 No authorization to perform the
requested operation (%s)
Explanation – User/account has
insufficient privileges.

Grant administrative privileges to the
user/account via the Administrator
parameter of the Security or Workspace
sections in the daemon configuration.

C075 Failed to register daemon in the TCP/IP
service table
Explanation – Registration of IRPCD in
the TCP/IP services file has failed.

Check that the account running the
daemon has the permissions to update the
TCP/IP services file.

C076 Required privileges have not been set
Explanation – On Windows platforms,
the daemon is not registered correctly.

On Windows platforms, register the
daemon as described in "Starting the
Daemon" on page 214.

E000 Licensed number of concurrent users
has been exceeded, try again later
Explanation – The number of active
Attunity Connect sessions accessing
local data sources has exceeded the
number licensed.

Purchase additional concurrent user
licenses.

E001 Failed in lock/release operation
Explanation – A lock or release operation
of a global resource has failed. A
separate message provides more details.

The separate message specifies the cause
of this error.
There are various causes for this error,
including lack of sufficient privileges, a
system resource shortage, etc.

Code Message & Explanation Possible Action

 207

Configuration Perspective
residing on the machine and the users allowed to access the machine
and it’s resources.

! To add a machine:

1. Right-click Machines in the Configuration Explorer, and define the
machine as described below:

Access to the machine is set by specifying the following information.

Host name/IP address – The name of the machine on the network.
The name can be entered manually or found using the Browse
button, which lists all the machines running an Attunity Connect
daemon listener on the specified port currently accessible over the
network.

Port – Specifies the port where the Attunity Connect daemon is
running. The default port for ATtunity Connect is 2551.

Display name – (Optional) An alias used to identify the machine
when different from the host name.

User name – (Optional) The username of a user defined as an
administrator for the machine.
" An administrator is specified when the machine is installed or using

NAV_UTIL ADD_ADMIN on the machine itself, as described in Attunity
Connect Reference.

Password – (Optional) The password of the user.

 208

Configuration Perspective
Connect via NAT with a fixed IP address – Specifies whether the
machine uses the NAT firewall protocol.

Under each machine are the following entries:

! Bindings
! Daemons

! Users

Bindings The binding configuration lists the application adapters, data sources
and events that reside on the machine and shortcuts to data sources
that reside on other machines, and which are accessible from the
specified machine.

" The configuration supplied with Attunity Connect includes the default NAV
binding. This binding configuration is used if a binding is not specified when
accessing a data source or application adapter.

You can have a number of binding configurations, each with a set of
application adapters, data sources and events that can be accessed.
Each configuration has its own environment that defines the binding
(such as cache sizes for storing information in memory during a
session).

! To add a New binding:

1. Right-click Bindings in the tree and select New Binding.

2. Specify a name for the binding in the window.

Daemons An Attunity Connect daemon, called IRPCD, runs on every machine.
The daemon is responsible for allocating an Attunity Connect server

 209

Configuration Perspective
process for a client. The daemon is built as a standard single-threaded
RPC server.

The daemon authenticates clients, authorizes requests for a server
process within a certain server workspace and provides the clients with
the required servers. When a client requests a connection, the daemon
allocates a server process to handle this connection, and refers the
client to the allocated process.

! To add a new daemon

1. Right-click Daemon in the perspective tree and select New Daemon.

2. Enter a name for the daemon and specify whether you want to set
the daemon to default values or copy the values of an existing
daemon.

! To edit a daemon

1. Right-click the daemon and select Edit Daemon.

2. Edit the daemon using the following tabs:

Control – Enables configuring daemon failure recovery, maximum
request file size, default language, time out parameters and routing
configuration.

Logging – Enables you to configure the format and location of the log
file. It also enables specifying the logging and trace options you
want to use.

Security – Enables securing the daemon by specifying permitted
groups and users.

 210

Configuration Perspective
Workspaces

Attunity Connect Daemons contain Workspaces that control the
Attunity Connect working environment. Workspaces are set under a
daemon.

! To add a new workspace:

1. Right-click the daemon for the workspace and select New
Workspace.

2. Enter a name for the workspace and specify whether you want to
set the workspace to default values or copy the values of an existing
workspace.

! To edit the workspace:

1. Right-click the workspace and select Edit Workspace.

A workspace is defined in the following tabs:

WS Info – Specifies the workspace server type, command procedure used
to start the workspace and the binding configuration associated with
this workspace.

WS Server – Specifies the features that control the operation of the
servers started up by the workspace and allocated to clients.

WS Logging – Specifies the parameters you want traced for the server
process.

WS Security – Sets administration privileges and whether anonymous
logins are allowed into the server account.

WS Governing – Sets the way queries are executed. This is used
particularly when running queries against large tables.

Users The user configuration sets the runtime authorization rights to access
data sources, application adapters and remote machines from the local
machine.

The Users List includes the default NAV user profile.

! To add a user profile:

1. Right-click Users in the perspective tree and select New User.

2. Enter a name for the user.

Once the user profile is set, it’s authenticators can be set for each of the
resources (data sources, application adapters and machines) it
accesses.

 211

Configuration Properties
Authenticators are set in the Add Authenticator window, accessed by
clicking the Add button.

In the Add Authenticator window, specify the resource type and name,
then enter the User Name and Password allowed for that resource.

Configuration Properties
Attunity Connect application adapters and data sources are defined in
the Attunity Connect binding by configuration properties.
Configuration properties are described separately for each specific
adapter or data source.

Also see: "Driver Configuration Properties" on page 308.

Connect String
To access data through Attunity Connect, specify Attunity Connect as
the provider in the connect string in the application.

The content of the connect string depends on the API you are connecting
through: JDBC, ADO (OLE DB), ODBC, or via the Attunity Connect XML
protocol (ACX).

By specifying Attunity Connect as the provider in the connect string
you can join data from different data sources within a single SQL
statement. The data joined can come from both relational and
non-relational data sources.

Checking a Connection Check that you can access the data source directly from the account
where Attunity Connect is installed. If you can, you will also be able
connect to the data source through Attunity Connect. If you have a
problem connecting directly to the data source, check that the data
source environment variables allow access from the Attunity Connect
account.

Also see: "ODBC Connect String" on page 552, "ADO Connect String" on page 87. The JDBC
connect string is described in the documentation supplied with the Attunity Connect thin
client kit.

 212

Connection Pooling
Connection Pooling
A cache of connections maintained in memory so that the connections
can be reused when future requests are received.

Connection pooling in handled by the Daemon, by setting a number of
parameters, including the server mode (making the server process
reusable) and the number of available servers.

Also see: "Workspace Server" on page 238.

Copying Data From One Table to Another
Using the SQL SELECT statement in an INSERT statement enables data
from one table to be copied into another table. The tables can be in
different data sources, as long as the data types of data retrieved by the
SELECT statement match the data types of the columns inserted in the
table. For example:

insert into oracle:employees select * from disam:emp

 213

Daemon
Daemon
An Attunity Connect daemon runs on every machine running
Attunity Connect. The daemon is responsible for allocating server
processes to clients.

The daemon authenticates clients, authorizes requests for a server
process within a certain server workspace and provides clients with the
required servers. When a client requests a connection, the daemon
allocates a server process (or where applicable, a thread) to handle this
connection, and refers the client to the allocated process. This may be a
new process (dedicated to this client) or an already-started process.
Further communication between the client session and the server
process is direct and does not involve the daemon. The daemon is
notified when the connection ends and the process is either killed or
remains for use by another client.

The daemon supports multiple server configurations called workspaces.
Each workspace defines accessible data sources, applications,
environment settings, security requirements and server allocation
rules. The allocation of servers by the daemon is based on the
workspace that the client uses to access the data source. Thus, a client
can access a data source via one workspace, where a server process is
allocated from an existing pool of servers, or the client can access a data

OS/390 and z/OS Platforms

The Attunity Connect daemon resides in a single address space. The
Attunity Connect server process is executed as a started task.

 214

Daemon
source via a different workspace, where a new server process is
allocated for each client request.

" The maximum number of concurrent server processes per workspace and/or
of concurrent open connections is a configuration parameter.

The daemon loads configuration settings such as various operational
parameters as well as the list of workspaces accessible through the
daemon. See "Daemon Configuration" on page 227.

Starting the Daemon

You start a daemon from a privileged account (such as the super user
account on a UNIX platform). If not run from a privileged account, the
daemon can start servers only with the same user ID as the account that
started it. In this case, the daemon may also have problems validating
user name/password pairs within the system.

" On platforms that support a multi-home machine, such as HP (Compaq)
NonStop, if you are starting the daemon and not using the default IP address,
specify the IP address in the host parameter (for example, when the machine
has more than one IP address), and add the following DEFINEs:

ADD DEFINE =TCPIP^PROCESS^NAME,FILE tcpip_proc_name

Workspace Workspace

...

Client IRPCD Daemon

Server

Server
Processes

Server
Processes

 215

Daemon
The daemon is usually started automatically when the system boots up.

The way you start the daemon depends on the platform.

OpenVMS Platforms

The daemon should start automatically when the system boots up,
through SYS$STARTUP:NAV_START.COM (see "Automatic Startup" in
the Attunity Connect Installation Guide for more details). When IRPCD
initializes itself as a daemon, it creates a detached process under the
same account from which 'IRPCD start' was issued. In the detached
process, the account's login procedure is not executed. If the daemon
fails to start in the detached process, define the symbol
NV_DEBUG_MODE to something before starting the daemon. This
creates a process log file in SYS$LOGIN:IRPCD_START.LOG which can
help you to locate the problem.

UNIX Platforms

To allow automatic client/server access to Attunity Connect, start the
daemon at system boot time by adding the command invoking IRPCD to
the /etc/inittab file. The following table describes the lines to add, for
the UNIX systems supported by Attunity Connect:

The symbol navroot should be replaced with the directory where
Attunity Connect is installed.

Windows Platforms

To start the daemon automatically, set the Startup type property for
the Attunity Connect Daemon (IRPCD) service to Automatic. The
Attunity Connect Daemon (IRPCD) service is accessed via the Services
option in the Windows Control Panel (for example, for Windows 2000
this is accessed via Start | Settings | Control Panel | Administrative
Tools | Services).

" If you change the account under which the daemon runs, make sure that the
following user rights are assigned:
! Act as part of the operating system
! Create a token object
! Log on as a batch job
! Log on as a service
! Log on locally
Set these rights in Control Panel | Administrative Tools | Local Security Policy.
In the Local Security Settings window, select Local Policies | User Rights
Assignment in the tree and make sure each of the above user rights is set.

Reboot the Windows machine. The daemon starts up automatically
every time the machine is restarted.

 216

Daemon
HP (Compaq) NonStop,
OpenVMS, OS/400,
UNIX and Windows
Platforms

The IRPCD command is used to start the daemon.

" Use Attunity Studio to manage all daemon operations, except for starting the
daemon. A daemon can only be started via the command line and cannot be
started in Attunity Studio.

For IRPCD commands to manage the daemon on the machine itself,
refer to "Daemon Command Interface" on page 222.

! To start the daemon:

! Enter the following at the command line of the server:

where:

-l [host][:port | :a][-r] – The daemon uses a particular port, rather
than the default attunity-uda-server port number 2551. If you

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd [-l[host][:port | :a][-r]]
 [-u username [-p password]][-n][-v]
 start [daemon_name]

OS/400 Platforms

Sbmjob cmd(call pgm(navroot/irpcd)
parm([‘-l’[‘host[:port | :a]’][‘-r’]]
 [‘-u’ ‘username’ [‘-p’ ‘password’]]
 [‘-n’][‘-v’] start [daemon_name]))

" Note that strings in parameters containing special characters (such as the
hyphen in " -u username") must be surrounded by single quotes, as in
'-u' username.

If you have navroot defined, start the daemon without
specifying the path, as follows:

Sbmjob cmd(call pgm(irpcd)
 parm([‘-l’[‘host[:port|:a]’][‘-r’]]
 [‘-u’ ‘username’ [‘-p’ ‘password’]]
 [‘-n’][‘-v’] start [daemon_name]))

To use the default location for the irpcd program, when the
navroot library has been defined, specify the following:

Sbmjob cmd(call pgm(irpcd)
 parm([‘-l’[‘host[:port|:a]’][‘-r’]]
 [‘-u’ ‘username’ [‘-p’ ‘password’]]
 [‘-n’][‘-v’] start [daemon_name]))
" If you don't succeed in starting the daemon, check the log file by

running the following command:
Edtf '/navroot/tmp/irpcd.log'

 217

Daemon
specify a as the port, the system assigns a free port, which is
registered with the portmapper. Specifying the additional option
“-r” registers the specified port with the portmapper in a situation
where you do not want to register the port as the default port.
" On platforms that support a multi-home machine, such as HP (Compaq)

NonStop, if you are starting the daemon and not using the default IP
address, specify the IP address in the host parameter. For example, if the
tcpip_proc_name is $ztc0 and it corresponds to the IP address
194.90.22.23, start the daemon as follows:

run irpcd -l 194.90.22.23 start

-u username -p password – The login information used to issue the
daemon command. Specify '-u ""' for an anonymous login (if the
daemon is configured to accept anonymous logins). The username
and password may be needed to start a daemon since the daemon
uses them to stop the active daemon (if one exists).

-n (No mapping) – The daemon is not used as a portmapper. By
default, if a portmapper is not found the daemon itself can be used
as a portmapper.

-v (Verbose) – Provides detailed information whenever applicable
(for example, messages entered to the log).

daemon_name – The name of an Attunity Connect daemon. If the a
daemon name is not specified the default, IRPCD, is started.

OS/390 and z/OS
Platforms

For IRPCD commands to manage the daemon, refer to "Daemon
Command Interface" on page 222.

! To start the daemon:

1. Ensure the following:
! The 'NAVROOT.loadaut' library is APF authorized.

NAVROOT is the high level qualifier specified during
installation.

" To define a DSN as APF authorized, in the SDSF screen enter the
following command:

OpenVMS and UNIX Platforms

-b (Blocking) – The daemon remains connected to the terminal and
does not ‘daemonize’ itself. By default, when the daemon is started
it disconnects itself from the activating terminal and becomes a
detached process. All of the daemon logging messages are sent to
the standard output device, regardless of the logging settings.

Use this option for troubleshooting if there are problems starting
the daemon.

 218

Daemon
"/setprog apf,add,dsn=navroot.loadaut,volume=nav002"
where nav002 is the volume where you installed Attunity Connect.

! 'NAVROOT.USERLIB(ATTSRVR)' and
'NAVROOT.USERLIB(ATTDAEMN)' have been copied to a library
within the started tasks path. If they have not been copied, add
the 'NAVROOT.USERLIB' library to this path.

2. Activate 'NAVROOT.USERLIB(ATTDAEMN)' as a started task to
invoke the daemon. For example, in the SDSF screen enter the
following:

‘/s ATTDAEMN’

To submit the daemon as a job, uncomment the first two lines of the
ATTDAEMN JCL and run the job using the sub command. The
ATTDAEMN JCL is similar to the following:

//*ATTDAEMN JOB 'RR','TTT',MSGLEVEL=(1,1),CLASS=A,
//*MSGCLASS=A,NOTIFY=&SYSUID,REGION=8M
//STEP1 EXEC PGM=IRPCD,
// PARM='-B START ''NAVROOT.DEF.IRPCDINI'''
//STEPLIB DD DSN=NAVROOT.LOADAUT,DISP=SHR
//SYSPRINT DD SYSOUT=A
//GBLPARMS DD DSN=NAVROOT.DEF.GBLPARMS,DISP=SHR
// EXEC PGM=IRPCD,COND=((1,EQ,STEP1),(2,EQ,STEP1)),
// PARM='-KATTDAEMN START ''NAVROOT.DEF.IRPCDINI'''
//STEPLIB DD DSN=NAVROOT.LOADAUT,DISP=SHR
//SYSPRINT DD SYSOUT=A
//GBLPARMS DD DSN=NAVROOT.DEF.GBLPARMS,DISP=SHR
//SYSDUMP DD DUMMY
" You can also run ATTDAEMN by submitting the job, without making any

changes to the JCL.

Starting Multiple
Daemons

You can start more than one daemon on the same machine by specifying
a different port number for each daemon. This option is useful, for
example, when you want different users to access data on the same
machine using different daemon configurations.

Each daemon started must have its own configuration, which is
specified when starting the daemon. In addition, the workspaces in all
the configurations must be unique, so that there is no conflict between
configurations and workspaces.

" If you use different startup scripts in the daemon configuration settings, specify
a profile of started tasks for each startup script in the security manager.

 219

Daemon
Shutting Down the Daemon

! To shut down the daemon using Attunity Studio:

1. In the Runtime perspective, right-click the daemon you want to
shut down.

2. Choose Shutdown Daemon.

! To shut down the daemon using the command line:

! Run the following command:

where:

abort – If non-zero, the daemon shuts down regardless of any
outstanding activity or active clients.

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd shutdown [[abort[why]]| oper]

" On Windows Platforms – Run this command through the Attunity
Connect Environment Prompt menu item in the Attunity Connect menu
(Start | Programs | Attunity | Attunity Connect Environment Prompt).

You can also issue irpcd -s stop.

OS/390 and z/OS Platforms

NAVROOT.USERLIB(IRPCDCMD)

Enter “shutdown [abort[why]]” at the prompt or enter a control
command:

/P ATTDAEMN or /F ATTDAEMN, STOP

Shutting down the daemon does not immediately kill active servers.
To kill active servers, add the NVSHKILL parameter, with a value
of 1, to the NAVROOT.DEF.GBLPARMS dataset (where NAVROOT is
the high-level qualifier where Attunity Connect is installed).

OS/400 Platforms

call pgm (navroot/irpcd) parm(shutdown
[abort[‘why’]|oper])

Or

call pgm(irpcd) parm(shutdown [abort[‘why’] | oper])

 220

Daemon
why – The reason for the shutdown, which is written to the log file.

Checking that a Daemon is Running

! To check a daemon is running using Attunity Studio:

1. In the Runtime perspective, right-click the machine running the
daemon you want to check.

2. Choose Status.

The following window, displaying the daemon activity, is displayed:

! To check whether a daemon is running using the command line:

! Run the following command:

HP (Compaq) NonStop, OpenVMS, OS/400, UNIX and Windows Platforms

oper – Shuts down the daemon by sending a signal (SIGQUIT) to the
daemon process. You do not need to specify the username/password
for this option but you must have system privileges (you need to be
a superuser). To send a signal to the daemon, the IRPCD program
requires the process ID of the target daemon: the program retrieves
this information from the file irpcd[_port].pid in the directory where
the daemon resides (a daemon that was started on a particular port
would have the port number in the PID filename). The PID file is
automatically created when a daemon starts and is deleted when a
daemon ends.

HP (Compaq) NonStop, OpenVMS and Windows Platforms

nav_util check irpcd(daemon_location [,username,
password])

" On Windows Platforms – Run this command through the Attunity
Connect Environment Prompt menu item in the Attunity Connect menu
(Start | Programs | Attunity | Attunity Connect Environment Prompt).

 221

Daemon
where:

daemon_location – The host name with an optional port number
(specified after a colon).

username, password – Used for logging onto the daemon.

Example

Checking the prod.acme.com machine returns the following if the
daemon is active:

Checking IRPCD on host ‘prod.acme.com’
 Trying anonymous login - OK
 This test took 0.500 seconds.

The following is returned if the daemon is not active:

Checking IRPCD on host ‘prod.acme.com’
 Trying anonymous login - FAILED, [C043]
Failed to connect to host prod.acme.com:
 PC: Connect failed - Connection refused.

 This test took 1.042 seconds.

OS/390 and z/OS Platforms

NAVROOT.USERLIB(NAVCMD)

Enter “CHECK IRPCD(daemon_location [,username,
password])” at the prompt.

OS/400 Platforms

Call pgm(navroot/irpcd) parm(test)

If you have navroot defined, run the following, without specifying
the path:

Call pgm(irpcd) parm(test)

To use the default location for the irpcd program, when the navroot
library has been defined, run the following:

Call pgm(irpcd) parm(test)

UNIX Platforms

nav_util check “irpcd(daemon_location [,username,
password])”

 222

Daemon Command Interface
Daemon Command Interface
The Attunity Connect daemon includes a command interface for
managing the daemon. These commands are executed within Attunity
Studio. For details about running daemon commands from Attunity
Studio, refer to "Runtime Perspective" on page 658.

The syntax for IRPCD commands is:

" For the syntax of the IRPCD command to start the daemon, refer to "Starting
the Daemon" on page 214.

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd [-l[host][:port|:a] [-r]][-u username [-p
password]] command

OS/390 and z/OS Platforms

NAVROOT.USERLIB(IRPCDCMD)

Enter “[-l[host][:port|:a] [-r]][-u username [-p
password]] command” at the prompt.

NAVROOT is the high level qualifier where Attunity Connect is
installed.

OS/400 Platforms

Sbmjob cmd(call pgm(navroot/irpcd)
 parm([‘-l’[‘host’]
 [‘:port’ | :a] [‘-r’]][‘-u’ ‘username’
 [‘-p’ ‘password’]] command))

" Strings in parameters containing special characters (such as hyphen in "
-u username") must be surrounded by single quotes, as in '-u'
username.

If navroot (the location where Attunity Connect is installed) is
defined, start the daemon without specifying the path, as follows:

Sbmjob cmd(call pgm(irpcd) parm([‘-l’[‘host’]
 [‘:port’ | :a] [‘-r’]]
 [‘-u’ ‘username’ [‘-p’ ‘password’]]command))

To use the default location for the irpcd program, when the navroot
library has been defined, specify the following:

Sbmjob cmd(call pgm(irpcd) parm([‘-l’[‘host’]
 [‘:port’ | :a] [‘-r’]]
 [‘-u’ ‘username’ [‘-p’ ‘password’]] command))

 223

Daemon Command Interface
where:

-l [host][:port | :a][-r] – The daemon uses a particular port. If you specify
a as the port, the system assigns a free port, and registers it with the
portmapper. Specifying the additional option “-r” registers the specified
port with the portmapper in cases where you do not want to register the
port as the default port. If you don’t specify a port, the default Attunity
Connect port (2551) is assigned.

" On a multi-home machine (such as a HP (Compaq) NonStop machine), if you
are not using the default IP address, specify the IP address in the host
parameter. For example, run the following:

run irpcd -l 123.45.67.89:2551 -u “” shutdown

-u username -p password – The login information of the user who wants
to issue a daemon command. Use '-u ""' for an anonymous login (if the
daemon is configured to accept anonymous logins). Specify the user
name and password in uppercase letters.

" Some commands must have administrative authorization, specified in the
<workspace administrator="name".../> entry in the daemon configuration. See
"Daemon Configuration" on page 227 for details of the configuration
parameters.

command (which is not case sensitive) can be one of the following:

applist – Displays a list of the workspaces currently available with
the daemon (only those workspaces for which listing is enabled).

Kill [workspace] – Kills all the active servers for all workspaces or for
the specified workspace, regardless of whether the server has an
active client. You can issue this command only if you have daemon
administrator authorization (for all active servers) or workspace
administrator authorization (for the specific workspace servers).
" Compare this option with the Refresh option (below), which kills servers

that do not have active clients.

In Attunity Studio Runtime perspective, the equivalent of killing a
workspace is right-clicking the workspace and choosing End All
Servers.

Killing All Processes

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd -u user kill

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(IRPCDCMD)

Enter “-u sysadmin kill” at the prompt.

 224

Daemon Command Interface
Killing Processes for a Workspace

where production is the name of a workspace in the daemon
configuration.

Refresh [workspace] – Refreshes the daemon either for all
workspaces or for the specified workspace. Changing various server
properties affects only new server processes. All available and
unconnected servers are terminated and any connected servers are
marked and terminated on release. Use this option when changes
to the binding configuration or to the environment settings were
made after servers were started up. On the next operation, servers
are restarted, based on the available started servers and reusable
server settings.
" The configuration is not reloaded.

For example, when you have existing hot/reusable Attunity
Connect server processes, changing daemon properties doesn’t take
effect until these processes are replaced with new ones.

In Attunity Studio Runtime perspective, the equivalent of refresh
workspace is right-clicking the workspace and choosing End
Unused Servers.

Refreshing All Processes

OS/400 Platforms

Call pgm(navroot/irpcd) parm(‘-u’ ‘sysadmin’ kill)

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd -u user kill production

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(IRPCDCMD)

Enter “-u sysadmin kill production” at the prompt.

OS/400 Platforms

Call pgm(navroot/irpcd) parm(‘-u’ ‘sysadmin’ kill
‘production’)

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd -u user refresh

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(IRPCDCMD)

Enter “-u sysadmin refresh” at the prompt.

 225

Daemon Command Interface
Refreshing processes for a Workspace

where production is the name of a workspace in the daemon
configuration.

-reloadini – Reloads the IRPCD configuration (used when a change
was made to it after the daemon was started).
" Note that you can only reload the configuration with the name the daemon

was started with.

Any changes made to the daemon configuration, either using
Attunity Connect Studio or editing the settings using NAV_UTIL
EDIT, are not immediately implemented. The new settings are
implemented when the daemon is shutdown and then restarted or
when the configuration is reloaded: Either in Attunity Studio
Runtime perspective by right-clicking the daemon and choosing
Reload Configuration or by executing the reloadini IRPCD
command. For example:

OS/400 Platforms

Call pgm(navroot/irpcd) parm(‘-u’ ‘sysadmin’
refresh)

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd -u user refresh production

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(IRPCDCMD)

Enter “-u sysadmin refresh production” at the prompt.

OS/400 Platforms

Call pgm(navroot/irpcd) parm(‘-u’ ‘sysadmin’ refresh
‘production’)

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

irpcd -u user reloadini

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(IRPCDCMD)

Enter “-u sysadmin reloadini” at the prompt.

Or, using a control command: /F ATTDAEMN, RELOAD

 226

Daemon Command Interface
To implement changes to the daemon configuration, for example to
the server mode, you must first reload the new settings. Old servers
that are still live, keep the old settings. To make sure that all new
requests are issued with servers that have the new settings, after
issuing the reloadini command, issue the refresh command (see
above).

resetlog – clears the log.

shutdown [[abort[why]] | OPER] – Shuts down the daemon. If abort is
omitted or is zero, an orderly shutdown is performed (that is, if
there are currently active clients, the shutdown does not take
place). If abort is specified (is non-zero), the daemon shuts down
regardless of any outstanding activity or active clients.

In Attunity Studio the daemon is shutdown in the Runtime
perspective. Refer to "Shutting Down the Daemon" on page 219.

Status [workspace] – Displays the current daemon status, either for
all workspaces or for the specified workspace. This includes

OS/400 Platforms

Call pgm(navroot/irpcd) parm(‘-u’ ‘sysadmin’
reloadini)

HP (Compaq) NonStop, UNIX and Windows Platforms

-s register – Specifies (in the TCP/IP Services table)
Attunity Connect as the service using port 2551.

" For OpenVMS and OS/390 or z/OS platforms, consult the TCP/IP
documentation for information about registering Attunity Connect in the
Services table.

HP (Compaq) NonStop Platforms

This command is not supported.

HP (Compaq) NonStop, OpenVMS, OS/400, UNIX and Windows
Platforms

The OPER option enables you to shut down the daemon by sending
a signal (SIGQUIT) to the daemon process. You do not need to
specify the username/password for this option, but you must have
system privileges (you need to be a superuser). To send a signal to
the daemon, the IRPCD program requires the process ID of the
target daemon: the program retrieves this information from the file
irpcd[_port].pid in the directory where the daemon resides (a
daemon that was started on a particular port would have the port
number in the PID filename). The PID file is automatically created
when a daemon starts and is deleted when a daemon ends.

 227

Daemon Configuration
information about active servers (both those connected to a client
and those that are available) and the name and location of the log
file and the IRPCD configuration.

Along with the names and locations of the daemon configuration
and the log files, this command returned the following fields:

Number of logins – the number of times in the current session a
connection to the daemon has been established by either clients
or servers.
Number of active daemon clients – the number of clients and
servers currently connected to the daemon.
Number of active client sessions – the number of clients currently
working with Attunity Connect and connected to the severs.
Max number of concurrent client sessions – the maximum number
of clients that can work concurrently with the daemon.

test – Checks that the daemon is up and running. Equivalents to
this command are described in "Checking that a Daemon is
Running" on page 220.

Daemon Configuration
The daemon configuration is divided into the following groups:

Daemon Control (see page 229) – Defines the default language, failure
recoveries and timeout parameters.

Daemon Logging (see page 231) – Various daemon logging options (as
opposed to server logging, which is performed in the Workspace
section).

Daemon Security (see page 234) – Determines the administrative
privileges for the daemon. For details about security, refer to "Runtime"
on page 665.

Daemon Workspaces – The workspaces defined for the daemon. A
workspace defines the server processes and environment that is used
for the communication between the client and the server machine for
the duration of the client request. A workspace definition is divided into
the following groups.

WS Info (see page 236) – Determines general workspace
information.

WS Server (see page 238) – Defines workspace server processes.

WS Logging (see page 244) – Defines workspace tracing options.

WS Security (see page 246) – Determines the administrative
privileges for the workspace.

 228

Daemon Configuration
WS Governing (see page 249) – Determines the way queries are
executed. This is used particularly when running queries against
large tables.

" The default daemon configuration supplied with Attunity Connect includes the
default Navigator Workspace. This workspace is automatically used if a
workspace is not specified.

See page 250 for an example daemon configuration as XML.

The Daemon Definition

The daemon can be configured within Attunity Studio, either in the
Configuration perspective or the Runtime perspective.

! To configure a daemon (using the Configuration perspective):

1. From the Start menu, choose
Start|Programs|Attunity|Studio1.2.

2. Expand the machine where the daemon resides.
3. Expand the Daemons node.

4. Right-click the daemon and choose Edit Daemon from the popup
menu. The daemon editor opens.

" To edit a workspace, expand the daemon node, right click the specific
workspace and choose Edit Workspace from the popup menu.

Changes are only implemented after the configuration is reloaded and
existing servers with the old configuration are killed: Right-click the
machine in the Configuration perspective and choose Open Runtime
perspective from the popup menu. In the Runtime perspective,
right-click the daemon and choose Reload Configuration from the popup
menu followed by End all servers.

 229

Daemon Configuration
Daemon Control The Control section specifies various control options.

! Automatically recover from failure
The daemon restarts automatically if it fails for any reason (any
error that causes the daemon process to terminate, such as network
process lost or the CPU running the daemon crashes and the backup
daemon is defined on another CPU). All available and unconnected
servers are terminated and any connected servers are marked and
terminated on release. Also the backup starts a backup for itself.

The backup daemon appends a new log file to the log of the original
daemon, adding a line indicating that a backup daemon was
started.
" XML Format – backupDaemon=’true | false’

! Maximum XML request size
The maximum number of bytes the daemon handles for an XML
document.
" XML Format – comMaxXmlSize=’size’

! Maximum XML in memory
The maximum amount of space reserved for the xml in the memory.
" XML Format – comMaxXmlSize=’size’

! Default language
The language that the daemon supports. This setting is used when

 230

Daemon Configuration
working with a client with a different code page to the server code
page.

"XML Format – language=’ARA | ENG | HEB | JPN | KOR | SCHI |
SPA | TCHI’

! Call timeout
The timeout period for 'short' Attunity Connect calls for all
daemons. The definition of a 'short call' is a call that should be
completed in a few seconds. For example, most calls to a database
such as DESCRIBE should be completed in a few seconds as opposed
to call like a GETROWS call which could well take a long time. In
heavily loaded or otherwise slow systems, even short calls such as
calls to open a file, may take a significant amount of time. If a 'short
call' takes more than the specified time to complete, the connection
is aborted. The default value for this field is 60 seconds. Values of
less than 60 seconds are considered to be 60 seconds.
" Specifying the timeout in a workspace overrides the value set in this field

for that workspace.
" XML Format – callTimeout=’time-in-seconds’

! Connect timeout
The time the client waits for a daemon server to start. If the daemon
server does not start within this period, the client is notified that
the server did not respond. The value specified for this field serves
as the default timeout for all the workspaces listed in the daemon
configuration. The default value for this field is 60 seconds.
" Specifying the timeout in a workspace overrides the value set in this field

for that workspace.
" XML Format – connectTimeout=’time-in-seconds’

! Client idle timeout
The maximum amount of time any daemon client may be idle before
Attunity Connect closes the connection with the server.
" Specifying the timeout in a Workspace overrides this setting for that

workspace.
" XML Format – clientIdleTimeout=’time-in-seconds’

! Maximum number of blocks
The maximum amount of information blocks that can be monitored
at a time.
" XML Format – monitorMaxBlocks=’size’

! Maximum number of messages stored in a single block
The maximum number of messages that can be monitored in an
information block.
" XML Format – monitorMaxEventsPerBlock=’size’

 231

Daemon Configuration
Daemon Logging The Logging section defines the daemon log file settings, the log file
structure and the location where the log is saved. In addition it defines
the data that is logged and traced in the file.

! Daemon log file location
Where the daemon produces its log data. The field must specify the
full pathname, without environment variables.

A full path, without environment variables, must be specified. If no
directory information is provided for the log file, it will be located in
the login directory of the account running the Attunity Connect
server. If this field is not specified here in this section, the Attunity
Connect server log entries are written to the job specified in the
startupScript field of the Workspace section.

HP (Compaq) NonStop Platforms

If the log file is specified with a UNIX type path (such as
/G/d0117/ac3300/navlog), the log file can be viewed from other
processes (while it is open). Otherwise, the log is not readable while
it is open.

" A log file specified using a UNIX type path is harder to read because
commands such as TEDIT do not work on this type of file. To see the file
using FUP COPY, use the following format:
FUP COPY filename, , SHARE

 232

Daemon Configuration
" XML Format – logFile=’log-file-pathname’

! Logging Options
! Client requests for server (XML Format – logRunOpers)

Logs client requests for server activations; this provides logging
of the process IDs of the started servers along with the location
of the log files.

! Administration requests for daemon (XML Format – logAdminOpers)
Logs all of the administration requests for the daemon.

! Daemon operations (XML Format – logOpers)
Logs all of the Daemon operations.

! Daemon logins (XML Format – logLogins)
Logs daemon logins.

! Daemon RPC function calls (XML Format – logCalls)
Log all daemon RPC function calls.

! Daemon internal operations (XML Format – logInternalOpers)
Log daemon internal operations.

! Trace information (XML Format – logTrace)
Logs low-level RPC operations.

! Display host and domain name (XML Format –
logClientDomainName)
Whether the client host and domain name are logged rather
than the client IP address. The default is false.

! Trace options
Specifies what tracing is performed.
! No timeout (XML Format – debugNoTimeout)

Disables the standard RPC timeouts, setting them to a long
duration (approximately an hour) to facilitate debugging.

! Call trace (XML Format – debugCallTrace)
Generates a message in the server log file for each RPC function
called. This is useful for troubleshooting the server.

! RPC trace (XML Format – debugLogRpc)
Enables debugging messages on the server.

! Sockets (XML Format – debugSocketsTrace)
Generates a message in the server log file for each socket
operation.

! Extended RPC trace (XML Format – debugRpcTrace)
Generates a verbose message in the server log file for each
low-level RPC function called. This is useful for troubleshooting
the server.

! System trace (XML Format – debugSysTrace)
Generates system-specific tracing of various operations. On

OS/390 and z/OS Platforms

The default is to write the log entries to SYSOUT for the daemon
process.

 233

Daemon Configuration
OpenVMS, for example, this mode enables a SET VERIFY
command in the server startup script.

! Timing (XML Format – debugTimingTrace)
Generates a timestamp for every entry to the server log file.

! Server log filename format
Specifies the name of the Attunity Connect server log file.

The following tokens may appear in the log file template and will be
replaced accordingly:
! %A – workspace name
! %D – date (yymmdd)
! %I – instance number of the given workspace server
! %L – server account's login directory. Under OS/390 and z/OS:

The path to NAVROOT.TMP. If you specify a file name without
this path, the file is created under ‘NAVROOT.TMP.filename’

! %P – server's process ID
! %T – time (hhmmss)
! %U – server's account name (username)
" The server log name must be unique for each workspace. Thus, it is

recommended to include the workspace name token (%A) in the log
name.

Examples
! A UNIX log file template "%L/server_%A%I.log" may produce a

log file such as: /usr/smith/server_sales15.log. The default log
file template is "%L/server_%A%I.log". (The default varies
slightly, according to the operating system. On OpenVMS, for
example, the default is %Lserver_%A%I.log).

! A log file template "%L.ATTSRVR%I" may produce a log file such
as: ‘NAVROOT.TMP.ATTSRVR5’.
The default log file template is "%L.ATTSRVRn%I".

" XML Format – serverLogFile=’log-file-template’

OS/390 and z/OS Platforms

The default is to write the log entries to SYSOUT for the server
process.

 234

Daemon Configuration
Daemon Security The Daemon Security section is used for the following:

! To grant administration rights for the daemon.
! To determine access to the machine.

.

! Administrators privileges
Identifies the users (accounts) allowed to perform administrative
tasks (tasks that require administrative login, such as shutting
down the daemon or refreshing the daemon).
! All users

Anyone can manage the daemon.

! Selected users only

The names of users (accounts) and groups1 that can be
administrators.
"If a user is not specified, the account from which the daemon was

started is considered the administrator. Note that the daemon does not

HP (Compaq) NonStop Platforms

The account should be specified in the Groupname.Username
format. For example: DEV.BILL.

1. OS/390 and OpenVMS Platforms. The name is prefixed with ’@’, to utilize the operating
system GROUP feature.

 235

Daemon Configuration
require the user to log in to the account on the system, but to log in to
the daemon using the account name and password.

" XML Format – administrator= ‘username1[, username2[,...]]’ –
Specify an asterisk (*) to indicate that any user can be an administrator

! Machine access
Manages the access to the machine.
! Anonymous login allowed

Whether workspaces may allow anonymous logins (without
user name/password entries). For the optimal level of security,
keep this option unchecked and define a username for the
Daemon Administrators field.

If unchecked, no workspace may have an anonymous client. If
checked, a particular workspace may allow anonymous clients.
" XML Format – anonymousClientAllowed=’true | false’

The following parameters can be set using NAV_UTIL to edit the XML
format:

! cachedPassword="true | false"
Enables login passwords to be cached. This enhances performance
by reducing login times for future connections from the same client
in a session.

! encryptionMethods
The encryption method being used to send information across the
network. The default is an asterisk (*), meaning that all methods
are acceptable. If an encryption method is specified, it must be used.
The RC4 and DES3 protocols are currently supported.
" If encryptionMethod is set, it must be used when communicating with the

daemon. For details, see "Encrypting Network Communications" on page
672.

The Workspace Definition

A daemon can include a number of workspaces. A workspace defines the
server processes and environment that are used for the communication
between the client and the server machine for the duration of the client
request. Each workspace has its own definition. The workspace
definition is divided into the following groups:

! Workspace Info
! Workspace Server

! Workspace Logging
! Workspace Security

! Workspace Governing

 236

Daemon Configuration
Workspace Info Via WS Info you specify the features that control the operation of the
workspace: the server type, the command procedure used to start the
workspace and the binding configuration associated with this
workspace. In addition, you can specify special workspace
considerations, such as whether you are accessing IMS/DB data or using
the JDBC driver.

Workspace name – The name identifying the workspace.

Description – A description for the workspace.

Startup script – The full pathname, without environment variables, of
the script (command procedure) that starts the workspace server
processes. The script specified here must always activate the nav_login
procedure and then run the server program (svc). If you do not specify
the directory, the startup procedure is taken from the directory where
the irpcd resides. Attunity Connect includes a default startup script,
which it is recommended to use.

Specify only the script name, since the server is activated as a started
task.

The installation creates a default startup script.

HP (Compaq) NonStop Platforms

NAVROOT.navutil svc

 237

Daemon Configuration
" NAVROOT is the location Attunity Connect is installed.

" XML Format – startupScript=’script-full-pathname’

Server type – The workspace server type: ims, java or native.

Workspace binding name – The name of a specific binding configuration
on the server machine that you want to use with this workspace.

" XML Format – binding=’binding’.

Workspace database name – The name of the workspace database.

" XML Format – workspaceDatabase=’database-name’.

Timeout parameters – Specifies how long the client waits for the
workspace server to start. If the workspace server does not start within
this period, the client is notified that the server did not respond.

" Specifying the timeout here overrides the default setting, which is specified in
the Control section.

" XML Format – connectTimeout=’time-in-seconds’

Client idle timoeout – The maximum amount of time a workspace
client may be idle before Attunity Connect closes the connection
with the server.

OS/390 and z/OS Platforms

ATTSRVR

" The server log file is written to the job specified by this parameter.

OpenVMS Platforms

NAVROOT:[BIN]NAV_SERVER.COM

UNIX Platforms

$NAVROOT/bin/nav_server

HP (Compaq) NonStop Platforms

The name of the binding must be five characters or less.

OS/390 and z/OS Platforms

The name of the binding must be five characters or less and the
name must be surrounded by single quotes.

If the high level qualifier is not specified here, NAVROOT.DEF is
assumed, where NAVROOT is the high level qualifier specified
when Attunity Connect is installed.

 238

Daemon Configuration
" Specifying the timeout here overrides the default setting, which is
specified in the Control section.
"XML Format – clientIdleTimeout=’time-in-seconds’

Connect timeout – How long the client waits for a workspace server
to start. If the workspace server does not start within this period,
the client is notified that the server did not respond. The value
specified for this field serves as the default timeout for all the
workspaces listed in the daemon configuration. The default value
for this field is 60 seconds.
" Specifying the timeout in a Workspace overrides this setting for that

workspace.

Workspace Server Via WS Server you specify the features that control the operation of the
servers started up by the workspace and allocated to clients. For
example, you can configure the workspace to use connection pooling
and to start up a number of servers for future use, prior to any client
request, instead of starting each server when a request is received from
a client.

Workspace server mode – The workspace server mode of operation.

singleClient – Single client server mode.

 239

Daemon Configuration
multiClient – Multi-client server mode.
" This mode is not available on HP (Compaq) NonStop platforms.
" When accessing a database that supports two-phase commit through XA,

do not specify this mode.
" When accessing DBMS, do not specify this mode.

reusable – Reusable server mode.

" XML Format – serverMode=‘singleClient’ | ‘multiClient’ |
‘multiThreaded’ | ‘reusable’.

For full details refer to "Server Mode" on page 680.

Reuse limit – The maximum number of times a particular server can be
reused. A one-client server can be reused after its (single) client has
disconnected. Reuse of servers enhances startup performance because
it avoids the need to repeat initializations. The default for this field is
none (0), indicating that server reuse is unlimited. This field is enabled
only if the server mode value is Multi-threaded (Windows platforms),
Multi-client or Reusable.

" XML Format – reuseLimit=’number’.

Clients per server
The maximum number of clients a server process for the current
workspace accepts. The default for this field is none (0), indicating that
the number of clients per server is unlimited. This field is enabled only
if the server mode value is either Multi-threaded (Windows platforms)
or Multi-client.

" XML Format – maxNClientsPerServer=’number’.

Server availability

Initial number of servers – The number of server processes that are
prestarted for this workspace when the daemon starts up. When
the number of available server processes drops below the value
specified in the Minimum number field (see below), the daemon
again starts server processes until this number of available server
processes is reached. The default for this field is 0.

Currently, under OpenVMS, the maximum number of prestarted
servers should not exceed 20. After this limit has been reached,
server processes are initialized when requested.
" XML Format – nAvailableServers=’number’

Windows Platforms

multiThreaded – multi-threaded mode.

 240

Daemon Configuration
Minimum number – The minimum number of server processes in the
prestarted pool before the daemon resumes creating new server
processes (to the value specified in the Initial number of servers
field, see above). If this field is set to a value higher than the Initial
number of servers field, the daemon uses the value specified in the
Initial number of servers field. The default for this field is 0.
" XML Format – minNAvailableServers=’number’

Keep when daemon ends – When a daemon is shutdown, all the
servers started by that daemon are also killed, even if they are
active. Set this field to true if you want the servers for the
workspace to remain active, even after the daemon has been shut
down.
" If this field is set to true, it is the responsibility of the system operator or

manager top ensure that the servers are eventually killed. This must be
done at the system level.

" XML Format – KeepWhenDaemonEnds=’true | false’

Set maximum number of servers – The maximum number of available
server processes. Once this number is reached, no new non-active
server processes are created for the particular workspace. For
example, if a number of server processes are released at the same
time, so that there are more available server processes than
specified by this field, the additional server processes above this
value are terminated. The default for this field is 0, meaning that
there is no maximum.
" XML Format – maxNAvailableServers=’number’

Resource limitations

OS/390 and z/OS Platforms

Number of sub-tasks
The number of sub-tasks for a server that are prestarted for this
workspace when the daemon starts up. In addition to setting up
prestarted servers, as described above, you can set additional
prestarted servers by specifying this field. Thus, setting 10
prestarted servers and 10 prestarted sub-tasks results in 100 tasks
started (10 sub-tasks for each process).
" XML Format – nSubtasks=’number’

 241

Daemon Configuration
Example Configurations
! To configure the daemon to initiate a server that processes

requests for a single client and terminates when the client
disconnects.
<workspace name="Navigator"
 startupScript="ATTSRVR.AB"
 serverMode="reusable"
 reuseLimit="1"
 nSubTasks="1"
 maxNClientsPerServer="1"
 anonymousClientAllowed="false"
 administrator="*">
</workspace>
"This is effectively the same as when ServerMode=1. Note the suffix for

the startupScript: This is a suffix that enables instances of the server
process for the workspace. Any suffix can be used and Attunity Connect
automatically extends the suffix for each instance.

! To configure the daemon to initiate a server that is connected to
no more than one client at a time, and terminates after 10
clients have connected to and disconnected from the Server.
<workspace name="Navigator"
 startupScript="ATTSRVR.AB"
 serverMode="reusable"
 reuseLimit="10"
 nSubTasks="1"
 maxNClientsPerServer="1"
 anonymousClientAllowed="false"
 administrator="*" >
</workspace>

! To configure the daemon to initiate a server that starts 5
sub-tasks; each sub-task is connected to no more than one client
at a time, and terminates after 10 clients have connected to and
disconnected from the sub-task. Thus the server will terminate
after connect/disconnecting to/from 50 clients.
<workspace name="Navigator"
 startupScript="ATTSRVR.AB"
 serverMode="reusable"
 reuseLimit="10"
 nSubTasks="5"
 maxNClientsPerServer="1"
 anonymousClientAllowed="false"
 administrator="*">
</workspace>

 242

Daemon Configuration
Limit number of active servers
The maximum number of active server processes (either available
or in use). Once reached, no new server processes will be created for
the particular workspace and client connections would be rejected
if there is no available server to accept them. Once the number of
active servers drops below the maximum (for example, a client
disconnects from a server and the server terminates), new servers
can again be started. If the value of this field is set to a non-zero
value lower than the value for the Initial number of servers field,
the daemon assumes it is set to the same value as the Initial
number of servers field. The default for this field is 0, meaning that
no maximum is enforced.
" Under OpenVMS, the account running the server processes must have

SYSLCK privilege.
" XML Format – maxNActiveServers=’number’

! To configure the daemon to initiate a server that is connected to
no more than 10 clients at a time, and terminates when no
clients are connected to the server. When multiple clients are
simultaneously connected, requests for the clients are processed
serially.
<workspace name="Navigator"
 startupScript="ATTSRVR.AB"
 serverMode="multiClient"
 reuseLimit="1"
 nSubTasks="1"
 maxNClientsPerServer="10"
 anonymousClientAllowed="false"
 administrator="*" >
</workspace>

! To configure the daemon to initiate a server that starts 5
sub-tasks; each sub-task is connected to no more than 10 clients
at a time, and restarts an infinite number of times when no
clients are connected to the sub-task. When multiple clients are
simultaneously connected to a sub-task, requests for these
clients are processed serially. Processes by multiple clients
connected to different sub-tasks are processed asynchronously.
<workspace name="Navigator"
 startupScript="ATTSRVR.AB"
 serverMode="multiClient"
 reuseLimit="0"
 nSubTasks="5"
 maxNClientsPerServer="10"
 anonymousClientAllowed="false"
 administrator="*" >
</workspace>

 243

Daemon Configuration
Server priority
The priority for servers. For example, a workspace for applications with
online transaction processing can be assigned a higher priority than a
workspace that requires only query processing.

Use default priority
Sets the priority as 0. There is no specific priority for this
workspace.
" XML Format – serverPriority=’0’

Use priority specified
Enables setting the priority.

"XML Format – serverPriority=’priority’

HP (Compaq) NonStop Platforms

The priority must be in the range 0 to 199.

OpenVMS Platforms

The priority must be in the range 1 to 15.

UNIX Platforms

The priority is like the priority of the nice command.

HP (Compaq) NonStop Platforms

! Workspace CPUs
The order of the CPUs that the daemon uses to activate a server.
" XML Format – workspaceCpus=’cpu1[,cpu2[,…]]’

 244

Daemon Configuration
Workspace Logging Via WS Logging you specify fields to log that occur with the workspace
server process.

! Trace options
Specifies what tracing is performed.
! No timeout (XML Format – debugNoTimeout)

Disables the standard RPC timeouts, setting them to a long
duration (approximately an hour) to facilitate debugging.

! Call trace (XML Format – debugCallTrace)
Generates a message in the server log file for each RPC function
called. This is useful for troubleshooting the server.

! RPC trace (XML Format – debugLogRpc)
Enables debugging messages on the server.

! Sockets (XML Format – debugSocketsTrace)
Generates a message in the server log file for each socket
operation. This is useful for troubleshooting client/server
communication – providing a detailed trace of every
client/server communication.

! Extended RPC trace (XML Format – debugRpcTrace)
Generates a verbose message in the server log file for each
low-level RPC function called. This is useful for troubleshooting
the server.

! System trace (XML Format – debugSysTrace)
Generates system-specific tracing of various operations. On

 245

Daemon Configuration
OpenVMS, for example, this mode enables a SET VERIFY
command in the server startup script.

! Timing (XML Format – debugTimingTrace)
Generates a timestamp for every entry to the server log file.

! Specific log file format
Defines the name and location of the Attunity Connect server log
file. The field must specify the full pathname. If no directory
information is provided for the log file, it will be located in the login
directory of the account running the Attunity Connect server.

The following tokens may appear in the log file template and will be
replaced accordingly:
! %A – workspace name
! %D – date (yymmdd)
! %I – instance number of the given workspace server
! %L – server account's login directory. Under OS/390 and z/OS:

The path to NAVROOT.TMP. If you specify a file name without
this path, the file is created under ‘NAVROOT.TMP.filename’

! %P – server's process ID
! %T – time (hhmmss)
! %U – server's account name (username)
" The server log name must be unique for each workspace. Thus, it is

recommended to include the workspace name token (%A) in the log
name.

" XML Format – serverLogFile=’log-file-template’

HP (Compaq) NonStop Platforms

If the log file is specified with a UNIX type path (such as
/G/d0117/ac3300/navlog), the log file can be viewed from other
processes (while it is open). Otherwise, the log is not readable while
it is open.

" A log file specified using a UNIX type path is harder to read because
commands such as TEDIT do not work on this type of file. To see the file
using FUP COPY, use the following format:
FUP COPY filename , , SHARE

OS/390 and z/OS Platforms

Unless this parameter is specified, the log entries are written to
SYSOUT for the job specified in the startupScript parameter (see
Workspace Startup, above).

 246

Daemon Configuration
Workspace Security Via WS Security you specify the level of security at the workspace level,
as opposed to the daemon level, which is set in the Security section of
the daemon (see "Daemon Security" on page 234). The WS Security
section is used for the following:

! To grant administration rights for the workspace.

! To determine access to the workspace by a client.

! Administration
Identifies the users (accounts) allowed to perform administrative
tasks (tasks that require administrative login) on this workspace.
For example, a user with administrative rights to a workspace can
refresh the specific workspace servers using the IRPCD command
with the Refresh workspace option.
! Administrator privileges for the workspace

Identifies the users (accounts) allowed to perform
administrative tasks to the workspace (tasks that require
administrative login).
! All users

Anyone can manage the workspace.
Compaq NonStop Platforms

The account should be specified in the Groupname.Username
format. For example: DEV.BILL.

 247

Daemon Configuration
! Selected users only
The names of users (accounts) and groups2 that can be
administrators.
"If a user is not specified, the users specified in the Workspace users

field (see below) having administrator rights for this workspace. In this
case, if All users are allowed for the Workspace users field, all users
have administrator rights for this workspace.

"XML Format – administrator=’username1[, username2[,...]]’ –
Specify an asterisk (*) to indicate that any user can make changes.

! Allow Listing
Determines whether this workspace appears in the list of
workspaces.
"XML Format – listingAllowed=’true | false’

! Workspace access
Defines the users (accounts) allowed to access this workspace.
! Workspace users

Lists the users who are allowed to use the workspace (after
logging on). If All users is specified, any user who has logged on
to the daemon may use the workspace.
! All users

Any user who has logged on to the daemon may use the
workspace.

! Selected users only

The names of users (accounts) and groups 2 that can be use
the workspace.
"If a user is not specified, any user who has logged on to the daemon

may use the workspace.
" XML Format – workspaceUsers=’username1[, username2[,...]]’

– Specify an asterisk (*) to indicate that any user can use the workspace.

! Enable port range
The ports through which you access the workspace. Specifies
the range of ports available for this workspace when starting
server processes. Use this option when you want to control the
port number, so that Attunity Connect can be accessed through
a firewall.
"XML Format – serverPortsRange=’first_port-last_port’

Example: serverPortsRange="8800-8850"

2. OS/390 and OpenVMS Platforms. The name is prefixed with ’@’, to utilize the operating
system GROUP feature.

HP (Compaq) NonStop Platforms

The account should be specified in the Groupname.Username
format. For example: DEV.BILL.

 248

Daemon Configuration
! Use specific workspace account
The operating system account (user) used for the workspace. If
not specified, the account name (user) that was provided by the
client is used.

"XML Format – workspaceAccount=’account-name’
! Allow anonymous client login to server account

Whether this workspace may be invoked without
authentication (user name/password). If anonymous login is
allowed, specify the server account name to use. If this field is
not specified, the value in the Workspace account field is used.
"XML Format – anonymousClientAllowed=’true | false’

HP (Compaq) NonStop Platforms

The account should be specified in the Groupname.Username
format. For example: DEV.BILL.

Windows Platforms

This account must be the service account defined for the
daemon.

Windows Platforms

This account must be the service account defined for the
daemon.

 249

Daemon Configuration
Workspace Governing Via WS Governing you manage the way queries are executed.

Query governing parameters are defined at the workspace levels. Thus,
any specified restrictions apply to all queries for all data sources that
require Attunity Connect metadata and which are defined in the
binding associated with the workspace.

" The workspace governing parameters only apply to data sources that require
Attunity Connect metadata.

! Max Number of Row in a Table That Can Be Read Parameter
Restricts the number of table rows that are read in a query. When
the number of rows read from a table exceeds the number stated,
the query returns an error.

! Max Number of Rows Allowed in a Table Before Scan is Rejected
Parameter
Restricts the number of table rows that can be scanned. This
parameter impacts on the query both during query optimization
and execution.

During query optimization – The value set is compared to the table
cardinality. If the cardinality is greater than the value, the scan
strategy is ignored as a possible strategy (unless it is the only
available strategy).

 250

Daemon Configuration
During query execution – A scan is limited to the value set. When the
number of rows scanned exceeds the number stated, the query
returns an error.

" You must refresh the daemon as well as reloading the configuration after
changing values in the WS Governing tab.

Disabling a Workspace You can disable a workspace, so that although it is defined for a daemon
it in not operable. Server processes are not started via this workspace
and a client requesting this workspace receives an error.

! To disable a workspace via Attunity Studio:

1. In the Configuration perspective, right-click the workspace to be
disabled.

2. Choose Disable.

" XML Format – disable=’true | false’

Sample Daemon Configuration

The following example shows a daemon configuration for a workspace
managing orders (ACMEOrdersServer) and a workspace used for
reporting (ACMEReportingServer):

<daemons>
 <daemon name="IRPCD">
 <workspaces>
 <workspace name="Navigator" description="A Navigator Server"
 workspaceAccount="orders"

 startupScript="machine_dependent"3

 serverMode="reusable" serverLogFile="%l.xxx%i"
 reuseLimit="20" nAvailableServers="10"
 minNAvailableServers="4"
 anonymousClientAllowed="false" administrator="*" />
 <workspace name="ACMEReportingServer" workspaceAccount="report"

 startupScript="machine_dependent"3

 serverMode="singleClient" serverLogFile="%l.xxx%i"
 nAvailableServers="3" minNAvailableServers="1"
 anonymousClientAllowed="false" administrator="*" />
 </workspaces>
 <control "ServerLogfile=/users/nav/%A%U%P.log" />
 <security anonymousClientAllowed="false" administrator="sysadmin" />
 <logging logFile="irpcd.log" logClientDomain="0" detail="errors" />

3. The startupScript values in these examples is machine dependent. For example, for OS/390 the startup script might be
startupScript=”ATTSRVR.AB”, for OpenVMS startupScript="dka0:[user.orders]NAV_SERVER.COM" and for Windows
startupScript="nav_util svc"

 251

Data Drivers
 <versionsPorts/>
 </daemon>
</daemons>

" The daemon configuration is displayed in Attunity Studio by editing the daemon
in the Configuration perspective, in the Source tab.

Data Drivers
Attunity Connect enables access to data source via drivers.
Attunity Connect includes drivers to the most commonly used
relational and non-relational data sources. It also includes a number of
generic drivers, which can be used to access other data sources.

Drivers are supplied for the following data sources:

Additionally, Attunity Connect includes a driver to proprietary data –
the Virtual driver (see "Virtual Driver" on page 807).

If the data source is not directly supported by one of these drivers,
Attunity Connect provides an SDK that enables writing a driver. For
details, refer to Attunity Connect Developer SDK.

Relational Non-relational Generic

DB2 (page 264) Adabas (page 29) Flat files (page 380)

Informix (page 426) Btrieve (page 143) ODBC (page 559)

Ingres (page 431) CISAM (page 177) OLE DB
non-relational data
(page 574)

Ingres II (page 431) DBMS (page 272) OLE DB relational
data (page 579)

Oracle (page 584) DISAM (page 305) Text-Delimited files
(page 769)

Rdb (page 637) Enscribe (page 314)

Red Brick (page 645) IMS/DB (page 413)

SQL/MP (page 755) RMS (page 645)

SQL Server (page 683) VSAM (page 810)

Sybase (page 762) VSAM under CICS
(page 814)

 252

Data Source
Data Source
The source where the data to be accessed is stored.

A name for data whether stored in a database (such as Oracle, or in a
file system such as RMS and VSAM). The name specified for a data
source in the binding is used by Attunity Connect to identify the data
source.

Within Attunity Studio, an orange database symbol represents a data
source that requires Attunity Connect metadata. A table symbol over
an orange database symbol represents a data source that does not
require Attunity Connect metadata. A white database symbol
represents a data source that uses the Attunity Connect Virtual driver.

Data Source Shortcut
A definition of a data source on a machine that points to the location of
the data source on another machine.

You create a data source shortcut in the following ways:

! By dragging-and-dropping the data source from the server machine
to the client machine where you want it defined as a shortcut.

! By right-clicking the Data sources node in the Configuration
explorer and choosing Add Data source shortcut from the popup
menu, and then using the wizard to define the shortcut.

Database Adapter
The Database application adapter enables accessing all of the
Attunity Connect data source drivers using predefined SQL statements,
via JCA, XML or COM.

" If you do not have predefined SQL, use the query adapter. For details, refer to
"Query Adapter" on page 611.

The following sections provide information about the Attunity Connect
Database adapter:

! Setting Up the Binding
! The Adapter Definition for a Database Adapter

! Using the Database Adapter

 253

Database Adapter
Setting Up the Binding

The Database adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.

! Specify a name for the adapter in the Name field.
! Select Database for the Type field.

After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

connectString="string" – For backward compatibility only. The
connect string used to access the data source.

defaultDatasource=ds_name – The name of a data source in the
binding configuration.

multipleResult=true|false – Multiple results are returned. This
attribute applies to callProcedure interactions (see, "The
callProcedure Interaction" on page 260), where the call procedure
includes multiple SQL statements (either batched one after the
other or in a loop, such as a while loop).

The Adapter Definition for a Database Adapter

You define an adapter definition for the database adapter, in which you
specify the SQL statements you want executed.

" The Database adapter requires predefined SQL, as opposed to the Query
adapter, where the SQL is specified at runtime.

1. Right-click the Database adapter and choose Edit metadata to
open the Metadata perspective, with the adapter displayed under
the adapters list.

2. In the Metadata perspective, right-click the Interactions node and
choose New to open the New Interaction wizard.

The New Interaction wizard opens with two options displayed, to
create interactions:

Automatic – Four interactions are generated for each table enabling
the following SQL to be executed:
! SELECT
! INSERT
! UPDATE
! DELETE

 254

Database Adapter
Manual – One interaction is generated, based on the type of SQL
selected: Database Query (a SELECT statement) or Database
Modification (an INSERT, UPDATE or DELETE statement) or a
Stored Procedure Call.

! To automatically create interactions:

The following steps describe creating interactions using the automatic
option. Also see "To manually create interactions:" on page 255.

1. Click Next.

The Select Tables window opens, enabling you to add tables from
any of the data sources in the same binding as the Database
adapter and that you want to access with the interaction.

2. Click Add to add tables.

Expand the data sources and select the tables that you want to
access with the interaction and click the right arrow to move these
tables to the right pane.

3. Click Finish. The selected data source and tables are displayed.

Optionally, you can select a table and set the following for the SQL
generated using that table:

Use XML Field – The output is formatted as XML according to its
actual structure. This is useful for tables which include variant
fields and arrays.
" For this field to be available, the exposeXmlField in the misc section of the

binding environment properties must be set to true.

Use Key in Select – The key column in the table is used in the
SELECT statement.

Upsert – When inserting a row, if the row doesn’t exist, it is inserted,
otherwise the row is updated with the new information.

4. Click Finish. Four interactions are generated for each table
selected, together with the record structures to support the
interactions and the responses from the data sources.
" If the Upsert property is checked, only three interactions are generated. An

insert interaction is generated with an update property instead of both an
insert and update interaction.

5. Click Yes to complete the task. The interactions and the record
structures that relate to the interactions are displayed in the
Metadata perspective.

 255

Database Adapter
! To manually create interactions:

The following steps describe creating interactions using the manual
option. Also see "To automatically create interactions:" on page 254.

1. Select the type of SQL (Query, Modification or stored procedure) for
the interaction and click Next.

A window is displayed where you provide a name for the
interaction. For a query or modification you can also select an
existing query as the basis for the interaction.

2. Click Next. A window is displayed where you can build the query.

The query is built as follows:

Selecting tables
! In the left pane, expand the data source where the table resides.

"You cannot include tables from any data source shortcuts listed in the
binding. To include a table from a data source defined in the binding that
resides on a different server, manually edit the SQL (using the Attunity
Connect ds: table syntax).

! Select the table and click the right button to move the table to
the right pane of selected tables.

 256

Database Adapter
Selecting Columns
! In the left pane, expand the data source and the table

containing the column.
! Open the Columns tab in the right pane.
! Select the column and click the right button to move the column

to the right pane.

Joining columns from different tables

When a column having the same name as another column selected
from a different table is selected, the Create Joint tables pane
opens.
! Expand the table and select the column you want to join.
! Click the right arrow to move the column to the right pane.
! Optionally, click next and edit the join statement.
! Click Finish.

Adding conditions in a WHERE clause

WHERE clauses are set in the Where tab.
! Select and move the column you are setting the WHERE clause

for to the right pane.
! Set the operator and value conditions as needed.

Grouping Columns

Columns are grouped in the Group tab.
! Select and move the columns you are grouping to the right

pane.

Filtering results using a HAVING clause

The HAVING clause provides conditions for grouping columns.
HAVING clauses are set in the Having tab.
! Select and move the column you are filtering to the right pane.
! Set the operator and value conditions as needed.

Sorting results

Query results are sorted in the Sort tab.
! Select and move the column whose query result you want to sort

to the right pane.
! Select the sorting order as either ascending or descending.

3. Click Next. A window is displayed where you specify interaction
properties:

passThrough – Whether the query is passed directly to the backend
database for processing or processed by the Attunity Connect query
processor.

 257

Database Adapter
passThrough – Whether the query is passed directly to the backend
database for processing or processed by the Attunity Connect query
processor.

Reuse compiled query – Whether the query is saved in a cache for
reuse.

Encoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.
hex – Sets hexadecimal encoding.

Event – Whether the interaction mode is async-send or sync-receive.

Fail on no rows returned – Whether an error is returned if data is not
returned.

Root element – The root element name for records returned by the
query, using the format <root>\<record>.

Record element – The record element name for records returned by
the query, using the format <root>\<record>.

Max. records – The maximum number of records returned by the
query.

NULL string – The string returned in place of a null value. If not
specified, the column is skipped.

4. Click Next. A window is displayed where you specify input
parameters for the interaction (for details see "Specifying
Parameters" on page 263).

5. Click Finish to generate the interaction, including the record
schema required to support the interaction input and output.

The SQL used in the interactions can be modified to the exact
application requirements using the Metadata perspective, as described
in "Metadata Perspective" on page 453.

" The sql can be changed as long as the changes are supported by the schema.
Thus, if a nation table was specified as a table to access, but a region table was
not specified, the following SQL is valid:

"sql=SELECT * FROM nation where n_nationkey < 10"

but:

"select n_name, r_name from nation, region
 where r_regionkey=1"

is invalid, since the region table was not included in the schema part of the
adapter definition.

 258

Database Adapter
The Database Adapter
Definition

The following interactions are available for use with the database
adapter:

! update
! query

! callProcedure

The update Interaction

The update interaction specifies an SQL batch update statement (such
as INSERT or UPDATE), which includes the following information:

sql (string) – The sql batch update statement that you want executing.
For example an INSERT INTO or DELETE statement.

passThrough – Whether the query is passed directly to the backend
database for processing or processed by the Attunity Connect query
processor.

For details of the <parameter> statement see "Specifying Parameters"
on page 263, below.

The query Interaction

The query interaction specifies a SELECT statement and includes the
following information:

sql (string) – The sql query that you want executing.

outputFormat – How the results of the query are formatted.

attributes – The attributes recordset format is the default output
format. It has the following structure:

<records>
 <record col1="value1" ... colN="valueN" />
 ...
</records>

If the value of a column is NULL, the corresponding attribute is
omitted.

For hierarchical recordsets, the chapter column is formatted as a
child element to the row (and does not appear as an attribute).

For example, if colX is a chapter, the format for colX and its data is
as follows:

<record col1="value1" ... colN="valueN">
 <colX>
 <rowchild child_col1="value1"
 ...

 259

Database Adapter
 child_colN="valueN"/>
 ...
 </colX>
</record>

Recordsets containing BLOB columns format them as child
elements with encoded binary text content. For example, the format
for a BLOB column (called colX) is as follows:

<record col1="value1" ... colN="valueN">
 <colX encoding="base64|hex">
 ... encoded_binary_data ...
 </colX>
</record>

The encoding of the binary data may be either base64 encoding or
hex encoding (two hexadecimal digits per data byte).

Recordsets containing CLOB columns format them as child
elements with CDATA content.

elements – The elements recordset format has the following
structure:

<records>
 <record>
 <col1>value1</col1>
 ...
 <colN>valueN</colN>
 </record>
 ...
</records>

If the value of a column is NULL, the corresponding child element is
omitted.

This format takes more space than the attributes format but it
lends itself more easily to representing hierarchical data. For
example, the format for a chapter (called colX) is as follows:

<record>
 <col1>value1</col1>
 ...
 <colX>
 <record>...child_row ...</record>
 ...child_rows...
 </colX>
 ...
 <colN>value1</colN>
</record>

 260

Database Adapter
Recordsets containing BLOB columns format them as child
elements with encoded binary text content. For example, the format
for a BLOB column (called colX) is as follows:

<record>
 <col1>value1</col1>
 ...
 <colXencoding="base64|hex">
 ...encoded_binary_data...
 </colX>
 ...
 <colN>valueN</colN>
</record>

The encoding of the binary data may be either base64 encoding or
hex encoding (two hexadecimal digits per byte).

Similarly, CLOB columns are formatted as child elements with
CDATA content.

msado – Specifies Microsoft’s ADO XML recordset persistence
format.

outputRoot – The root element name and the record element name for
records returned by the query, using the format <root>\<record>.

binaryEncoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.

hex – Sets hexadecimal encoding.

metadata – Whether the query returns metadata for the retrieved
recordset.

maxRecords – The maximum number of records returned by the query.

nullString – The string returned in place of a null value. If not specified,
the column is skipped.

passThrough – Whether the query is passed directly to the backend
database for processing or processed by the Attunity Connect query
processor.

The callProcedure Interaction

The callProcedure interaction enables a stored procedure to be called,
which includes the following information:

datasource – The name of the data source as defined in the binding
configuration, where the stored procedure is found.

 261

Database Adapter
name – The name of the stored procedure.

outputFormat – How the results of the query are formatted.

attributes – The attributes recordset format is the default output
format. It has the following structure:

<records>
 <record col1="value1" ... colN="valueN" />
 ...
</records>

If the value of a column is NULL, the corresponding attribute is
omitted.

For hierarchical recordsets, the chapter column is formatted as a
child element to the row (and does not appear as an attribute).

For example, if colX is a chapter, the format for colX and its data is
as follows:

<record col1="value1" ... colN="valueN">
 <colX>
 <rowchild child_col1="value1"
 ...
 child_colN="valueN"/>
 ...
 </colX>
</record>

Recordsets containing BLOB columns format them as child
elements with encoded binary text content. For example, the format
for a BLOB column (called colX) is as follows:

<record col1="value1" ... colN="valueN">
 <colX encoding="base64|hex">
 ... encoded_binary_data ...
 </colX>
</record>

The encoding of the binary data may be either base64 encoding or
hex encoding (two hexadecimal digits per data byte).

Recordsets containing CLOB columns format them as child
elements with CDATA content.

elements – The elements recordset format has the following
structure:

<records>
 <record>
 <col1>value1</col1>
 ...
 <colN>valueN</colN>
 </record>

 262

Database Adapter
 ...
</records>

If the value of a column is NULL, the corresponding child element is
omitted.

This format takes more space than the attributes format but it
lends itself more easily to representing hierarchical data. For
example, the format for a chapter (called colX) is as follows:

<record>
 <col1>value1</col1>
 ...
 <colX>
 <record>...child_row ...</record>
 ...child_rows...
 </colX>
 ...
 <colN>value1</colN>
</record>

Recordsets containing BLOB columns format them as child
elements with encoded binary text content. For example, the format
for a BLOB column (called colX) is as follows:

<record>
 <col1>value1</col1>
 ...
 <colXencoding="base64|hex">
 ...encoded_binary_data...
 </colX>
 ...
 <colN>valueN</colN>
</record>

The encoding of the binary data may be either base64 encoding or
hex encoding (two hexadecimal digits per byte).

Similarly, CLOB columns are formatted as child elements with
CDATA content.

msado – Specifies Microsoft’s ADO XML recordset persistence
format.

binaryEncoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.

hex – Sets hexadecimal encoding.

metadata – Whether the query returns metadata

 263

Database Adapter
nullString – The string returned in place of a null value. If not specified,
the column is skipped.

Specifying Parameters

Parameters are specified in the adapter definition as follows:

name – The name of the parameter.

default – A default value for the parameter.

type – The type of the parameter (such as number or string).

nullable (boolean) – Whether the value can be null or not.

When parameters are specified in a SET clause or in a WHERE clause in
a generated interaction, the parameter has the following format:

:parameter_name

" If a field isn’t nullable and a default value is not supplied in the schema part of
the adapter definition, an error occurs.

The parameters must be defined in the same order as they are used in
the SQL statement.

With the callProcedure interaction, if the database reports output
parameters as input-output, make sure to provide an input value.

Using the Database Adapter

Include the interactions you want executed from the adapter definition
in an XML document. For example, to execute the interaction,
select_cust, shown above, use the following XML:

<?xml version="1.0"?>
<acx type="request" id="Attunity">
 <connect adapter="database_adapter" idleTimeout="60"
 persistent="false">
 </connect>
 <execute>
 <select_cust/>
 </execute>
 <disconnect/>
</acx>

The output is the contents of the nation table.

Also see: "Query Adapter" on page 611.

 264

DB2 Driver
DB2 Driver
The following sections provide information about the Attunity Connect
DB2 driver:

! Setting Up the Binding
! OS/390 and z/OS
! OS/400
! UNIX and Microsoft Windows platforms

! Mapping DB2 Data Types
! CREATE TABLE Data Types

! Stored Procedures
! Transaction Support

! Isolation Levels and Locking

Setting Up the Binding

OS/390 and z/OS
Platforms

The following describes connecting to DB2 version 6 and higher on an
OS/390 and z/OS machine.

Defining an ODBCINI file

The DB2 driver uses an ODBCINI file. During installation of
Attunity Connect on a mainframe, an ODBCINI file is defined as a
member in NAVROOT.USERLIB.

" NAVROOT is the high level qualifier where Attunity Connect is installed.

The ODBCINI file is similar to the following:

; This is a comment line...
; Example COMMON odbcini
 COMMON
MVSDEFAULTSSID=DSN1
; Example SUBSYSTEM odbcini for DSN1 subsystem
 DSN1
MVSATTACHTYPE=CAF
PLANNAME=DSNACLI

The PLANAME value is the default DB2 Calling Level Interface (CLI)
plan name. If a different plan is used, change the name to the correct
plan.

" In the example, CAF is used, so only one-phase commit transactions are
supported. Attunity Connect also supports two-phase commit transactions, by
setting the MVSATTACHTYPE parameter to RRSAF.

 265

DB2 Driver
You can specify other parameters in the ODBCINI file, as described in
the IBM ODBC Guide and Reference.

" The AUTOCOMMIT initialization parameter is set automatically by
Attunity Connect at runtime, and thus should not be set in the ODBCINI file.

You must bind to the plan specified in the PLANNAME parameter.
Check that the job DSNnnn.SDSNSAMP(DSNTIJCL) includes the
following line:

BIND PLAN(DSNACLI)

where DSNnnn is the DB2 high level qualifier (the default is DSN610)
and DSNACLI is the plan name specified for the PLANNAME
parameter.

! To connect to DB2 data on OS/390 and z/OS platforms:

The DB2 data source is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.

! Specify a name for the data source in the Name field.
! Select the DB2 CLI (Mainframe) driver for the Type field.

! Specify the DB2 connect string as follows:

Database alias – The DB2 database alias.

Driver Configuration

After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

dbName – (Database alias in the connect string) The DB2 database
name. This name is required only if tables are going to be created
through Attunity Connect.

" After setting the binding, edit the data source (right-click the data source and
choose Edit data source): select the Advanced tab and specify a table owner.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

 266

DB2 Driver
! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

location – The subsystem for the database. The location must be
specified only when more than one DB2 database is being accessed on
the same OS/390 machine, in order to distinguish between the
databases within Attunity Connect.

OS/400 Platforms The following describes connecting to DB2 on an AS/400 machine.

! To connect to DB2 data on OS/400 platforms:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.

! Specify a name for the data source in the Name field.
! Select DB400 for the Type field.

! Specify the DB2 connect string as follows:

Location – The library containing the database tables.

Database name – The name of the DB2 database.

Driver Configuration

After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

controlledCommit="true | false" – When set to true, specifies that
Attunity Connect handles transaction commitment.

" When set to true, OS/400 journaling must be set.

dbName="string" – (Database name in the connect string) The name of
the DB2 database.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

 267

DB2 Driver
! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

When set to false (the default), specifies that the DB2 RDBMS
handles commitment control.

location="string" – (Location in the connect string) The library
containing the database's tables.

UNIX and Windows
Platforms

The following describes connecting to DB2 on UNIX and Microsoft
Windows machines.

! To connect to DB2 data:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.

! Specify a name for the data source in the Name field.
! Select DB2 for the Type field.

! Specify the DB2 connect string as follows:

Database alias – The DB2 database alias.

Driver Configuration

After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

dbName="string" – (Database alias in the connect string) The DB2
database alias.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

 268

DB2 Driver
If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

When set to false (the default), specifies that the DB2 RDBMS
handles commitment control.

location="string" – The location of the library containing the database
tables.

Mapping DB2 Data Types

The following table shows how Attunity Connect maps DB2 data types
to OLE DB and ODBC data types.

UNIX Platforms – Set the shared library environment variable (such as
SHLIB_PATH, LD_LIBRARY_PATH, etc., depending on the platform) to
include $DB2HOME/lib. Set the shared library environment variable in
the Attunity Connect nav_login or site_nav_login file. For details refer
to the Attunity Connect Installation Guide for UNIX.

DB2 OLE DB ODBC

Char (<256), C DBTYPE_STR SQL_VARCHAR

Char (>255), C DBTYPE_STR SQL_LONGVARCHAR

Date DBTYPE_DATE SQL_DATE

Decimal (p,s) DBTYPE_NUMERIC SQL_NUMERIC(P,S)

Double DBTYPE_R8 SQL_DOUBLE

Float DBTYPE_R8 SQL_REAL

Integer DBTYPE_I4 SQL_INTEGER

Numeric (p,s) DBTYPE_NUMERIC SQL_NUMERIC(P,S)

Smallint DBTYPE_I2 SQL_SMALLINT

Time DBTYPE_TIMESTAMP SQL_TIME

Timestamp DBTYPE_TIMESTAMP SQL_TIMESTAMP

Varchar (m<256) DBTYPE_STR SQL_VARCHAR

Varchar (m>255) DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647. If the <odbc longVarcharLenAsBlob> parameter is set
to true in the Attunity Connect environment settings, then precision of m.

 269

DB2 Driver
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to DB2 data types:

Stored Procedures

The Attunity Connect DB2 driver supports DB2 stored procedures.

" DB2 version 7 must be installed to call a stored procedure via Attunity Connect.

" The DB2 stored procedure can only be called using a CALL statement and not
as part of a SELECT statement.

CREATE TABLE DB2

Char(m) Char(m)

Date Date

Double Float

Float Float

Image Long Varchar for Bit Data

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text Text

Time Time

Timestamp Timestamp

Tinyint Smallint

Varchar(m) Varchar(m)

 270

DB2 Driver
Transaction Support

OS/400 Platforms

The Attunity Connect DB2 driver on OS/400 supports one-phase
commit. The data source can participate in a distributed transaction if
it is the only one-phase commit data source being updated in the
transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

UNIX and Windows Platforms

The Attunity Connect DB2 driver supports two-phase commit and can
fully participate in a distributed transaction when the transaction
environment property convertAllToDistributed is set to true.

Setup the DB2 client to work with Attunity Connect Transaction
Manager, as follows:

1. From the DB2 client account, run the DB2 command line tool
(DB2.exe on Windows platforms or the DB2 executable on UNIX
platforms).

2. Enter the following:

GET DATABASE MANAGER CONFIGURATION

The list of available properties is returned.

3. Change the Transaction processor monitor name
(TP_MON_NAME) property to the name of the Attunity Connect
DB2 driver (nvdbdb2 on Windows platforms or nvdb_db2 on UNIX
platforms) by entering the following:

For Windows: UPDATE DATABASE MANAGER CONFIGURATION
USING TP_MON_NAME nvdbdb2

For UNIX: UPDATE DATABASE MANAGER CONFIGURATION USING
TP_MON_NAME nvdb_db2

You use DB2 with its two-phase commit capability through an XA
connection.The daemon server mode must be configured to
Single-client mode (see "Server Mode" on page 680).

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

 271

DB2 Driver
OS/390 and z/OS Platforms

The Attunity Connect DB2 driver on OS/390 and z/OS driver supports
two-phase commit and can fully participate in a distributed transaction
when the following parameters are set:

! The transaction environment property, convertAllToDistributed, is
set to true in the binding configuration.

! RRS must be installed and configured.

The MVSATTACHTYPE parameter is set to RRSAF in the
NAVROOT.USERLIB(ODBCINI) member (where NAVROOT is the high
level qualifier where Attunity Connect is installed).

" If RRS is not running, the data source can participate in a distributed
transaction, as the only one-phase commit data source, if the logFile
parameter is set to NORRS in the transactions node of the binding properties
for the relevant binding configuration, in the Configuration perspective of the
Attunity Studio. The XML representation is as follows:

<transactions logFile="log,NORRS" />

where log is the high level qualifier and name of the log file. If this parameter is
not specified, the format is the following:

<transactions logFile=",NORRS" />

That is, the comma must be specified.

For further details about setting up a data source to be one-phase commit in a
distributed transaction, refer to "The CommitConfirm Table" on page 779.

"
To use two-phase commit capability to access data on the OS/390 or z/OS
machine, define every library in the ATTSRVR JCL as an
APF-authorized library.

" To define a DSN as APF-authorized, in the SDSF screen enter the command:
"/setprog apf,add,dsn=navroot.library,volume=ac002"
where ac002 is the volume where you installed Attunity Connect and
NAVROOT is the high level qualifier where Attunity Connect is installed.

If the Attunity Connect installation volume is managed by SMS, when defining
APF-authorization enter the following command in the SDSF screen:
"/setprog apf,add,dsn=navroot.library,SMS"

Make sure that the library is APF-authorized, even after an IPL (reboot) of the
machine.

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

 272

DBMS Driver
Isolation Levels and Locking

The Attunity Connect DB2 driver supports the following isolation
levels:

! Uncommitted read
! Committed read

! Repeatable read
! Serializable

" The isolation levels supported can be overwritten in the binding. For details,
see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

The behavior of updates on locked data depends on the value of the
LOCKTIMEOUT variable of DB2. If this variable is set to -1, the update
waits until the lock is released. If LOCKTIMEOUT is set to 0, the update
fails immediately; and if it is set to a number greater than 0, the update
waits for the specified seconds before failing.

Update Semantics

For tables without a bookmark or other unique index, the driver
returns as a bookmark a combination of most (or all) of the columns of
the row. The driver does not guarantee the uniqueness of this
bookmark; you must ensure that the combination of columns is unique.

DBMS Driver
The following sections provide information about the Attunity Connect
DBMS driver:

! Setting Up the Binding
! Mapping DBMS Data Types

! Database Model Mapping Requirements
! Transaction Support

! Locking
! Metadata Considerations

! Resolving Errors

In addition, the DBMS driver provides array handling – see
"Hierarchical Queries" on page 390. Hierarchical queries over owner
and member sets, using the owner or member column to produce a
chaptered result are also described in "Chapters" on page 283.

 273

DBMS Driver
Attunity Connect supports Oracle’s CODASYL DBMS database version
4.3 or higher Alpha OpenVMS (V6.1 and higher).

" The DBMS driver does not require CDD.

" A DBMS runtime license is sufficient to use the DBMS driver. A development
license is not necessary.

The DBMS driver provides:

Dynamic multi-streaming support – Any combination of databases and
subschemas can be accessed, when needed.

Minimal realm impact – Realms are readied only when you access their
data, which ensures that you do not impact more resources than
necessary.

Full relational mapping – All DBMS operations are mapped to a relational
model. This includes joining set members with their owners, joining
owners with their set members, and using specific system sets. Update
operations such as connecting, disconnecting, and reconnecting records
and sets are also mapped to equivalent relational operations. This
provides a host of client/server tools with access to DBMS data, without
sacrificing DBMS functionality.

" The DBMS access examples refer to the PARTS database that is described
throughout the Oracle DBMS documentation. See the Introduction to Oracle
DBMS for information about creating the PARTS database.

The DBMS User Work Area (UWA) is restricted to 150000 bytes. This
area includes all the records and subschemas loaded at any one time.

Before you can access DBMS data with Attunity Connect, do the
following, if this was not done during the installation:

1. Link the Attunity Connect DBMS driver using the following
command:

$ @NAVROOT:[BIN]NAV_DBMS_BUILD

Continue with the following step if you specified DBMS as one of
the data sources during the installation.

2. If you want to install the Attunity Connect DBMS driver
(NAVROOT:[BIN]NVDB_DBMS.EXE) as a shareable image, add the
DBMS driver to NAV_START.COM in NAVROOT:[BIN] and
SYS$STARTUP so that stopping and restarting Attunity Connect
will install the image. You must restart Attunity Connect after
relinking the driver by executing the NAV_START.COM script.

" If you are upgrading the Attunity Connect DBMS driver from a previous version,
the DBMS driver installation links the driver at the site with the current version
of DBMS. If you upgrade the DBMS installation to a new version, you may need

 274

DBMS Driver
to relink the Attunity Connect DBMS driver (you must relink when upgrading
from DBMS 4.3 to the 6.0 series). The following command relinks the driver.

$ @NAVROOT:[BIN]NAV_DBMS_BUILD

" When accessing DBMS, do not specify multiClient as the server mode in the
daemon workspace.

Setting Up the Binding

! To connect to DBMS data:

The DBMS data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.

! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.

! Select DBMS for the Type field.
! Specify the DBMS connect string as follows:

Root File – The database root file. This file may be referenced using
a logical name.

Subschema – The name of a subschema. Each subschema must have
a separate directory specified for it.

Access Mode – READONLY_MODE, READWRITE_MODE or
BATCH_RETRIEVAL_MODE. The default is READONLY_MODE.
" You must specify a database definition for every database and

subschema combination that you need to access.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

root – (Root file in the connect string) The database root file. This file
may be referenced using a logical name.

runMode – The operation mode of the server: READONLY_MODE,
READWRITE_MODE or BATCH_RETRIEVAL_MODE. The default is
READONLY_MODE.

subSchema – (Sub schema in the connect string) The name of a
subschema. Each subschema must have a separate directory specified
for it.

 275

DBMS Driver
" You must specify a database definition for every database and subschema
combination that you need to access.

Mapping DBMS Data Types

The following table shows how the DBMS_ADL utility imports DBMS
database field types to the Attunity Connect Data Dictionary (ADD)
data types, which Attunity Connect maps to ODBC and OLE DB data
types.

DBMS ADD ODBC OLE DB

Character string SQL_CHAR DBTYPE_STR

D_Floating dfloat SQL_DOUBLE DBTYPE_R8

D_Floating Complex Not Supported

Date vms_date SQL_DATE DBTYPE_DATE

F_Floating dfloat SQL_DOUBLE DBTYPE_R8

F_Floating Complex Not Supported

G_Floating double SQL_DOUBLE DBTYPE_R8

G_Floating Complex Not Supported

H_Floating Not Supported

H_Floating Complex Not Supported

Left Overpunched Numeric numstr_nlo SQL_NUMERIC DBTYPE_NUMERIC

Left Separate Numeric numstr_nl SQL_NUMERIC DBTYPE_NUMERIC

Packed Decimal decimal SQL_NUMERIC DBTYPE_NUMERIC

Right Overpunched
Numeric

numstr_s SQL_NUMERIC DBTYPE_NUMERIC

Right Separate Numeric numstr_nr SQL_NUMERIC DBTYPE_NUMERIC

Signed Byte int1 SQL_TINYINT

Signed Longword int4 SQL_INTEGER DBTYPE_I4

Signed Octaword Not Supported

Signed Quadword int8 SQL_DOUBLE SQL_DOUBLE

 276

DBMS Driver
The DBMS data types listed above as Not Supported are transferred
into the ADD data dictionary as placeholders to allow Attunity Connect
to be used on data that is supported.

Database Model Mapping Requirements

The DBMS driver must provide an accurate mapping between the
CODASYL model which DBMS implements and the relational model
that client/server tools use. An accurate mapping allows you to use a
relational-based tool without losing any of the CODASYL functionality.
This section describes the mapping implemented by the
Attunity Connect DBMS driver and illustrates how to implement
common DBMS data access operations using SQL.

Virtual Driver Columns The DBMS driver adds one or more virtual columns to every DBMS
table in order to implement the CODASYL-RDBMS mapping. These
columns, referred to as driver columns, appear like any other column to
the client application, even though they are not physically part of the
database. The driver makes special use of these columns in both read
and write operations.

All driver columns fall into one of the following categories:

Signed Word int2 SQL_SMALLINT DBTYPE_I2

Unsigned Byte int1 SQL_SMALLINT

Unsigned Longword int4 SQL_INTEGER DBTYPE_I4

Unsigned Numeric numstr_u SQL_NUMERIC DBTYPE_NUMERIC

Unsigned Octaword Not Supported

Unsigned Quadword Not Supported

Unsigned Word int2 SQL_SMALLINT DBTYPE_I2

Zoned Numeric numstr_zoned SQL_NUMERIC DBTYPE_NUMERIC

DBMS ADD ODBC OLE DB

COLUMN TYPE NAMING
CONVENTION

DESCRIPTION

Table DBKEY __<table-name> A column with the current row DBMS DBKEY
(for example, “1:3:56”). This column is central
to many operations.

 277

DBMS Driver
The CLASS table of the sample PARTS database, for example, is the
owner of the CLASS_PART set, while the PART table is the member of
the CLASS_PART set, as well as the RESPONSIBLE_FOR set. It is also
the owner of the PARTS_USES, PART_USED_ON and PART_INFO sets.
The following example shows the columns exposed by the driver for the
CLASS and PART tables.

System set _S_<set-name> This column is used to map system sets that
cannot be defined as keys. Possible values are
‘0’ or ‘1’ where ‘0’ means the row is not a
member of the set and ‘1’ indicates that the row
is a member of the set.

Owner of a set _O_<set-name> Appears as part of the owner table of an
owner-member type set. This driver column is
used in member-to-owner type joins. If selected
in other cases it will always be empty.

Member of a set _M_<set-name> Appears as part of the member table of an
owner-member type set. This driver column is
used in owner-to-member type joins. If selected
it will always return the DBKEY of the parent
row.

Reverse Fetch flag _REVERSE_ FETCH A column used as a flag in WHERE clauses to
cause rows to be retrieved (fetched) in reverse
order. Values for this field do not signify
anything.

COLUMN TYPE NAMING
CONVENTION

DESCRIPTION

 278

DBMS Driver
Exposing Virtual Driver Columns and Indexes

The following table summarizes the rules that the driver uses in
exposing virtual driver columns and virtual indexes on these columns.

CLASS:
CLASS_CODE
CLASS_DESC
CLASS_STATUS
_O_CLASS_PART (Owner of CLASS_PART)
__CLASS (DBKEY)
_REVERSE_FETCH (Reverse fetch flag)

PART:
PART_ID
PART_DESC
PART_STATUS
PART_PRICE
PART_COST
PART_SUPPORT
_S_ALL_PARTS_ACTIVE (Member of ALL_PARTS_ACTIVE system set)
_M_CLASS_PART (Member of CLASS_PART)
_M_RESPONSIBLE_FOR (Member of RESPONSIBLE_FOR)
_O_PART_USES (Owner of PART_USES)
_O_PART_USED_ON (Owner of PART_USED_ON)
_O_PART_INFO (Owner of PART_INFO)
__PART (DBKEY)
_REVERSE_FETCH (Reverse fetch flag)

The ALL_PARTS system set from the sample PARTS database does not have a driver
column associated with it. For an explanation of this special case, see the notes for
“Exposing Virtual Driver Columns and Indexes”.

Set Type Insertion Retention Driver Column Index

System sets Automatic Fixed Mandatory None _K_<SetName>

System sets Manual Fixed Mandatory
Optional

S<SetName> _S_<SetName>

System sets Automatic Optional _S_<SetName> _S_<SetName>

Owner/Member
(Owner side)

N/A N/A _O_<SetName> _O_<SetName>

 279

DBMS Driver
Notes

! An ordered system set which has insertion and retention such that
every row is always a member of the set is considered to be the
equivalent of a regular index in a relational data source. As such, it
does not need a special driver column. An index (_K_<SetName>) is
created for it and the Attunity Connect Query Processor decides to
use it if it benefits query performance. An example is the
ALL_PARTS system set in the PARTS table.

! All system sets, which include only a subset of the table's rows, have
a _S_ driver column created for them. An example is the
ALL_PARTS_ACTIVE system set.

! In the ADD for the virtual driver columns, the EXPLICIT_SELECT
clause should not be set in order to display the columns with a
SELECT * statement. If the EXPLICIT_SELECT clause is set, the
virtual driver columns must be explicitly stated in the SELECT
statement (SELECT *, _M_aaa, ...).

Example

The following shows the values returned in driver columns for a simple
“SELECT * FROM PART” SQL statement:

Note the following:

! BR890123 is the only active part. The others have ‘0’ as the value of
_S_ALL_PARTS_ACTIVE.

! 1:53:2 is the DBKEY of the CLASS record that owns BR890123.
! 4:82:1 is the DBKEY of the EMPLOYEE record that is responsible for

part BR890123 and part TE234567.

Owner/Member
(Member side)

Automatic
Manual

Fixed Mandatory
Optional

M<SetName> _M_<SetName>

Set Type Insertion Retention Driver Column Index

PART_ID _S_ALL
_PARTS
_ACTIVE

_M
_CLASS
_PART

_M_RESPONSIBLE
_FOR

_O_PARTS
_USES

_O_PART
_USED_ON

_O_PART
_INFO

__PART

BR890123 1 1:53:2 4:82:1 1:8:1

TE234567 0 1:21:1 4:82:1 1:13:1

TE217890 0 1:21:1 4:23:1 1:16:1

 280

DBMS Driver
! All of the owner driver columns are empty unless used in a
member-to-owner join.

! 1:8:1 is the DBKEY of the BR890123 PART record.

Using Virtual Driver
Columns

The following sections describe how to use the set of virtual driver
columns:

! To perform owner-to-member set joins.
! To perform member-to-owner set joins.
! To use system sets.
! To produce chapters.
! To use reverse fetch.

Owner-to-Member Set Joins

Users experienced in retrieving data from DBMS are familiar with the
idea of “traveling” through the database. For example, you start from
the CLASS record and travel to the PART record using the CLASS_PART
set to join the tables. In DBQ commands, you would fetch the CLASS
record and then fetch all the parts “WITHIN CLASS_PART” to join CLASS
to PART using the CLASS_PART set.

In the Attunity Connect DBMS driver, you use the driver columns to
traverse owner-member set joins. To move from one table to another
table, you must pick up the DBKEY column of the current table, and
equate it to the driver column of the set you want to use in the target
table. For example, in SQL, using the driver columns, write the
following SQL statement:

SELECT * FROM CLASS CLASS, PART PART
WHERE (PART.”_M_CLASS_PART” = CLASS.”__CLASS”)

Start from the CLASS table and take the __CLASS column. Then move
to the PART table using the CLASS_PART set, and equate the __CLASS
column with the _M_CLASS_PART column in the PART table. This yields
the correct result because the _M_CLASS_PART is always the DBKEY of
the owner CLASS record, and the __CLASS field is also the DBKEY of the
CLASS record.

This concept of data traversal can be demonstrated using graphical
query tools such as Microsoft’s MS Query. The following example shows
the MS Query display for a join between CLASS, PART and QUOTE. Note
how the query starts with CLASS, moves to PART
(CLASS.__CLASS = PART._M_CLASS_PART), and then moves from PART
to QUOTE (PART.__PART = QUOTE._M_PART_INFO).

 281

DBMS Driver
Member-to-Owner Set Joins

Traversing the data from member-to-owner is specified just like the
owner-to-member joins described in the previous section. For example,
to start from PART and join to CLASS, by equating PART.__PART and
CLASS._O_CLASS_PART, use the following SQL syntax:

SELECT * FROM PART PART, CLASS CLASS
WHERE (PART.”__PART” = CLASS.”_O_CLASS_PART”)

Even though the operations may look similar to the owner-to-member
join, the processing of the member-to-owner join is a little different. The
_O_CLASS_PART is usually empty. When used in a SQL statement like
the above example, the DBMS driver assigns to it the DBKEY of the
member record. This is done so that the equation will remain true – the
_O_CLASS_PART column will have the value of the __PART column.

The following example shows a combination of an owner-to-member
join with a member-to-owner join. Note how the query starts with

 282

DBMS Driver
CLASS, moves to PART (owner-to-member), and then moves to
EMPLOYEE (member-to-owner).

Using System Sets

The driver columns for system sets, such as _S_ALL_PARTS_ACTIVE,
are assigned either ‘0’ or ‘1’ to indicate whether the row is a member of
the set. Using this information, to access the ALL_ACTIVE_PARTS set
you write the following SQL:

SELECT * FROM PART PART WHERE ("_S_ALL_PARTS_ACTIVE"
= ’1’)

You can also do the opposite, selecting all the records that are not
members of the set:

SELECT * FROM PART PART WHERE ("_S_ALL_PARTS_ACTIVE"
= ’0’)

Although the syntax is similar, the two operations are implemented
differently: the first will actually use the ALL_PARTS_ACTIVE set, while

 283

DBMS Driver
the second may scan the table sequentially in order to find the matching
rows.

" The Query Processor may use a system set without a driver column even
though the set was not explicitly requested in the SQL statement, if using such
a set will yield better performance. For example, consider the following SQL
statement:

SELECT * FROM PART PART WHERE (PART_ID = ’AZ456789’)

The Attunity Connect Query Processor will choose the ALL_PARTS
system set because it is the equivalent of a normal index in a
relational data source. The Query Processor factors these indexes
into its execution strategy for the query when advantageous.

Chapters

By using the driver column of an owner record in the SQL, the DBMS
driver retrieves all the set members for each specific owner record. In
the following example, the driver column for the CLASS table is used to
retrieve the parts for each class record:

Using the Attunity Connect Demo ADO Application and clicking on a
chapter in the output displays all the set members for the specific
owner.

 284

DBMS Driver
The opposite situation of opening a member record to yield the single
row of the owner record is achieved in the same way.

" The chapterOF attribute must be specified for the member in the ADD
metadata (see page 56). This attribute is generated automatically when
generating ADD metadata using the DBMS_ADL utility (see "DBMS Import
(OpenVMS Only)" on page 303).

Using Reverse Fetch

The driver column to enable a reverse fetch for a table is named
_REVERSE_FETCH. Such columns are not assigned real values, but
serve as flags indicating that rows should be retrieved in reverse order.
To use reverse fetch, you must include _REVERSE_FETCH in the
WHERE clause, assigning any value to the column. For example, to
retrieve all the rows in PARTS in reverse order, write the following SQL:

SELECT * FROM PART WHERE _REVERSE_FETCH = ‘1’

This results in the DBQ commands FETCH LAST followed by one or more
FETCH PRIOR, instead of FETCH FIRST and then FETCH NEXTS.

Connecting, Disconnecting, Reconnecting Records and Owner Sets

The connection between a record and an owner set can be manipulated
by changing the value of the associated _M_ driver column. The
following statement, for example, will disconnect the PART record from
the RESPONSIBLE_FOR set:

UPDATE PART SET _M_RESPONSIBLE_FOR = NULL WHERE
PART_ID = ‘BR890123’

Similarly, using the following example you can connect the PART record
to the EMPLOYEE record whose DBKEY is 4:2:1:

UPDATE PART SET _M_RESPONSIBLE_FOR = ‘4:2:1’ WHERE
PART_ID = ‘BR890123’

The DBMS driver includes the following special features related to set
connections:

! The driver validates any connection changes against the insertion
and retention requirements defined in DBMS. For example, trying
to disconnect from a mandatory retention set results in an
appropriate error. Similarly, trying to insert a new record without
supplying values for all the automatic insertion sets also fails.

! When changing a set connection, the driver checks whether the
record was previously connected to the set. The driver then
determines whether to use the DBQ CONNECT or RECONNECT
command to implement the request.

 285

DBMS Driver
! NULL values and blank values are treated the same for driver
columns; both cause the record to be disconnected from the set.

! An update command that tries to reconnect a record to its current
set is ignored by the driver.

! You may connect a record into a set at a specific position in a
chained set by giving the currency of the preceding member instead
of the currency of the owner as the value of the driver column.

! The driver validates all supplied DBKEYs before performing any of
the updates. If some element of the update request is invalid, none
of the update is done. For example, when you issue an update that
connects a PART to the RESPONSIBLE_FOR set and changes the
PART_PRICE field, the entire operation fails if the DBKEY of the
EMPLOYEE is invalid.

Connecting, Disconnecting Records and System Sets

As with owner-member sets, the membership of a record in a system set
is manipulated by changing the value of the associated driver column.
Driver columns for system sets accept either ‘1’ or ‘0’ to denote
membership or non-membership, respectively.

For example, the following statement can be used to make a PART
record non-active, that is, disconnecting it from the
ALL_PARTS_ACTIVE set:

UPDATE PART SET _S_ALL_PARTS_ACTIVE = ‘0’ WHERE
PART_ID = ‘BR890123’

Similarly, you can make a PART active using the following syntax:

UPDATE PART SET _S_ALL_PARTS_ACTIVE = ‘1’ WHERE
PART_ID = ‘BR890123’

SQL to DBQ Mapping Examples

The following examples show how the Attunity Connect DBMS driver
processes SQL statements into DBQ commands. Users familiar with
DBQ may find these examples helpful in understanding how the driver
works and how to best utilize it. Each example shows the SQL text that
you would specify to Attunity Connect and the DBQ commands used by
the driver to implement the request. (Attunity Connect tracing writes
the actual DBQ commands to the server log file for the SQL.)

! Selecting from a table without any key criteria (set) causes Attunity
Connect to read through the records in DBMS chain (sequential or
sorted) order.

(SQL) SELECT PART.PART_ID, PART.PART_DESC
 FROM PART

 286

DBMS Driver
(DBQ) FIND FIRST PART
 GET PART_ID PART_DESC
 FREE ALL CURRENT

! If any key columns are specified in the WHERE statement, Attunity
Connect attempts to utilize the key (set).

(SQL) SELECT PART.PART_ID, PART.PART_DESC
 FROM PART
 WHERE (PART.PART_ID='BR890123')

(DBQ) FIND FIRST PART WITHIN ALL_PARTS
 WHERE PART_ID EQ "BR890123"
 GET PART_ID PART_DESC
 FREE ALL CURRENT

! To reference a DBMS set that has the “_S_<SetName>” driver
column name, you must set the column equal to ‘1’. This results in
the Attunity Connect Query Processor passing the column name to
the driver. The driver then utilizes the set.

(SQL) SELECT PART.PART_ID, PART.PART_DESC
 FROM PART PART
 WHERE (PART."_S_ALL_PARTS_ACTIVE"=’1’)

(DBQ) FIND FIRST PART WITHIN ALL_PARTS_ACTIVE
 GET PART_ID PART_DESC
 FREE ALL CURRENT

! To select and join an owner record to a member record, set the
"_M_<SetName>" driver column in the member record equal to the
driver anchor "__<RecordName>" of the owner record. (Note the
double underscore __ in the driver anchor name.)

(SQL) SELECT PART.PART_ID, COMPONENT.COMP_SUB_PART
 FROM COMPONENT COMPONENT, PART PART
 WHERE (COMPONENT."_M_PART_USES" =
 PART."__PART")

(DBQ) FIND FIRST PART
 GET PART_ID
 FREE ALL CURRENT
 FIND DBKEY
 FIND FIRST COMPONENT WITHIN PART_USES
 GET COMP_SUB_PART
 FREE ALL CURRENT

! To select and join a member record to an owner record, set the
“_O_<SetName>” driver column in the owner record equal to the
driver anchor “__<RecordName>” of the member record.

(SQL) SELECT COMPONENT.COMP_SUB_PART, PART.PART_ID
 FROM COMPONENT COMPONENT, PART PART

 287

DBMS Driver
 WHERE (PART."_O_PART_USED_ON" =
 COMPONENT."__COMPONENT")

(DBQ) FIND FIRST COMPONENT
 GET COMP_SUB_PART
 FREE ALL CURRENT
 FIND DBKEY
 FIND OWNER WITHIN PART_USED_ON
 GET PART_ID
 FREE ALL CURRENT

! To add a record (simple):

(SQL) INSERT INTO CLASS
 (CLASS_CODE, CLASS_DESC,
 CLASS_STATUS,"__CLASS")
 VALUES (‘OL’, ‘OL DESC’, ‘N’, NULL)

(DBQ) STORE CLASS
 FREE ALL CURRENT
 COMMIT

! To add a new record, all of the automatic insertion
"_M_<SetName>" member driver columns must be set to a valid
DBKEY. The DBKEY can be that of a desired owner record or the
DBKEY of an existing record in the table which has the owner that
is needed, in the format "Area:Page:Line". To add a new record with
automatic insertion using an owner record and a system chain set:

(SQL) INSERT INTO PART
 (PART_ID, PART_DESC, PART_STATUS,
 PART_PRICE, PART_COST, PART_SUPPORT,
 "_S_ALL_PARTS_ACTIVE", "_M_CLASS_PART",
 "_M_RESPONSIBLE_FOR", "__PART")
 VALUES (‘AA0001’,‘DESC’, ‘G’, 1.5,
 0.5, ‘Y’, ‘1’, ‘2:4:1’, NULL, NULL)

(DBQ) FIND DBKEY RETAINING ALL EXCEPT CLASS_PART
 STORE PART
 FREE ALL CURRENT
 COMMIT

! To delete a record:

(SQL) DELETE FROM CLASS WHERE (CLASS_CODE = ‘OL’)

(DBQ) FIND FIRST CLASS WITHIN ALL_CLASS
 WHERE CLASS_CODE EQ "OL"
 GET CLASS_CODE CLASS_DESC CLASS_STATUS
 FREE ALL CURRENT
 FIND DBKEY RETAINING ALL EXCEPT ALL_CLASS
 FIND NEXT CLASS WITHIN ALL_CLASS

 288

DBMS Driver
 WHERE CLASS_CODE EQ "OL"
 FREE ALL CURRENT
 FIND DBKEY
 ERASE
 FREE ALL CURRENT
 COMMIT

! To delete a record that has a mandatory member with records, the
member records must be removed first. As shown in the following
example, attempting to delete such a record fails, and the
transaction is rolled back:

(SQL) DELETE FROM CLASS WHERE (CLASS_CODE = ‘PC’)

This statement results in the following error:

Modify Rows failed: Table name = CLASS.

(DBQ) FIND FIRST CLASS WITHIN ALL_CLASS
 WHERE CLASS_CODE EQ "PC"
 GET CLASS_CODE CLASS_DESC CLASS_STATUS
 FREE ALL CURRENT
 FIND DBKEY RETAINING ALL EXCEPT ALL_CLASS
 FIND NEXT CLASS WITHIN ALL_CLASS
 WHERE CLASS_CODE EQ "PC"
 FREE ALL CURRENT
 FIND DBKEY
 ERASE
 DB_FS_INTERFACE(35); Error:
DB_DBMS_INTERFACE(2), %DBM-F-ERASEMANDT, MANDATORY
 member can be erased only with
 ERASE ALL; EXECUTE DB_DBMS_INTERFACE(2),
 ERASE(DELETE)
 FREE ALL CURRENT
 ROLLBACK

! The following example shows a connect on the PART record:

(SQL) UPDATE PART SET "_M_RESPONSIBLE_FOR" =‘4:8:1’
 WHERE ("_M_RESPONSIBLE_FOR" IS NULL AND
 PART_ID = ‘AZ000003’)

(DBQ) FIND FIRST PART WITHIN ALL_PARTS
 WHERE PART_ID EQ "AZ000003"
 GET PART_ID PART_DESC PART_STATUS PART_PRICE
 PART_COST
 PART_SUPPORT
 FIND CURRENT WITHIN ALL_PARTS_ACTIVE
 RETAINING ALL
 FIND OWNER WITHIN CLASS_PART RETAINING ALL
 FREE ALL CURRENT

 289

DBMS Driver
 FIND DBKEY RETAINING ALL EXCEPT ALL_PARTS
 FIND NEXT PART WITHIN ALL_PARTS
 WHERE PART_ID EQ "AZ000003"
 FREE ALL CURRENT
 FIND DBKEY 1:57:4
 FIND DBKEY RETAINING ALL EXCEPT
 RESPONSIBLE_FOR 4:8:1
 FETCH DBKEY RETAINING ALL 1:57:4
 CONNECT PART TO RESPONSIBLE_FOR
 FREE ALL CURRENT
 COMMIT
" If you place any member driver columns “_M_<SetName>” into a

SELECT, the driver reads the member records to get a DBKEY value for
the member driver column. This occurs regardless of whether the
SELECT includes a specific value or a wildcard for the member driver
column. You should do this only if you either need information from the
member record or will join to the member record.

Transaction Support

The Attunity Connect DBMS driver supports one-phase commit. It can
participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Locking

Records are locked only when an explicit lock is requested by the client
application or when a record is updated. This solves most of the locking
problems that DBMS users frequently encounter.

Locking behavior using the DBMS driver differs in some cases from that
of typical DBMS strategies because the DBMS driver relaxes some of the
strict locking strategies DBMS usually imposes when reading records.
However, update related locks are imposed by DBMS regardless of the
driver. Refer to the DBMS documentation set for further discussion of
locking issues. The following highlights locking-related features of the
DBMS driver:

! No records are locked when read unless a lock is requested by the
client application. Because DBMS automatically locks every record
you read, the driver implements this by unlocking each record
immediately after it is read.

! If a client explicitly requests a lock on a particular record, the driver
implements this request by placing the record DBKEY in a keeplist
(see the DBMS documentation set for details on keeplists). If the

 290

DBMS Driver
client subsequently unlocks the record, the driver removes the
record’s DBKEY from the keeplist.

! Updating a record causes the record to be locked for the duration of
the transaction.

! Connecting or disconnecting a record from a set causes an update
lock on the record itself, and possibly on the prior and next records
in a chain set. These locks remain in effect for the duration of the
transaction.

Update Semantics

Updating a column or deleting a row in SQL is very similar to DBQ,
although the syntax differs slightly. For example, the following syntax
is used when changing a part price:

UPDATE PART SET PART_PRICE = 50 WHERE PART_ID =
‘BR890123’

For examples of comparisons between SQL and DBQ syntax, see "SQL
to DBQ Mapping Examples" on page 285.

Set operations, like connecting or disconnecting a record and an
owner-member set or a systems set, however, are not typical SQL
operations. For these operations to work from any SQL-based client,
they need to be mapped to standard SQL operations. The mapping
implemented by the Attunity Connect DBMS driver involves the same
driver columns used to map various set read operations.

Metadata Considerations

The Attunity Connect DBMS driver requires Attunity Connect ADD
metadata. You can use the DBMS_ADL import utility to import this
metadata to ADD (see page 303). You can also use the Metadata
perspective in Attunity Studio to update the statistics for the data. For
details, see "Statistics Tab" on page 467.

Resolving Errors

Whenever there is a DBMS error, the log file includes the numeric code.
Using the symbolic name, listed next to the code in the following table,
you can use the DBQ HELP ERRORS command to get more information
about the error that you encountered.

DBMS Code Symbolic Name DBMS Code Symbolic Name

2654220 DBM$_ABORT_WAIT 2654228 DBM$_ALLREADY

 291

DBMS Driver
2654236 DBM$_AREABUSY 2654244 DBM$_ASTINPROG

2654252 DBM$_BAD_ARGLST 2654260 DBM$_BADBIND

2654268 DBM$_BADDBNAME 2654276 DBM$_BADDEVNAM

2654284 DBM$_BADKBIND 2654292 DBM$_BADKUNBIND

2654300 DBM$_BADSSCLST 2654308 DBM$_BADVERSION

2654316 DBM$_BADZERO 2654324 DBM$_BOUND

2654332 DBM$_BUGCHECK 2654340 DBM$_CANTASSDBJ

2654348 DBM$_CANTBINDRT 2654356 DBM$_CANTCRERUJ

2654364 DBM$_CANTEXTDBS 2654372 DBM$_CANTOPENDBS

2654380 DBM$_CANTOPENOUT 2654388 DBM$_CANTPUTRUJ

2654396 DBM$_CANTUSERUJ 2654404 DBM$_CHKITEM

2654412 DBM$_CHKMEMBER 2654420 DBM$_CHKRECORD

2654428 DBM$_CKEYMOVE 2654436 DBM$_COMPLEX

2654444 DBM$_COMPMOVE 2654452 DBM$_CONVERR

2654460 DBM$_CRELM_NULL 2654468 DBM$_CRELM_POS

2654476 DBM$_CRTYP_NULL 2654484 DBM$_CRTYP_POS

2654492 DBM$_CRUN_NULL 2654500 DBM$_CRUN_POS

2654508 DBM$_CSTYP_NULL 2654516 DBM$_CSTYP_POS

2654524 DBM$_DBBUSY 2654532 DBM$_DEADLOCK

2654540 DBM$_DUPNOTALL 2654548 DBM$_END

2654556 DBM$_ERASEMANDT 2654564 DBM$_FIXED

2654572 DBM$_ID_MAP 2654580 DBM$_ILLNCHAR

2654588 DBM$_INTERLOCK 2654596 DBM$_NOCREMBX

2654604 DBM$_NODEFVAL 2654612 DBM$_NOLLBAVAIL

2654620 DBM$_NOLOCKAVAIL 2654628 DBM$_NONDIGIT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 292

DBMS Driver
2654636 DBM$_NOMONITOR 2654644 DBM$_NOREALM

2654652 DBM$_NOROOTBIND 2654660 DBM$_NOSSBIND

2654668 DBM$_NOTIMPLYET 2654676 DBM$_NOTOTYP

2654684 DBM$_NOTWITHIN 2654692 DBM$_NOT_BOUND

2654700 DBM$_NOT_MBR 2654708 DBM$_NOT_MTYP

2654716 DBM$_NOT_OPTNL 2654724 DBM$_NOT_READY

2654732 DBM$_NOT_UPDATE 2654740 DBM$_NOW_MBR

2654748 DBM$_OVERFLOW 2654756 DBM$_READY

2654764 DBM$_REENTRANCY 2654772 DBM$_SETSELECT

2654780 DBM$_SHUTDOWN 2654788 DBM$_SINGSTYP

2654796 DBM$_SKEYMOVE 2654804 DBM$_STAREAFUL

2654820 DBM$_TRAN_IN_PROG 2654828 DBM$_TRUNCATION

2654836 DBM$_UNDERFLOW 2654844 DBM$_UNSCOMP

2654852 DBM$_UNSCONV 2654860 DBM$_USE_EMPTY

2654868 DBM$_USRFRCEXT 2654876 DBM$_WRONGRTYP

2654884 DBM$_SSVERSION 2654892 DBM$_SSVERSION2

2654900 DBM$_CURDISPLA 2654908 DBM$_KPLDISPLA

2654916 DBM$_BUGCHKDMP 2654924 DBM$_ABORTED

2654932 DBM$_ROLLBACK 2654937 DBM$_FALSE

2654945 DBM$_TRUE 2654956 DBM$_NOWILD

2654964 DBM$_DORURECOV 2654972 DBM$_INVDBSFIL

2654980 DBM$_CANTOPENIN 2654988 DBM$_CNVNUMDAT

2654996 DBM$_DATCNVERR 2655004 DBM$_MISMMORDD

2655012 DBM$_BDDATRANG 2655020 DBM$_BADDATDEF

2655028 DBM$_NOTSYSCONCEAL 2655036 DBM$_LCKCNFLCT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 293

DBMS Driver
2654236 DBM$_AREABUSY 2654244 DBM$_ASTINPROG

2654252 DBM$_BAD_ARGLST 2654260 DBM$_BADBIND

2654268 DBM$_BADDBNAME 2654276 DBM$_BADDEVNAM

2654284 DBM$_BADKBIND 2654292 DBM$_BADKUNBIND

2654300 DBM$_BADSSCLST 2654308 DBM$_BADVERSION

2654316 DBM$_BADZERO 2654324 DBM$_BOUND

2654332 DBM$_BUGCHECK 2654340 DBM$_CANTASSDBJ

2654348 DBM$_CANTBINDRT 2654356 DBM$_CANTCRERUJ

2654364 DBM$_CANTEXTDBS 2654372 DBM$_CANTOPENDBS

2654380 DBM$_CANTOPENOUT 2654388 DBM$_CANTPUTRUJ

2654396 DBM$_CANTUSERUJ 2654404 DBM$_CHKITEM

2654412 DBM$_CHKMEMBER 2654420 DBM$_CHKRECORD

2654428 DBM$_CKEYMOVE 2654436 DBM$_COMPLEX

2654444 DBM$_COMPMOVE 2654452 DBM$_CONVERR

2654460 DBM$_CRELM_NULL 2654468 DBM$_CRELM_POS

2654476 DBM$_CRTYP_NULL 2654484 DBM$_CRTYP_POS

2654492 DBM$_CRUN_NULL 2654500 DBM$_CRUN_POS

2654508 DBM$_CSTYP_NULL 2654516 DBM$_CSTYP_POS

2654524 DBM$_DBBUSY 2654532 DBM$_DEADLOCK

2654540 DBM$_DUPNOTALL 2654548 DBM$_END

2654556 DBM$_ERASEMANDT 2654564 DBM$_FIXED

2654572 DBM$_ID_MAP 2654580 DBM$_ILLNCHAR

2654588 DBM$_INTERLOCK 2654596 DBM$_NOCREMBX

2654604 DBM$_NODEFVAL 2654612 DBM$_NOLLBAVAIL

2654620 DBM$_NOLOCKAVAIL 2654628 DBM$_NONDIGIT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 294

DBMS Driver
2654236 DBM$_AREABUSY 2654244 DBM$_ASTINPROG

2654252 DBM$_BAD_ARGLST 2654260 DBM$_BADBIND

2654268 DBM$_BADDBNAME 2654276 DBM$_BADDEVNAM

2654284 DBM$_BADKBIND 2654292 DBM$_BADKUNBIND

2654300 DBM$_BADSSCLST 2654308 DBM$_BADVERSION

2654316 DBM$_BADZERO 2654324 DBM$_BOUND

2654332 DBM$_BUGCHECK 2654340 DBM$_CANTASSDBJ

2654348 DBM$_CANTBINDRT 2654356 DBM$_CANTCRERUJ

2654364 DBM$_CANTEXTDBS 2654372 DBM$_CANTOPENDBS

2654380 DBM$_CANTOPENOUT 2654388 DBM$_CANTPUTRUJ

2654396 DBM$_CANTUSERUJ 2654404 DBM$_CHKITEM

2654412 DBM$_CHKMEMBER 2654420 DBM$_CHKRECORD

2654428 DBM$_CKEYMOVE 2654436 DBM$_COMPLEX

2654444 DBM$_COMPMOVE 2654452 DBM$_CONVERR

2654460 DBM$_CRELM_NULL 2654468 DBM$_CRELM_POS

2654476 DBM$_CRTYP_NULL 2654484 DBM$_CRTYP_POS

2654492 DBM$_CRUN_NULL 2654500 DBM$_CRUN_POS

2654508 DBM$_CSTYP_NULL 2654516 DBM$_CSTYP_POS

2654524 DBM$_DBBUSY 2654532 DBM$_DEADLOCK

2654540 DBM$_DUPNOTALL 2654548 DBM$_END

2654556 DBM$_ERASEMANDT 2654564 DBM$_FIXED

2654572 DBM$_ID_MAP 2654580 DBM$_ILLNCHAR

2654588 DBM$_INTERLOCK 2654596 DBM$_NOCREMBX

2654604 DBM$_NODEFVAL 2654612 DBM$_NOLLBAVAIL

2654620 DBM$_NOLOCKAVAIL 2654628 DBM$_NONDIGIT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 295

DBMS Driver
2654236 DBM$_AREABUSY 2654244 DBM$_ASTINPROG

2654252 DBM$_BAD_ARGLST 2654260 DBM$_BADBIND

2654268 DBM$_BADDBNAME 2654276 DBM$_BADDEVNAM

2654284 DBM$_BADKBIND 2654292 DBM$_BADKUNBIND

2654300 DBM$_BADSSCLST 2654308 DBM$_BADVERSION

2654316 DBM$_BADZERO 2654324 DBM$_BOUND

2654332 DBM$_BUGCHECK 2654340 DBM$_CANTASSDBJ

2654348 DBM$_CANTBINDRT 2654356 DBM$_CANTCRERUJ

2654364 DBM$_CANTEXTDBS 2654372 DBM$_CANTOPENDBS

2654380 DBM$_CANTOPENOUT 2654388 DBM$_CANTPUTRUJ

2654396 DBM$_CANTUSERUJ 2654404 DBM$_CHKITEM

2654412 DBM$_CHKMEMBER 2654420 DBM$_CHKRECORD

2654428 DBM$_CKEYMOVE 2654436 DBM$_COMPLEX

2654444 DBM$_COMPMOVE 2654452 DBM$_CONVERR

2654460 DBM$_CRELM_NULL 2654468 DBM$_CRELM_POS

2654476 DBM$_CRTYP_NULL 2654484 DBM$_CRTYP_POS

2654492 DBM$_CRUN_NULL 2654500 DBM$_CRUN_POS

2654508 DBM$_CSTYP_NULL 2654516 DBM$_CSTYP_POS

2654524 DBM$_DBBUSY 2654532 DBM$_DEADLOCK

2654540 DBM$_DUPNOTALL 2654548 DBM$_END

2654556 DBM$_ERASEMANDT 2654564 DBM$_FIXED

2654572 DBM$_ID_MAP 2654580 DBM$_ILLNCHAR

2654588 DBM$_INTERLOCK 2654596 DBM$_NOCREMBX

2654604 DBM$_NODEFVAL 2654612 DBM$_NOLLBAVAIL

2654620 DBM$_NOLOCKAVAIL 2654628 DBM$_NONDIGIT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 296

DBMS Driver
2654636 DBM$_NOMONITOR 2654644 DBM$_NOREALM

2654652 DBM$_NOROOTBIND 2654660 DBM$_NOSSBIND

2654668 DBM$_NOTIMPLYET 2654676 DBM$_NOTOTYP

2654684 DBM$_NOTWITHIN 2654692 DBM$_NOT_BOUND

2654700 DBM$_NOT_MBR 2654708 DBM$_NOT_MTYP

2654716 DBM$_NOT_OPTNL 2654724 DBM$_NOT_READY

2654732 DBM$_NOT_UPDATE 2654740 DBM$_NOW_MBR

2654748 DBM$_OVERFLOW 2654756 DBM$_READY

2654764 DBM$_REENTRANCY 2654772 DBM$_SETSELECT

2654780 DBM$_SHUTDOWN 2654788 DBM$_SINGSTYP

2654796 DBM$_SKEYMOVE 2654804 DBM$_STAREAFUL

2654820 DBM$_TRAN_IN_PROG 2654828 DBM$_TRUNCATION

2654836 DBM$_UNDERFLOW 2654844 DBM$_UNSCOMP

2654852 DBM$_UNSCONV 2654860 DBM$_USE_EMPTY

2654868 DBM$_USRFRCEXT 2654876 DBM$_WRONGRTYP

2654884 DBM$_SSVERSION 2654892 DBM$_SSVERSION2

2654900 DBM$_CURDISPLA 2654908 DBM$_KPLDISPLA

2654916 DBM$_BUGCHKDMP 2654924 DBM$_ABORTED

2654932 DBM$_ROLLBACK 2654937 DBM$_FALSE

2654945 DBM$_TRUE 2654956 DBM$_NOWILD

2654964 DBM$_DORURECOV 2654972 DBM$_INVDBSFIL

2654980 DBM$_CANTOPENIN 2654988 DBM$_CNVNUMDAT

2654996 DBM$_DATCNVERR 2655004 DBM$_MISMMORDD

2655012 DBM$_BDDATRANG 2655020 DBM$_BADDATDEF

2655028 DBM$_NOTSYSCONCEAL 2655036 DBM$_LCKCNFLCT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 297

DBMS Driver
2655044 DBM$_NODBK 2655052 DBM$_NOUSERNAM

2655236 DBM$_BAD_KCALL 2655244 DBM$_ISI

2655252 DBM$_KBOUND 2655260 DBM$_MONABORT

2655268 DBM$_NOTBOOL 2655276 DBM$_WASBOOL

2655284 DBM$_UNSARITH 2655292 DBM$_STALL

2655300 DBM$_STRNOTFND 2655308 DBM$_AREA_CORRUPT

2655316 DBM$_EXQUOTA 2655324 DBM$_NOSIP

2655332 DBM$_SIP 2655340 DBM$_NOSNAPS

2655348 DBM$_CANTOPENRUJ 2655356 DBM$_CANTOPENAIJ

2655364 DBM$_MONMBXOPN 2655372 DBM$_NOMONLOGNAM

2655380 DBM$_NOPRIV 2655388 DBM$_MONTRMDEL

2655396 DBM$_MONTRMFOR 2655404 DBM$_MONTRMSUI

2655412 DBM$_MONMBXDEL 2655420 DBM$_GBLSECDEL

2655428 DBM$_MONDELLOG 2655436 DBM$_CANTDELLOG

2655444 DBM$_CANTSNAP 2655452 DBM$_EMPTYAIJ

2655460 DBM$_BADAIJFILE 2655468 DBM$_NOTROOT

2655476 DBM$_ROOMAJVER 2655484 DBM$_MUSTRECDB

2655492 DBM$_BADAIJTAD 2655500 DBM$_DBRABORTED

2655508 DBM$_CANTCREMBX 2655516 DBM$_CANTREADAIJ

2655524 DBM$_CANTSENDMAIL 2655532 DBM$_CANTCREDBR

2655540 DBM$_NOCHAR 2655548 DBM$_LOGDELFIL

2655556 DBM$_CANTDELETE 2655564 DBM$_LOGINIDBS

2655572 DBM$_LOGINISTA 2655580 DBM$_LOGNEWDBS

2655588 DBM$_LOGREINIT 2655596 DBM$_CANTFLSHRUJ

2655604 DBM$_CANTCREDBS 2655612 DBM$_CANTCONNRUJ

DBMS Code Symbolic Name DBMS Code Symbolic Name

 298

DBMS Driver
2655620 DBM$_CANTGETRUJ 2655628 DBM$_CANTTRNCRUJ

2655636 DBM$_CANTREADDBS 2655644 DBM$_QIOXFRLEN

2655652 DBM$_CHECKSUM 2655660 DBM$_CANTWRITEDBS

2655668 DBM$_BUFTOOSML 2655676 DBM$_CANTCREROO

2655684 DBM$_LOGCREATE 2655692 DBM$_LOGGBLSEC

2655700 DBM$_LOGSNPSTA 2655708 DBM$_LOGSNPFNM

2655716 DBM$_LOGSNPINI 2655724 DBM$_ACCVIO

2655732 DBM$_INVREREADY 2655740 DBM$_NONODE

2655748 DBM$_BADBNDPRM 2655756 DBM$_BADBOUNDS

2655764 DBM$_AIJOPEN 2655772 DBM$_CORRUPT_ROOT

2655780 DBM$_DUPGSDNAM 2655788 DBM$_INHIBRECOV

2655796 DBM$_INV_ROOT 2655804 DBM$_INV_SCDD

2655812 DBM$_INV_SSDD 2655820 DBM$_INV_STDD

2655828 DBM$_NORTUPB 2655836 DBM$_NOUSERPID

2655844 DBM$_RECOVERY 2655852 DBM$_ROOT_NOT_OPEN

2655860 DBM$_ROOT_OPEN 2655868 DBM$_SSNOTINROOT

2655876 DBM$_STOPPED 2655884 DBM$_NORESEXT

2655892 DBM$_DBJ_NOTREADY 2655900 DBM$_NOWILDAIJ

2655908 DBM$_BADAIJNAM 2655916 DBM$_NOLABEL

2655924 DBM$_FREE_VM 2655932 DBM$_GET_VM

2655940 DBM$_ROOTMAJVER 2655948 DBM$_MICROFAIL

2655956 DBM$_HARDERROR 2655964 DBM$_SUICIDE

2655972 DBM$_TERMINATE 2655980 DBM$_CANTWRITE

2655988 DBM$_CANTREAD 2655996 DBM$_MONOC

2656004 DBM$_BADFILTYP 2656012 DBM$_LOGMODIFY

DBMS Code Symbolic Name DBMS Code Symbolic Name

 299

DBMS Driver
2656020 DBM$_MODVALSTR 2656028 DBM$_CANTCREMON

2656036 DBM$_CANTQIOMBX 2656044 DBM$_AIJERREOF

2656052 DBM$_AIJSQ2EOF 2656060 DBM$_AIJSEQEOF

2656068 DBM$_AIJCLSTAD 2656076 DBM$_AIJRECFST

2656084 DBM$_AIJLIMBOC 2656092 DBM$_AIJLIMBOR

2656100 DBM$_AIJSTART2 2656108 DBM$_AIJLOGMSG

2656116 DBM$_AIJUNCOMR 2656124 DBM$_AIJERRSTP

2656132 DBM$_AIJLIMBOI 2656140 DBM$_AIJSUCCES

2656148 DBM$_AIJBADPID 2656156 DBM$_AIJBADMAI

2656164 DBM$_AIJSTART1 2656172 DBM$_CANTMAPTROOT

2656180 DBM$_BADROOTMATCH 2656188 DBM$_CANTGETEOF

2656196 DBM$_CANTMODFYEOF 2656204 DBM$_TOOMANYDUPS

2656212 DBM$_CANTMASTERDB 2656236 DBM$_YES

2656244 DBM$_NO 2656260 DBM$_MODVAL

2656284 DBM$_CANTADDUSER 2656292 DBM$_CANTCLOSEDB

2656300 DBM$_OPERSHUTDN 2656308 DBM$_CANTCREGBL

2656316 DBM$_CANTLCKTRM 2656324 DBM$_CANTOPENDB

2656332 DBM$_CANTREADDB 2656340 DBM$_DBACTIVE

2656356 DBM$_DBNOTACTIVE 2656364 DBM$_DBSHUTDOWN

2656372 DBM$_MONSTOPPED 2656380 DBM$_OPERCLOSE

2656388 DBM$_CANTASSMBX 2656404 DBM$_MODAREVAL

2656412 DBM$_FILACCERR 2656420 DBM$_NOAIJDIR

2656428 DBM$_LOGFILACC 2656436 DBM$_LOGINIFIL

2656444 DBM$_NOAIJDEF 2656452 DBM$_BADASCTOID

2656460 DBM$_AIJENABLED 2656468 DBM$_LOGRECOVR

DBMS Code Symbolic Name DBMS Code Symbolic Name

 300

DBMS Driver
2656476 DBM$_NOTRANAPP 2656484 DBM$_AIJDISABLED

2656492 DBM$_LOGAIJBCK 2656500 DBM$_RESTART

2656508 DBM$_TADMISMATCH 2656516 DBM$_CANTSPAWN

2656524 DBM$_NOCONVERT 2656532 DBM$_LOGCONVRT

2656540 DBM$_NOTDSKFIL 2656548 DBM$_NOTIP

2656556 DBM$_NODEVDIR 2656564 DBM$_BADAIJVER

2656572 DBM$_QUIETPT 2656580 DBM$_DBNOTOPEN

2656588 DBM$_MODAREFLG 2656596 DBM$_PREMEOF

2656604 DBM$_LOGRECSTAT 2656612 DBM$_EMPTYFILE

2656620 DBM$_INVHEADER 2656628 DBM$_DELAREA

2656636 DBM$_BKUPEMPTYAIJ 2656644 DBM$_AREA_INCONSIST

2656652 DBM$_ERROPENIN 2656660 DBM$_ERROPENOUT

2656668 DBM$_ERRFOREIGN 2656676 DBM$_AIJDEVDIR

2656684 DBM$_RUJDEVDIR 2656692 DBM$_SNAPFULL

2656700 DBM$_LOGBCKAIJ 2656708 DBM$_LOGOPNAIJ

2656716 DBM$_LOGCREDB 2656724 DBM$_LOGCREAIJ

2656732 DBM$_LOGCRESTO 2656740 DBM$_LOGCRESNP

2656748 DBM$_LOGCREOUT 2656756 DBM$_LOGCREBCK

2656764 DBM$_LOGINISTO 2656772 DBM$_LOGINISNP

2656780 DBM$_LOGRECDB 2656788 DBM$_LOGPAGCNT

2656796 DBM$_LOGMODFLG 2656804 DBM$_LOGMODVAL

2656812 DBM$_LOGMODSTR 2656820 DBM$_READ_ONLY

2656828 DBM$_ERRWRITE 2656836 DBM$_LOGALGCNT

2656844 DBM$_LOGALGFAC 2656852 DBM$_SETWIDTH

2656860 DBM$_AREARSTR 2656868 DBM$_BADPARAM

DBMS Code Symbolic Name DBMS Code Symbolic Name

 301

DBMS Driver
2656876 DBM$_BADSPAMINT 2656884 DBM$_TIMEOUT

2656892 DBM$_MONFLRMSG 2656900 DBM$_PARTDTXNERR

2656908 DBM$_BADBUFSIZ 2656916 DBM$_LOGMODSTO

2656924 DBM$_LOGMODSPM 2656932 DBM$_GETTXNOPTION

2656940 DBM$_CONFTXNOPTION 2656948 DBM$_LOGRESOLVE

2658308 DBM$_GROUPNA 2658316 DBM$_SECURVIO

2658324 DBM$_NOTSTAREA 2658332 DBM$_BADSTRADDR

2658340 DBM$_BADUWALST 2658348 DBM$_NOSTREAM

2658356 DBM$_OBSRTDDCB 2658364 DBM$_NOROLLB

2658372 DBM$_ONSTREAM 2658380 DBM$_NO_DBMREG

2658388 DBM$_OUTSTRCTX 2658396 DBM$_BADPROTOCOL

2658404 DBM$_NETERR 2658412 DBM$_BADDBKEY

2658420 DBM$_RECNOTINSS 2658428 DBM$_CURDISNUL

2658436 DBM$_UNIRECORD 2658444 DBM$_UNIMEMBER

2658452 DBM$_EPCBADCAL 2658460 DBM$_NOCMRLDTXN

2658468 DBM$_DTXNABORTED 2658476 DBM$_NOTSET

2658484 DBM$_NOBATUPD 2662403 DBM$_STAT_TRANS

2662411 DBM$_STAT_COMMIT 2662419 DBM$_STAT_CONNECT

2662427 DBM$_STAT_DISCONNECT 2662435 DBM$_STAT_ERASE

2662443 DBM$_STAT_FETCH 2662451 DBM$_STAT_FREE

2662459 DBM$_STAT_KEEP 2662467 DBM$_STAT_MODIFY

2662475 DBM$_STAT_READY 2662483 DBM$_STAT_ROLLBACK

2662491 DBM$_STAT_STORE 2662499 DBM$_STAT_IF_ALSO

2662507 DBM$_STAT_IF_EMPTY 2662515 DBM$_STAT_IF_MEMBER

2662523 DBM$_STAT_IF_NULL 2662531 DBM$_STAT_IF_OWNER

DBMS Code Symbolic Name DBMS Code Symbolic Name

 302

DBMS Driver
2662539 DBM$_STAT_IF_TENANT 2662547 DBM$_STAT_IF_WITHIN

2662555 DBM$_STAT_USE 2662563 DBM$_STAT_STAT

2664451 DBM$_STAT_DBM_VERBS 2664459 DBM$_STAT_DBM_VROLL

2664467 DBM$_STAT_LCK_LOCK 2664475 DBM$_STAT_LCK_DEMO

2664483 DBM$_STAT_PIO_DB_R 2664491 DBM$_STAT_PIO_DB_W

2664499 DBM$_STAT_RUJ_FLUSH 2664507 DBM$_STAT_RUJ_PUT

2664515 DBM$_STAT_LCK_CNFL 2664523 DBM$_STAT_LCK_HOLD

2664531 DBM$_STAT_PIO_FETCH 2668547 DBM$_STAT_PSII_BAL

2668555 DBM$_STAT_PSII_CRE 2668563 DBM$_STAT_PSII_DES

2668571 DBM$_STAT_PSII_INS 2668579 DBM$_STAT_PSII_MOD

2668587 DBM$_STAT_PSII_REM 2668595 DBM$_STAT_PSII_SEA

2668603 DBM$_STAT_PSII_DIST1 2668611 DBM$_STAT_PSII_DIST2

2668619 DBM$_STAT_PSII_DIST3 10059788 DBQ$_AMBIGITEM

10059796 DBQ$_BAD_ARGLST 10059804 DBQ$_BADELSE

10059812 DBQ$_CABORT 10059820 DBQ$_IGNRCAST

10059828 DBQ$_CANTDOIT 10059836 DBQ$_OBS_CONVERR

10059844 DBQ$_END 10059852 DBQ$_EXIT

10059860 DBQ$_EXTRAINPUT 10059868 DBQ$_IGNORED

10059876 DBQ$_ILLCHAR 10059884 DBQ$_INCONRECITEM

10059892 DBQ$_LISTTOOBIG 10059900 DBQ$_NOCURREC

10059908 DBQ$_NOFILE 10059916 DBQ$_NOTBOUND

10059924 DBQ$_OBS_NOTIMPLYET 10059932 DBQ$_NOTINCALL

10059940 DBQ$_NOTITEM 10059948 DBQ$_NOTPOSNUM

10059956 DBQ$_SYNTAX 10059964 DBQ$_SYNTXEOS

10059972 DBQ$_TOKTOOBIG 10059980 DBQ$_ZABORT

DBMS Code Symbolic Name DBMS Code Symbolic Name

 303

DBMS Import (OpenVMS Only)
DBMS Import (OpenVMS Only)
The DBMS import utility produces ADD metadata from a DBMS
database.

The utility accepts a DBMS root file, subschema name and the name of
the data source as specified in the binding. It then reads the metadata
from DBMS and populates the relevant repository.

To generate ADD metadata, use the following command line (activated
directly from DCL):

$ dbms_adl root-file subschema ds_name [exp_select] [basename]

" Activation of this utility is based on environment symbols defined by the login
file that resides in the BIN directory under the directory where Attunity Connect
is installed. You can always replace the environment symbol with the
appropriate entry.

where:

root-file – The name of the DBMS root file.

" If a logical is used for the root-file, the extension.ROO must be part of the
logical specification.

subschema – The name of the DBMS subschema.

ds_name – The name of an Attunity Connect data source defined in the
binding. The imported metadata is stored as ADD metadata in the
repository for this data source.

exp_select – When "x" is specified for this parameter, the explicit select
attribute of virtual fields is disabled.

basename – A user defined name, used for the intermediate files used
during the import operation.

10059988 DBQ$_CANTBEUSED 10059996 DBQ$_CANTPRINT

10060004 DBQ$_EMPTYLOOP 10060012 DBQ$_MISMATMOV

10060020 DBQ$_OPANDOVR 10060028 DBQ$_OPATOROVR

DBMS Code Symbolic Name DBMS Code Symbolic Name

 304

Delete Command in Attunity Studio
Example

The following example creates an ADD entry in the repository for the
DBMS_PROD data source, for the PARTS.ROO and the PARTSS1
subschema:

$ CREATE/DIRECTORY DKA100:[PARTS.PARTSS1]
$ DBMS_ADL PART$DIR:PARTS.ROO PARTSS1 DBMS_PROD

Also refer to DBMS data types (see page 275) and how they are
converted to ADD data types.

Delete Command in Attunity Studio
The Delete menu item deletes the object referred to from the repository,
on whatever machine is being managed. Compare this function with the
Remove command, which removes the object referred to from Attunity
Studio, but not from the repository on the machine being managed.

Also see: "Remove Command in Attunity Studio" on page 649.

Deleting Repository Objects
The NAV_UTIL DELETE utility enables you to delete from the repository
the following types of objects:

! Administrative objects – These include user profile definitions, and
information for a particular binding or daemon.

For the syntax for deleting these objects, see "NAV_UTIL
DELETE" on page 506.

! Data source objects – These include information about the tables,
stored procedures, metadata, views and synonyms for a particular
date source.

For the syntax for deleting these objects, see "Deleting Data Source
Objects from the Repository" on page 507.

Demo Database
See "NAVDEMO" on page 537.

 305

DISAM Driver
DISAM Driver
Attunity Connect supports the DISAM data source.

The following sections provide information about the Attunity Connect
DISAM driver:

! Setting Up the Binding
! CREATE TABLE Data Types
! Locking
! Metadata Considerations

In addition, the DISAM driver provides array handling – see
"Hierarchical Queries" on page 390.

The Attunity Connect DISAM driver does not support transactions.

The length of a key field in DISAM must be less than or equal to 150.

Setting Up the Binding

! To connect to DISAM data:

The DISAM data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select DISAM for the Type field.
! Specify the DISAM connect string as follows:

Data directory – The directory where the DISAM files and indexes
you create with CREATE TABLE and CREATE INDEX statements
reside. You must specify the full path for the directory.
" The location of the data file for each table is specified in the ADD

metadata. These data files can have a physical file name or an
environment variable name (which is translated before accessing the
data). This is useful if the data is distributed among several physical files.
For example, under UNIX the environment variable can be similar to the
following:

setenv ALL_EMPLOYEES /users/db/boston/emp.dat,
 /users/db/paris/emp.dat

The data files are specified in the Data file field of the Metadata
perspective of Attunity Studio or, when using NAV_UTIL EDIT, via the

 306

DISAM Driver
filename attribute. For tables created using the CREATE TABLE
statement, the value specified in the Data directory field is used to create
the data files and is specified in the ADD metadata to locate the data. If a
value is not specified in this field, the data files are written to the DEF
directory under the directory where Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

audit="true|false" – Activates an audit file.

auditFile="string" – The audit filename is the concatenation of the value
specified for the "name" attribute of the <table> statement and an
".aud" suffix.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

filepoolCloseOnTransaction="true|false" – Specifies that all files in the
filepool for this data source close at each end of transaction (commit or
rollback).

filepoolSize="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

filepoolSizePerFile="n" – Specifies how many instances of a file from the
filepool may be open concurrently for each file.

lockWait="true|false" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

newFileLocation="string" – (Data directory in the connect string) The
directory where the DISAM files and indexes you create with CREATE
TABLE and CREATE INDEX statements reside. You must specify the full
path for the directory.

useGlobalFilepool="true|false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.

 307

Drill-down Operations
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to DISAM data types:

Locking

Record level locking is supported. When joining records from a single
table in DISAM, you cannot lock the records separately.

Metadata Considerations

The Attunity Connect DISAM driver requires Attunity Connect ADD
metadata. You use the Metadata perspective of Attunity Studio to
maintain the ADD metadata and update the statistics for the data.

" The "filename" attribute in ADD must not include the file suffix (this suffix is
included with all the other drivers). For details of the filename attribute, see
page 50.

Drill-down Operations
See "Hierarchical Queries From an Application" on page 392.

CREATE TABLE DISAM

Char[(m)] Char[(m)]

Date Date+time

Double Double

Float Float

Image –

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text –

Tinyint Tinyint

Varchar(m) Varchar(m)

 308

Driver Configuration Properties
Driver Configuration Properties
You can use the configuration properties attribute to set specific data
source properties as part of the binding settings for the specific data
source. Configuration properties are set in one of the following ways:

! Via the Attunity Studio Configuration perspective Properties tab
when editing the data source (right-click the data source and select
Edit data source).

! Directly in the binding settings via the NAV_UTIL EDIT utility (on
the machine where the data resides).

! Dynamically, using the Attunity Connect sp_config_datasource
procedure. For example, as follows:

call nav_proc:sp_config_datasource(’ds_name’,
’<config newDecimal="true"/>’);

where ds_name is the name of the data source in the binding
configuration.

For driver specific configuration properties refer to the configuration
properties of the individual drivers.

Drivers
See "Data Drivers" on page 251.

Attunity Connect includes drivers to the most commonly used
relational and non-relational data sources. It also includes a number of
generic drivers, which can be used to access other data sources.

 309

Editing Repository Objects
Editing Repository Objects
The NAV_UTIL EDIT utility enables you to modify the contents of a
repository, using a text editor. With this utility you can directly edit the
following types of objects in the repository:

! All configuration information for a particular machine, including
all the elements listed below.

! User profile definitions
! The list of available bindings
! Information for a particular binding, which can include information

about the following:
! Data sources
! Application adapters
! Remote machines accessed from the current machine
! Environment properties

! Information about the available daemons
! Information about the following for a particular data source:

! Table metadata
! Metadata for a data source table generated by the local_copy

utility
! Stored procedure metadata
! Metadata for a data source stored procedure generated by the

local_copy utility
! View metadata
! Synonyms

! Application adapter definitions

The object is exported to an XML file that is automatically displayed in
a text editor. When the text editor is closed, the XML file is imported
back to the repository.

" Some of these objects can also be edited using the Attunity Studio GUI or to
the XML, within Attunity Studio via the relevant Source tab.

The text editor used is the native text editor for the operating system.
You can change the editor in the misc environment properties, either
via Attunity Studio or by adding
<misc edit="path_and_name_of_editor"> directly to the environment
properties.

Also see: "NAV_UTIL EDIT" on page 509.

 310

Encryption
Encryption
See "Encrypting Network Communications" on page 672.

Enscribe Metadata Import from COBOL Copybooks (HP
(Compaq) NonStop Only)

You can generate metadata for Enscribe from COBOL copybooks that
describe the Enscribe data.

The following steps are used to import metadata from COBOL
copybooks.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files If COBOL copybooks are available defining the application input or
output: Specify the copybooks.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables, identified from the COBOL, you want to import
metadata for from the list of tables.

Resolve Table
Names

In cases where there are multiple tables with the same name, the
source COBOL file that describes each specific table is specified.

Generate Final
Metadata

Prepares the final XML defining the metadata.

Import Metadata The metadata can be imported to the machine where the data source
resides. This step can be returned to and redone at any time.

 311

Enscribe COBOL and DDL Import (HP (Compaq) NonStop Only)
Enscribe COBOL and DDL Import (HP (Compaq) NonStop
Only)

The ADDIMP Enscribe import utility produces ADD metadata for HP
(Compaq) NonStop Enscribe data from a DDL subvolume and COBOL
copybooks.

If the metadata exists only as COBOL copybooks, you can import the
metadata to Attunity Connect using the Enscribe import utility in the
Metadata Import perspective of Attunity Studio (as described above).

For unstructured Enscribe files, ADDIMP sets the organization
attribute in the generated metadata to indexed. Use Attunity Studio or
NAVEDIT (see page 509) to change the value to unstructured.

" When using a HP (Compaq) NonStop $CMON system monitor, the system
monitor may conflict with the import utility. This may cause the utility to hang.
In this case, temporarily stop the $CMON process.

" Refer to the TALIMP utility (page 319) if the conversion with ADDIMP is not
complete.

To generate the ADD metadata, use the following command line:

RUN ADDIMP [-t template] [-r replace_string] -n ds_name
[-e DDL_export_list] [-f filename_table] [-v variant_table] [-m rec_filter]
[-b basename] [-d] [-c] [-g] [-p] [-6] [-z] files

where:

template – The template used in the COBOL COPYFROM statement.

replace_string – The string used to replace all occurrences of template, if
template has a value. If template has a value and replace_string is not
set, all occurrences of template are made empty.

ds_name – The name of an Attunity Connect data source defined in the
binding. The imported metadata is stored as ADD metadata in the
repository for this data source.

DDL_export_list – The records to be imported from the DDL dictionary.
If the list contains more than one record, the list must be surrounded
by double quotes (""). This parameter defaults to *, importing all
records. To import DDL definitions, set the z parameter, described
below.

filename_table – A text file containing a list of records and the names of
their data files. Each row in this file has two entries: record_name and
physical_enscribe_data_file_name (which is used for the value for the
Data file field for the table in the Metadata perspective of Attunity

 312

Enscribe COBOL and DDL Import (HP (Compaq) NonStop Only)
Studio). If a table is not listed in this text file, the entry for the Data file
field for the table defaults to table_FIL, where table is the name of the
table. If this text file does not exist, the names for the Data file field
specifying the tables default to table_FIL, where table is the name of the
table. The format of the file is “tablename $vol.subvol.file”. For
example:

EMPLOYEE $USER.PERS.EMPLOYEE

" Fields mapped to a key segment must be contiguous in each table definition.

" When the filename defaults to table_FIL, you must change this name (using
the Metadata perspective of Attunity Studio, or NAV_UTIL EDIT) to the correct
name, in order to access the data.

variant_table – A list of variants with their selector fields and the valid
values for each selector field. Each line in the list has the following
format:

variant-field,selector-field,"val1","val2",...,"valN"
" All the val# arguments must be surrounded by double quotes. If a val#

argument contains a comma or double quote, then the character must be
doubled.

If the variant line is too long, break the line at a comma separator. For
example:

var_1,selector_1,"a","b","c"

var_2,selector_2,"a23456789012345",
"b23456789012345","c23456789012345",
"d23456789012345"

rec_filter – The set of records that you want imported. You specify this
as an AWK regular expression. (For example, you can use special
characters, such as '.', '*', "[...]", "\{n,m\}", '^', '$'.) For information
about AWK regular expressions, consult AWK reference documentation.

basename – A user defined name, used for the intermediate files used
during the import operation. The following files are generated, with the
defaults in parentheses:

! basenameA (IADDIMPA)
! basenameF (IADDIMPF)
! basenameL (IADDIMPL)
! basenameC (IADDIMPC)

If these files already exist, write/purge access to them is required when
you run the utility.

" The basename entry must be no longer than 7 characters.

 313

Enscribe COBOL and DDL Import (HP (Compaq) NonStop Only)
d – Specifies that all intermediate files are saved. You can check these
files if problems occur in the conversion.

c – Specifies that the column name is used for an array name, instead
of the concatenation of the parent table name with the child table name.

" If a column name is not unique in a structure (as when a structure includes
another structure, which contains a column with the same name as a column
in the parent structure), the nested column name is suffixed with the nested
structure name.

g – Specifies that a group name is prefixed to the column name.

" If a counter field is defined after the array field, check the resulting XML to
make sure that the column name is fully qualified.

p – Specifies that punch card formatting is implemented. Columns after
column 72 in every line are ignored.

6 – Specifies that the first 6 columns of every line are ignored (ANSI
COBOL is assumed instead of extended COBOL).

7 – Specifies that COBOL74 is used. If this is not specified COBOL85 is
used.

z – Specifies that the metadata is exported from DDL definitions and not
the DDL records (the default).

files – Structure files for the Enscribe tables. Each file is in the format
of a COBOL copylib. Only one subvolume of a DDL dictionary is allowed.
An intermediate filename file and an intermediate copylib file are
generated from the dictionary. Separate the files in this list with
blanks.

" The COBOL file must start at the 01 level (that is "01 record-name") and
include the entire record definition (and not a reference to a copybook file
elsewhere).

Example

run addimp -n ENSDATA d0117.ddldata

" To display online help for this utility, run the command with help as the only
parameter: ADDIMP -i.

The files in the command line are processed in order. When the same
table name occurs more than once, the latest definition of the table is
used for the ADD. If a DDL dictionary is specified, the generated
intermediate location file and structure file are placed first.

 314

Enscribe Driver (HP (Compaq) NonStop Only)
The ADDIMP utility enables you to overwrite the location (listed in the
DDL dictionary) of an Enscribe table with a specific filename file, in
cases when the dictionary entry is not current.

Enscribe Driver (HP (Compaq) NonStop Only)
The following sections provide information about the Attunity Connect
Enscribe driver:

! Setting Up the Binding
! CREATE TABLE Data Typess
! Creating Enscribe Files
! Transaction Support
! Locking
! Metadata Considerations

The Attunity Connect Enscribe and SQL/MP drivers and Pathway
adapter share the same transaction, which automatically provides
consistency between Enscribe and SQL/MP. Thus, you cannot start a
new transaction for SQL/MP when one is open for Enscribe.

" TMF is required when updating audited files.

The Enscribe driver supports the following Enscribe file types:

! Key-sequenced

! Entry-sequenced

! Relative – The Enscribe driver exposes a column called “#” for the
relative record number. The # column can be used in SQL
statements just like any other column. The Enscribe driver exposes
a virtual index on the # column. It implements the index
functionality using the Enscribe API.

! Unstructured – Unstructured files that keep fixed length records are
supported. The unstructured file is read using a read-ahead buffer
of 4K. The Enscribe driver also supports RBA usage. The RBA holds
the relative record number in the stream file where the record
begins. The RBA column can be used in SQL statements just like any
other column. Set the record organization in the metadata to
unstructured.

 315

Enscribe Driver (HP (Compaq) NonStop Only)
Setting Up the Binding

! To connect to Enscribe data:

The Enscribe data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field. The name

must not be more than eight characters and must start with a
letter.

! Select Enscribe for the Type field.
! Specify the connect string.
! Specify the connect string as follows:

Data SubVolume – The volume and subvolume where the Enscribe
files and indexes you create with CREATE TABLE and CREATE
INDEX statements reside.
" The name of an index created in this subvolume must be different from the

name of any table in the subvolume.

If a value is not specified in this field, the data files are written to
subvolume where Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

audit="true|false" – Activates an audit file. This property must be set
when including an Enscribe file in a distributed transaction.

" The volume must be audited in order to create audited files

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

enscribeLockMode="n" – Corresponds to the values of the SETMODE
parameter of the Guardian Set Lock Mode procedure. The default is 3.

enscribeLockType="n" – The LockType property of the Recordset object:

-1 – No locking.

0 (default) – Record locking.

1 – File locking.

 316

Enscribe Driver (HP (Compaq) NonStop Only)
filepoolCloseOnTransaction="true|false" – Specifies that all files in the
filepool for this data source close at each end of transaction (commit or
rollback).

filepoolSize ="n" – Specifies the total number of instances files from the
filepool may be open concurrently.

filepoolSizePerFile ="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

newFileLocaton – "string" – (Data SubVolume in the connect string) The
volume and subvolume where the Enscribe files and indexes you create
with CREATE TABLE and CREATE INDEX statements reside.

transactions="true|false" – TMF transactions are not started. Use this
property when dealing with unaudited files.

useGlobalFilepool="true|false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Enscribe data types:

CREATE TABLE Enscribe

Char[(m)] Char[(m)]

Date Date+time

Double Double

Float Float

Image -

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text -

Tinyint Tinyint

Varchar(m) Varchar(m)

 317

Enscribe Driver (HP (Compaq) NonStop Only)
Creating Enscribe Files

The Attunity Connect Enscribe driver handles the creation of Enscribe
files according to the following guidelines:

! You must create an index (using the CREATE INDEX statement)
before inserting a row in a table.

! The physical file is created only on the first INSERT statement and
is located in the subvolume specified in the newfiles_subvolume in
the binding.

! The format of an Enscribe file that you create is determined by the
file’s indexes, as follows:
! A file whose first index is unique is created as a key-sequenced

file with primary key.
! A file without a unique index is created as an entry-sequenced

file with alternate indexes.
" You cannot create a relative file with SQL CREATE statements. However,

you can create a relative file by creating the ADD for it and inserting a
record.

! Each alternate key is created in a separate physical file, and an
alternate key file is created according to the index name in the
CREATE INDEX command. It is created in the subvolume of the
physical file specified in the New files subvolume field of the
connection information (see "Setting Up the Binding" on page 315).

! Enscribe files that you create with a primary extent and a
secondary extent-size of 5 pages and maximum number of extents
of 128.

Transaction Support

The Attunity Connect Enscribe driver supports one-phase commit if the
createAuditFile driver property is set (see "Driver Configuration" on
page 315). It can participate in a distributed transaction if it is the only
one-phase commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Locking

You can perform record-level locking on Enscribe data for both audited
and unaudited files by using the HP (Compaq) NonStop LOCKREC and
UNLOCKREC calls.

 318

Enscribe Driver (HP (Compaq) NonStop Only)
Metadata Considerations

The Attunity Connect Enscribe driver requires Attunity Connect ADD
metadata. You can import Enscribe metadata to ADD from the following
sources:

! DDL subvolume
! TAL data files
! COBOL copybooks

If the metadata exists only as COBOL copybooks, you can import the
metadata to Attunity Connect using the Enscribe import utility in the
Metadata Import perspective of Attunity Studio (as described in
"Enscribe Metadata Import from COBOL Copybooks (HP (Compaq)
NonStop Only)" on page 310).

If the metadata exists in a DDL subvolume or as TAL data files, you can
use the stand-alone import utilities (ADDIMP, described on page 311, or
TALIMP, described on page 319) to import metadata to ADD from these
sources. You use the Metadata perspective of Attunity Studio to
maintain the ADD metadata and update the statistics for the data.

Note that the indexId attribute in ADD for an alternate index is the
ASCII value corresponding to the 2 bytes of the key specifier. For
example, for an alternate index in Enscribe described by fup as:

ALTKEY (2, FILE 0, KEYOFF 15, KEYLEN 12, UNIQUE)

you need the following ADD clause: indexId is "2"

The Enscribe key specifier is the first value in the returned string.
Similarly, for an alternate index in Enscribe described by fup as

ALTKEY ("SY", FILE 0. KEYOFF 15, KEYLEN 12, UNIQUE)

you need the following ADD clause: indexId is "21337"

" 21337 is derived from the ASCII values of S (0x53) and Y (0x59). Thus the
ASCII value of "SY" is 0x5359 and its decimal equivalent is 21337.

The value in the indexId clause must be in quotes.

For unstructured Enscribe files, ADDIMP sets the organization
attribute in the generated metadata to indexed. Use NAVEDIT (see page
509) to change the value to unstructured. Note that you must include a
filler field, of size one, when having an odd record size in an even
unstructured Enscribe file.

 319

Enscribe TAL and DDL Import (HP (Compaq) NonStop Only)
Enscribe TAL and DDL Import (HP (Compaq) NonStop Only)
The Enscribe TAL import utility produces ADD metadata for HP
(Compaq) NonStop Enscribe data sources from TAL datafiles and a DDL
subvolume.

Use the TALIMP utility in preference to the ADDIMP utility (see page
311) in the following circumstances:

! You have a TAL datafile instead of a COBOL copybook.
! The DDL uses identifiers that are restricted words in COBOL but not

in TAL.

If the metadata exists only as COBOL copybooks, you can import the
metadata to Attunity Connect using the Enscribe import utility in the
Metadata Import perspective of Attunity Studio (as described in
"Enscribe Metadata Import from COBOL Copybooks (HP (Compaq)
NonStop Only)" on page 310).

Depending on the contents of the DDL, use the ADDIMP or TALIMP
utilities or both utilities to convert the DDL.

For unstructured Enscribe files, TALIMP sets the organization attribute
in the generated metadata to indexed (see "Table Attributes" on page
49). Use the Attunity Studio Metadata perspective to change the value
to unstructured. Note that you must include a filler field, of size one,
when having an odd record size in an even unstructured Enscribe file.

" When using a HP (Compaq) NonStop Himalaya $CMON system monitor, the
system monitor may conflict with the import utility. This may cause the utility to
hang. In this case, temporarily stop the $CMON process.

To generate the ADD metadata, use the following command line:

RUN TALIMP -n ds_name [-e DDL_export_list] [-f filename_table]
[-v variant_table] [-m rec_filter] [-p TAL_columns] [-b basename] [-q]
[-d] [-c] [-z] files

where:

ds_name – The name of an Attunity Connect data source defined in the
binding. The imported metadata is stored as ADD metadata in the
repository for this data source.

DDL_export_list – The records to be imported from the DDL dictionary.
If the list contains more than one record, the list must be surrounded
by double quotes (""). This parameter defaults to *, importing all
records. To import DDL definitions, set the z parameter, described
below.

 320

Enscribe TAL and DDL Import (HP (Compaq) NonStop Only)
filename_table – A text file containing a list of records and the names of
their data files. Each row in this file has two entries: record_name and
physical_enscribe_data_file_name (which is used for the value for the
Data file field for the table in the Metadata perspective of Attunity
Studio). If a table is not listed in this text file, the entry for the Data file
field for the table defaults to table_FIL, where table is the name of the
table. If this text file does not exist, the names for the Data file field
specifying the tables default to table_FIL, where table is the name of the
table. The format of the file is “tablename $vol.subvol.file”. For
example:

EMPLOYEE $USER.PERS.EMPLOYEE

" Fields mapped to a key segment must be contiguous in each table definition.

" When the filename defaults to table_FIL, you must change this name (using
the Metadata perspective of Attunity Studio, or NAV_UTIL EDIT) to the correct
name, in order to access the data.

variant_table – A list of variants with their selector fields and the valid
values for each selector field. Each line in the list has the following
format:

variant-field,selector-field,"val1","val2",...,"valN"
" All the val# arguments must be surrounded by double quotes. If a val#

argument contains a comma or double quote, then the character must be
doubled.

If the variant line is too long, break the line at a comma separator. For
example:

var_1,selector_1,"a","b","c"
var_2,selector_2,"a23456789012345",
"b23456789012345","c23456789012345",
"d23456789012345"

rec_filter – The set of records that you want imported. You specify this
as an AWK regular expression. (For example, you can use special
characters, such as '.', '*', "[...]", "\{n,m\}", '^', '$', etc.) For
information about AWK regular expressions, consult AWK reference
documentation.

TAL_columns – The value of the COLUMNS directive in the TAL
compilation command. If a value is not specified, 132 is used (the TAL
default).

basename – A user defined name, used for the intermediate files used
during the import operation. The following files are generated, with the
defaults in parentheses:

! basenameA (default is TTALIMPA)

 321

Enscribe TAL and DDL Import (HP (Compaq) NonStop Only)
! basenameF (default is TTALIMPF)
! basenameL (default is TTALIMPL)
! basenameC (default is TTALIMPC)

If these files already exist, write/purge access to them is required when
you run the utility.

" The basename entry must be no longer than 7 characters.

q – Turns on the query mode, in which the import process pauses at
each intermediate step.

d – Specifies that all intermediate files are saved. You can check these
files if problems occur in the conversion.

c – Specifies that the column name is used for an array name, instead
of the concatenation of the parent table name with the child table name.

" If a column name is not unique in a structure (as when a structure includes
another structure, which contains a column with the same name as a column
in the parent structure), the nested column name is suffixed with the nested
structure name.

z – Specifies that the metadata is exported from DDL definitions and not
the DDL records (the default).

files – Structure files for the Enscribe tables. Each file is in the format
of a TAL copylib. Only one subvolume of a DDL dictionary is allowed. An
intermediate filename file and an intermediate copylib file are
generated from the dictionary. Separate the files in this list with
blanks.

" To display online help for this utility, run the command with help as the only
parameter: TALIMP -i.

The files in the command line are processed in order. When the same
table name occurs more than once, the latest definition of the table is
used for the ADD. If a DDL dictionary is specified, the generated
intermediate location file and structure file are placed first. Embedded
COLUMNS are processed according to TAL language rules.

The TALIMP utility enables you to overwrite the location (listed in the
DDL dictionary) of an Enscribe table with a specific filename file, in
cases when the dictionary entry is not current.

 322

Environment Properties
Environment Properties
Each binding configuration includes its own environment, specified in
the environment properties.

" When using an ADO frontend application, the environment used is the
environment of the first binding configuration used in the program, even if the
binding configuration used is changed during the program.

To display environment properties for the binding configuration in
Attunity Studio, right-click the binding configuration and choose Edit
Binding.

The environment properties are listed in the Properties tab.

The following sample shows how different environment properties are
represented in XML for the NAV binding configuration:

<environment name="NAV">
 <comm comCacheBufferSize="200000" />
 <debug logFile="" traceDir="" />
 <misc tempDir="" language="" codepage="" nlsString="" />
 <odbc maxActiveConnections="0" />
 <oledb maxHRows="100" />
 <optimizer preferredSite="server" />
 <queryProcessor proceduresCacheSize="3" firstTreeExtensions="150"
 maxColumnsInParsing="500" />
 <transactions/>
 <tuning dsmMaxBufferSize="1000000" dsmMidBufferSize="100000"
 hashBufferSize="1000000" hashMaxDiskSpace="-1"
 hashMaxOpenFiles="90" />
</environment>

" The XML representation of the environment properties are displayed in Attunity
Studio via the Source tab when editing the Binding in the Configuration
perspective.

The following table lists the environment properties1 in their respective
categories.

Category parameter Name

comm comCacheBufferSize

comMaxSocketSize

conmMaxXmlInMemory

conmMaxXmlSize

 323

Environment Properties
1. Other parameters that appear in Attunity Studio are for reference only and should not be
modified. These parameters are displayed when the Preferences window is opened and
the Show advanced environment parameters field is checked, in the Advanced tab under
the Studio node.

debug acxTrace

analyzerQueryPlan

gdbTrace

generalTrace

logFile

oledbTrace

optimizerTrace

queryWarnings

traceDir

miscellaneous codepage

cvtLevelSeverity

edit

exposeXmlField

language

nlsString

readV3Definition

tempDir

xmlFieldName

year2000Policy

Category parameter Name

 324

Environment Properties
odbc enableAsyncExecuting

forceQualifyTables

maxActiveConnections

maxActiveStatements

oledb maxHRows

optimizer avoidScan

goal

noCacheWithoutIndex

noFlattner

noHashJoin

noIndexCache

noLookupCache

noMultiIndex

noPassthru

noSemiJoin

noSubqueryCache

noTdpUnion

preferredSite

semiJoinInValuesFactor

traceFull

traceGroups

Category parameter Name

 325

Environment Properties
queryProcessor compileAfterLoad

firstTreeExtensions

ignoreSegmentBindfailure

maxColumnsInParsing

maxSegmentedDbThreads

maxSqlCache

minNumberOfParametersAllocated

noCommandReuse

noCompilationCache

noDSPropertyCache

noInsertParameterization

noMetadataCaching

noParallelExecution

noQueryParametrization

noQueryReadAhead

noRowMarkFieldFetch

noSQSCache

noThreadedReadAhead

noThreads

parserDepth

prodeduresCacheSize

promptDbUserPassword

tokenSize

useAlternateQualifier

useTableFilterExpressions

Category parameter Name

 326

Environment Properties
transactions commitOnDestroy

convertAllToDistributed

convertAllToSimple

disable2PC

extendedLogging

logFile

oleThreads

recoveryDelay

serverUrl

timeLimit

useCommitConfirmTable

tuning dsmMaxBufferSize

dsmMaxHashFilesize

dsmMaxSortBufferSize

dsmMidBufferSize

fileCloseOnTransaction

filepoolSize

filepoolSizePerFile

hashBufferSize

hashEnableParallelism

hashEnableRO

hashMaxDiskSpace

hashMaxOpenFiles

useGloablFilepool

Category parameter Name

 327

Environment Properties
comm Category

The following parameters define communication buffers:

comCacheBufferSize – The size of a memory buffer on a client, which is
used by the Attunity Connect client/server to store read-ahead data.
The default is 200000 bytes.

comMaxSocketSize – The maximum bytes that can be written in one
chunk on a socket. The default is -1 (no limitation).

comMaxXmlInMemory – The maximum size of an XML document held in
memory. The default is 65535 bytes.

comMaxXmlSize – The maximum size of an XML document passed to
another machine. The default is 65535 bytes.

debug Category

The following parameters define the debugging and logging operations
of Attunity Connect.

acxTrace – When set to "true", the input xml sent to the adapter and the
output xml returned by the adapter, are written to the log file.

analyzerQueryPlan – When set to "true", the Query Optimizer plan is
written to a plan file for analysis using the Attunity Connect Query
Analyzer (see "Query Analyzer" on page 626).

gdbTrace – When set to "true", logs the transactions of the driver created
using the Attunity Connect SDK. For details of the SDK refer to
Attunity Connect Developer SDK.

generalTrace – When set to "true", logs general trace information used
by Attunity Connect.

The default writes only error messages to the log.

" It is recommended that you do not change the default value for this parameter
unless specifically asked to by Attunity Connect support personnel. Changing
the default can degrade the performance of the Attunity Connect system.

logFile – The full path and filename of the log file for messages. The
following types of message are written to the log:

! Error messages.
! Trace information and information about the query

optimization strategy – if generalTrace was set to "true" (see
above).

 328

Environment Properties
The default log file (NAV.LOG) is located in the TMP directory under the
directory where Attunity Connect is installed.

To send log messages to the console, instead of a file, set logFile to a
minus, "-", character.

oledbTrace – When set to "true", logs the trace information used when
working with OLE DB providers.

The default writes only error messages to the log.

" It is recommended that you do not change the default value for this parameter
unless specifically asked to by Attunity Connect support personnel. Changing
the default can degrade the performance of the Attunity Connect system.

optimizerTrace – When set to "true", trace information and information
about the Query Optimizer strategy is written to the log file.

queryWarnings – When set to "true", generates a log file of Query
Processor warnings.

traceDir – The directory where Attunity Connect writes the log
generated by the optimizer files (with a PLN extension). The optimizer
files include details of the optimization strategy used by Attunity
Connect. By default, these files are written to the same directory as the
log file (see logFile, above).

HP (Compaq) NonStop Platforms

The default Attunity Connect log file is called NAVLOG and it is located
in the subvolume where Attunity Connect is installed.

If the log file is specified with a UNIX type path (such as
/G/d0117/ac3300/navlog), the log file can be viewed from other processes
(while it is open). Otherwise, the log is not readable while it is open.

" A log file specified using a UNIX type path is harder to read because
commands such as TEDIT do not work on this type of file. To see the file using
FUP COPY, use the following format:
FUP COPY filename, , SHARE

OS/390 and z/OS Platforms

The default Attunity Connect log file is NAVROOT.DEF.NAVLOG, where
NAVROOT is the high level qualifier specified when Attunity Connect is
installed.

 329

Environment Properties
miscellaneous Category

The following parameters define miscellaneous operations of
Attunity Connect, including national language support (NLS) and the
directory where temporary files are written.

codepage – For use with National Language Support (NLS) to identify
the codepage for the workspace. The following are valid codepage
values for the specified language parameter (described below):

Language Supported
Codepage values

Description

Arabic

English ASCII

EBCDIC

European D8EBCDIC273 EBCDIC codepage 273 8-bit
Austrian German

DK8EBCDIC277 EBCDIC codepage 277 8-bit Danish

S8EBCDIC278 EBCDIC codepage 278 8-bit Swedish

I8EBCDIC280 EBCDIC codepage 280 8-bit Italian

WE8EBCDIC285 EBCDIC codepage 285 West
European

F8EBCDIC297 EBCDIC codepage 297 8-bit French

WE8EBCDIC500 EBCDIC codepage 500 West
European

Hebrew IW8EBCDIC424 EBCDIC codepage 424 8-bit
Latin/Hebrew (new EBCDIC)

IW8EBCDIC806 EBCDIC codepage 806 8-bit
Latin/Hebrew (old EBCDIC)

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew (ASCII
8-bit) (also known as codepage 862)

 330

Environment Properties
If the codepage parameter is blank and a language is specified, a default
codepage is used, based on the language specified and the machine. For
details of these defaults, refer to the language parameter, described
below.

Japanese JA16SJIS or SJIS Shift-JIS 16-bit

JA16EUC or EUC EUC 16-bit

JA16VMS or SDECK Super DEC Kanji (EUC+) 16-bit

JA16DBCS IBM EBCDIC 16-bit with Latin
characters

JA16EBCDIC930 IBM DBCS codepage 390 16-bita

Korean KO16KSC5601 KSC5601 16-bit

KO16DBCS IBM EBCDIC 16-bit

Simple
Chinese

ZHS16CGB231280 16-bit Simple Chinese

ZHS16DBCS IBM EBCDIC 16-bit Simple Chinese

Spanish ASCII

WE8EBCDICLATIN EBCDIC codepage with Spanish
extensions

WE8EBCDIC284 EBCDIC codepage 284 8-bit Latin
American/Spanish

Traditional
Chinese

ZHT16BIG5 BIG5 16-bit Traditional Chinese

ZHT16DBCS IBM EBCDIC 16-bit Traditional
Chinese

a. This codepage has no encoding for lowercase Latin letters. All resources should
be defined in uppercase.

Language Supported
Codepage values

Description

 331

Environment Properties
cvtSeverityLevel – The data type conversion policy when a conversion
error occurs:

! 0 (Default) – The data in the output column will be a null or empty
value.

! 1 – The data in the output column will be a null or empty value and
the error is reported to the log.

! 2 – An error is reported and processing stops.

edit – The text editor for use by the NAV_UTIL EDIT command. The
default is the native text editor for the operating system.

exposeXmlField – When set to "true", data returned for a query is
displayed as XML, representing the true structure of the result. This is
especially useful when querying a data source table that contains
arrays or variants. For additional information, refer to the "The
SELECT XML Statement" on page 707.

language – Identifies the application language. Valid values are:

ARA (Arabic) – If the codepage parameter is blank, the default
codepage on all supported platforms is AR8ISO8859P6.

ENG (English, the default) – If the codepage parameter is blank, the
default codepage on all supported platforms is ASCII, with the
exception of IBM OS/400 and mainframe OS/390 and z/OS platforms,
where the default codepage is EBCDIC.

HEB (Hebrew) – If the codepage parameter is blank, the default
codepage on all supported platforms is IW8ISO8859P8, with the
exception of IBM OS/400 and mainframe OS/390 and z/OS machines,
where the default codepage is IW8EBCDIC424.

JPN (Japanese) – If the codepage parameter is blank, the following
are the default codepages on the supported platforms:

Platform Default Japanese Codepage

IBM OS/390 and z/OS JA16DBCS

IBM OS/400 JA16DBCS

OpenVMS SDECK

HP (Compaq)
NonStop

JA16SJIS

UNIX – Other JA16SJIS

UNIX – Sun JA16EUC

 332

Environment Properties
KOR (Korean) – If the codepage parameter is blank, the default
codepage on all supported platforms is KO16OSC5601, with the
exception of IBM OS/400 and mainframe OS/390 and z/OS platforms,
where the default codepage is KO16DBCS.

SCHI (Simple Chinese) – If the codepage parameter is blank, the
default codepage on all supported platforms is ZHS16CGB231280,
with the exception of IBM OS/400 and mainframe OS/390 and z/OS
platforms, where the default codepage is ZHS16DBCS.

SPA (Spanish) – If the codepage parameter is blank, the default
codepage on all supported platforms is ASCII, with the exception of
IBM OS/400 and mainframe OS/390 and z/OS platforms, where the
default codepage is WE8EBCDICLATIN.

TCHI (Traditional Chinese) – If the codepage parameter is blank,
the default codepage on all supported platforms is ZHT16BIG5, with
the exception of IBM OS/400 and mainframe OS/390 and z/OS
platforms, where the default codepage is ZHT16DBCS.

" Also refer to the codepage parameter, above.

nlsString – Specifies the codepage used by a field whose data type is
defined as "nlsString". You use this for a field whose codepage is other
than that of the machine’s codepage. This parameter includes the
following values:

! The name of the codepage.
! Whether the character set reads from right to left (as in middle

eastern character sets). The default is "false".

For example, the following specifies a Japanese EUC 16 bit codepage:

<misc nlsString="JA16EUC,false"/>

tempDir – The directory where temporary files are written, including the
temporary files created for use by hash joins and for sorting files. The
default is the current directory.

" The following is recommended for this parameter:
a) Specify a directory that contains temporary files only. You can then easily
remove these files if necessary (for example, if the process stopped in the
middle).
b) Specify a directory on a disk that has a significant amount of free disk space.

xmlFieldName – The name used in a query to indicate that the data is
returned as XML, instead of the keyword "XML". The parameter is

Win32 JA16SJIS

 333

Environment Properties
effective only after the exposeXmlField parameter, described above, is
set.

year2000Policy – Determines the way 2-digit years are converted into
4-digit years. Two policies are provided:

! Fixed Base Year – year2000Policy is set to a value greater than, or
equal to 1900. In this case, the value of year2000Policy is the first
4-digit year after 1900 that can be represented by a 2-digit year. For
example, if year2000Policy is set to 1905, the years 2000->2004 will
be represented by 00->04. All other 2 digits will map to 19xx.

This solution is most appropriate if there is live data at the low end
(close to the year 1900), which the user wants to keep with the
current 2-digit format.

The user will probably change the base date only after ensuring
that these old dates have been deleted from the data source.

! Sliding Base Year – year2000Policy is set to a positive value less than
100. In this case, the value of year2000Policy represents the
number of years ahead of the current year that can be represented
by a 2-digit number. With each passing year the earliest year that
can be represented by a 2-digit number changes to a year later.

" When the parameter year2000Policy is not set, or when it is set to a value
outside the range of values defined for the above policies, a default value of 5
and the Sliding Base Year policy is used.

odbc Category

The following parameters define aspects of how Attunity Connect
works with ODBC applications.

enableAsyncExecuting – Enables asynchronous execution.

forceQualifyTable – The catalog and table name are reported together as
a single string (as DS:table_name).

maxActiveConnections – The maximum number of connections that an
ODBC or OLE DB application can make through Attunity Connect. The
default is 0, indicating that maximum is not set.

" The greater the number of connections possible, the faster the application can
run. However, other applications will run slower and each connection is
counted as a license, restricting the total number of users who can access data
through Attunity Connect concurrently. This is particularly the case when using
MS Access as a front-end, since MS Access allocates more than one
connection whenever possible.

 334

Environment Properties
maxActiveStatements – The value returned for the InfoType of the ODBC
SQLGetInfo API. The default is 0, specifying that there is no limit on
the number of active statements.

oledb Category

The following parameter defines aspects of how Attunity Connect
works with OLE DB/ADO applications.

maxHRows – When using OLE DB, the maximum number of hrows (row
handles) that can reside in memory at one time. The default value is
100 hrows. This parameter should be changed to the value of the ADO
CacheSize property, since the smaller of this parameter value and the
ADO CacheSize value is used.

optimizer Category

The following parameters enable you to customize the performance of
the Attunity Connect Optimizer.

avoidScan – When set to "true", the optimizer does not choose the scan
strategy if it can use some other strategy. If only a scan strategy is
available, then it is used.

goal – The optimization policy, which can be specified as one of the
following:

! none (default) – All row optimization is used.
! first – First row optimization is performed based on the assumption

that the results produced by the query are used as the rows are
retrieved. The query optimizer uses a strategy that retrieves the
first rows as fast as possible, which might result in a slower overall
time to retrieve all the rows.

! all – Optimization is performed based on the assumption that the
results produced by the query are used after all the rows have been
retrieved. The query optimizer uses a strategy that retrieves all the
rows as fast as possible, which might result in a slower time to
retrieve the first few rows.

" Aggregate queries automatically use all row optimization, regardless of the
value of this parameter.

noHashJoin – When set to "true", disables hash join optimization. When
hash joins are enabled, a significant amount of disk space is required
(see details of the hashMaxDiskSpace parameter, in "tuning Category"
on page 338). Therefore, if the system does not have much available
disk space, disable hash join optimization.

 335

Environment Properties
noSemiJoin – When set to "true", disables semi-join optimization.

preferredSite – The machine you want to process the query. Normally
the query is processed as close to the data source as possible (either
using the query processor of the data source, or if this is not available,
the Attunity Connect Query Processor on the same machine as the data
source). If a situation arises in which it is more efficient to process the
query on the client machine (for example, when the remote machine is
heavily overloaded), you can tune Attunity Connect to process all or
part of the query locally.

" The extent that performance is improved by processing all or some of the query
locally can be determined only on a trial and error basis. Consider the following
points when processing the query locally:
! Increased communication costs
! Decreased server workload

Before adjusting this parameter, check the log to see if other tuning
is more appropriate. The options are:
! server (the default)
! nearServer
! nearClient
! client

semiJoinInValuesFactor – The number of parameters a semi-join
strategy sends to an RDBMS. The default is 10.

queryProcessor Category

The following parameters enable you to fine tune how Attunity Connect
processes SQL.

compileAfterLoad – When set to "true", sets Query Processor always to
compile an Attunity Connect procedure or view after it is read.

dsoThreadingBoth – When set to "true", sets the threading model for a
data source object to "both".

emptyStringIsNull – When set to "true", all empty strings are reported as
"NULL".

firstTreeExtensions – The maximum size allowed for an SQL query after
compilation. The default value is 150 KB.

forceQualifiedNames – When set to "true", the catalog and the table
name are reported together in a single string (as DS:table_name).

" This value is needed when building an application using Business Objects.

 336

Environment Properties
ignoreSegmentBindFailure – Determines how Attunity Connect responds
when the execution of one of the segments of a segmented data source
fails:

! true – Logs a message and continues execution. (This is the
default.)

! false – Logs a message and stops execution.

maxColumnsInParsing – The maximum number of columns that a query
references. The default is 500 columns.

maxSqlCache – The maximum number of SQL queries stored in cache
memory. The default value is 3.

" Refer to the SQL/MP driver, which also uses this parameter (see "SQL/MP
Driver" on page 755).

noCommandReuse – When set to "true", sets Query Processor not to
cache for reuse the executed state of a query.

noCompilationCache – When set to "true", sets Query Processor not to
save a successfully compiled statement in the cache.

noDSPropertyCache – When set to "true", sets query Processor not to
cache data source properties.

noInsertParameterization – When set to "true", sets Query Processor not
to parameterize constants in INSERT statements.

noMarkRowFailedFetch – When set to "true", enables Query Processor to
continue fetching data after a failure in retrieving a row.

noMetadataCaching – When set to "true", Query Processor does not take
object metadata from the cache but from the original data source.

noParallelExecution – When set to "true", disables parallel processing
within query execution. Also, see noThreads, below.

noQueryParametrization – When set to "true", sets Query Processor not
to convert constants into parameters when accessing data sources.

noQueryReadAhead – When set to "true", disables read-ahead
functionality for components using Query Processor services.

noSessionPooling – When set to "true", internal session pooling is
disabled.

noSQSCache – When set to "true", compiled Attunity Connect
procedures and views are not saved in the cache but always read from
disk.

 337

Environment Properties
noThreadedReadAhead – When set to "true", disables read-ahead
functionality. Also, see noThreads, below.

noThreads – When set to "true", disables multithreading.

" Setting this parameter is equivalent to setting both noThreadedReadAhead
and noParallelExecution.

noTreeAutoExtend – When set to "true", Query Processor does not
allocate new resources when it runs out of resources.

optimisticForUpdate – When set to "true", optimistic locking becomes the
default for locking behavior.

parserDepth – The maximum depth of the expression tree.

proceduresCacheSize – The number of Attunity Connect
Query Processor stored queries created with a CREATE PROCEDURE
statement that can be kept in cache memory. The default is 3 queries.

promptDbUserPassword – When set to "true", sets Attunity Connect to
prompt the user for security information when accessing a data source.

tokenSize – The maximum length of a string in an SQL query. The
minimum value is 64. The default value is 350.

useAlternateQualifier – When set to "true", the Query Processor uses the
@ symbol instead of a colon (:) when connecting to multiple data
sources.

" This value is needed when building an application using PowerBuilder from
Sybase Inc. or Genio from Hummingbird Ltd.

useTableFilterExpressions – When set to "true", enables the use of tables
that have filter expressions specified in their metadata. For details of
filters in ADD, refer to the filter Attribute.

transactions Category

The following parameters define how Attunity Connect handles
transactions and logs a record of transaction activity.

convertAllToDistributed – When set to "true", converts all simple
transactions into distributed transactions.

convertAllToSimple – When set to "true", converts all distributed
transactions into simple transactions.

disable2PC – When set to "true", disables two phase commit capabilities,
even in drivers that support two phase commit.

 338

Environment Properties
logFile – The full path and filename of the log file that logs activity when
using transactions. This log file is used during any recovery operations.
Under Windows, the default log file (TRLOG.TLF) is written to the same
directory as the NAV.LOG file (which is specified by the debug logFile
parameter). It is recommended to use the default log file and perform
recovery from a PC.

recoveryDelay – The number of minutes from the start of a transaction
before any recovery operation on that transaction can be attempted.
The default is 15 minutes.

useCommitConfirmTable – When set to "true", uses the commit-confirm
table for data sources that support one phase commit.

tuning Category

The following parameters define how Attunity Connect handles tuning.

dsmMaxBufferSize – The maximum size of a cache memory. This cache
is used when memory is required on a temporary basis (as when
Attunity Connect sorts data for a query output, for a subquery, or for
aggregate queries). This cache size is not used for hash joins and lookup
joins (see the hashBufferSize parameter, below). The default is 1000000
bytes.

dsmMaxSortBufferSize – The maximum size of the sort buffers. Use this
parameter instead of dsmMaxBufferSize for sorts only. The default is
1000000 bytes.

dsmMidBufferSize – The maximum size of the index cache. This cache is
not used for hash joins and lookup joins. The default is 100000 bytes.

hashBufferSize – The amount of cache memory that is available for each
hash join or lookup join. The default is 1000000 bytes.

hashEnableParallelism – Both sides of a hash join are read concurrently.
The default is "true".

hashMaxDiskSpace – The maximum amount of disk space (in MBs) that
a query can use for hash joins. The default is unlimited (all the free
space on the allocated disk). If a query requires more space than
allocated via this parameter, the query execution will stop. The
minimum value for this parameter is 20 MB.

 339

Environment Properties
" Temporary files are written per query. Therefore, if several users can execute
queries at the same time, adjust the amount of space available, so that the total
that can be allocated at any one time does not exceed the available space.

hashMaxOpenFiles – The maximum number of files that a query can
open at one time for use when performing hash joins. The number
assigned to this parameter must not exceed the system maximum. The
default is 90 files.

" The hash join optimization strategy results in a number of files being opened
to perform the join. The larger the table size, the more files are opened. By
adjusting this parameter you can disable hash joins on very large tables, while
allowing hash joins for small tables. (See the description of the <optimizer>
parameter, above, for details about disabling hash optimization for all table
joins.)

Dynamically Changing an Environment Property

You can change some of the environment properties on the fly by calling
a stored procedure, nav_proc:sp_config_environment. This has a
specific effect on every query run after the change and until the next
change. You change an environment property by executing a statement
with the following format:

call nav_proc:sp_config_environment('SYS',
 '<element attribute="value"/>')

Example

! The following example sets the maximum number of active ODBC
connections to 2:

call nav_proc:sp_config_environment('SYS',
 '<odbc maxActiveConnections="2"/>')

! To change parameters in the environment properties on a different
machine, specify the name of the machine as it is referred to in the
binding configuration. For example:

call sp_config_environment('ALPHA',
 '<element attribute="value"/>')

HP (Compaq) NonStop Platforms
If Attunity Connect files reduced to disk are larger than 500 MB,
use this parameter to enlarge the default size of the file that
Attunity Connect opens. The default for this parameter on HP
(Compaq) NonStop machines is 478.3 MB, which consists of a
primary extent size of 20 K, a secondary extent size of 1000 K, and
a maximum of 500 extents.

 340

Errors
The changes are made to the machine referred to as ALPHA in the
binding.

Use this feature when you want to override the environment properties
for a specific purpose (for example, when executing a number of queries
in sequence, and when you want to catch all trace data for one specific
query in the sequence).

When performing a query that accesses data sources on different
machines, Attunity Connect executes parts of the query close to the
data sources (on the server machines). Therefore, to influence the
execution of the query on the server machine, set the parameter both
locally and for the server machine.

" Dynamically changing some environment properties such as cache sizes may
produce unexpected behavior when queries continue to run after tables and
stored queries accessed by the queries are changed or erased.

Errors
Attunity Connect errors messages are divided into two categories:

Standard error messages – Error messages that may be returned to the
application when may return to the application when neither the
generalTrace nor queryWarnings parameter of the debug node in the
environment properties is set to "true".

Trace error messages – Error messages that may be returned to the
application when the generalTrace parameter of the debug node in the
environment properties is set to "true" (so that trace information is
written to the log file).

 341

Errors
Attunity Connect Standard Error Codes

Standard Error messages may be returned to the application when
return to the application when neither the generalTrace nor
queryWarnings parameter of the debug node in the environment
properties is set to "true".

The following table lists the error messages in ascending order,
according to their Attunity Connect error ID code.

" ODBC-related errors have an additional code for their error state. In the
following table, these errors are listed after the Attunity Connect error code,
even though they appear first in the error messages.

The following error codes (which begin with 8) are returned by the Attunity Connect OLE DB
subsystem

8000 %s: Bad %s bookmark to locate.

8001 %s: Failed to get rows.

8002 %s: End of rowset.

8003 %s: Start position is past the end of either.

8004 %s: Cannot lock row.

8005 %s: Table/Column is not updateable.

8006 %s: Errors occurred – check row status.

8007 %s: Failed on %s rows, no available hrow.

8008 %s: Some bookmark pointers are null.

8009 %s: %s properties returned with errors.

800A %s: No properties with errors.

800B %s: Failed to %s properties.

800C %s: No SQL text in command.

800D %s: Failed to prepare the command SQL = %s.

800E %s: Multiple parameter sets are not supported.

800F %s: Invalid argument, 'pParams' has no data or parameters.

8010 %s: Failed to set execution parameters.

 342

Errors
8011 %s: No parameters specified for parameterized query.

8012 %s: Bad accessor handle.

8013 %s: Bad accessor type, only %s accessor is accepted.

8014 %s: A parameter ordinal was zero in parameter accessor.

8015 %s: The status in accessor is %s.

8016 %s: Value was not supplied for a required parameter.

8017 %s: The last compilation of the command was not ok.

8018 %s: Failed to create rowset properties.

8019 %s: The requested IID does not match any rowset property.

801A %s: The property is not supported.

801B %s: The requested IID was not set by the corresponding property.

801C %s: Bad ordinal in accessor.

801D %s: Accessor validation failed.

801E %s: Failed in call to MapColInfo.

801F %s: Failed to get the chaptered rowset.

8020 %s: %s of the columns IDs are invalid.

8021 %s: Parameters not available.

8022 %s: %s parameter names are invalid.

8023 %s: Some type names not found.

8024 %s: Some type information overridden.

8025 %s: Aggregation is not supported for parameter 'pUnkOuter'.

8026 %s: Invalid schema.

8027 %s: Delayed-update- failed to create tmp_stg BLOB.

8028 %s: Stg flag not set.

8029 %s: Call to nav setproperty failed.

802A %s: Cannot lock row, data was changed.

 343

Errors
8030 OLEDB Numeric By-Reference binding is not supported.

The following error codes (which begin with 9) are returned by the Attunity Connect ODBC
subsystem

9000 S1C00 Driver not capable.

9001 S1C00 Driver not capable – SQL_DRIVER_PROMPT is not supported on this platform.

9002 S1C00 Driver not capable – UnSupported fInfoType.

9003 S1C00 Driver not capable – Update/insert operations on BLOBs are not supported.

9004 S1C00 Driver not capable – Unsupported fSqlType.

9005 S1C00 Driver not capable – No support for output parameters.

9006 S1C00 Driver not capable – BLOB parameters are not supported.

9007 08003 Connection not open.

9008 25000 Invalid transaction state.

9009 08002 Connection in use.

900A S1000 CbDSN or szDSN is not valid.

900B S1000 The query processor specified in QPRemote edit box must be a machine name.

900C S1000 The query processor specified in QPRemote edit box is not REMOTE.

900D S1000 Null value for a parameter is not supported for select statement.

900E S1000 Error activating the transaction on this statement.

900F S1000 No known conversion from fCType to fSqlType.

9010 S1000 Unexpected error in SQL_TIME string format.

9011 S1000 Unexpected error in SQL_DATE string format.

9012 S1000 Unexpected error in SQL_TIMESTAMP string format.

9013 S1000 General error in %s - rc = %s. Refer to the log file for details.

9014 08001 Error binding to the default DS.

9015 08001 Error - the default DS is a SYS ds on a remote machine (not allowed).

9016 01S02 Option value changed.

 344

Errors
9017 S1009 Invalid argument value.

9018 S1009 RgbInfoValue is not valid (= NULL).

9019 S1009 CbInfoValueMax is not valid (<= 0).

901A 01004 Data is truncated.

901B 22003 Numeric value out of range.

901C 22005 Error in assignment.

901D S1093 Invalid parameter number – should be >= 1.

901E 22008 Datetime field overflow.

901F 07006 Restricted data type attribute violation.

9020 S1001 Memory allocation failure.

9021 21S01 Insert value list does not match column list.

9022 37000 Lexical error. The SQL text is too long.

9023 37000 SQL text too long. Try to: 1. Increase <queryProcessor maxColumnsInParsing/>
in the environment properties (in case the SQL text consists of many columns).
2. Shorten the SQL text.

9024 37000 The execution tree of this SQL text is too big. Try increasing the variable
<queryProcessor firstTreeExtensions/> in the environment properties.

9025 37000 Unknown function.

9026 37000 Unknown function separators.

9027 37000 Syntax error or access violation.

9028 37000 Too many columns in GROUP BY or ORDER BY (maximum is 8).

9029 37000 Parameters are not allowed in this part of the query.

902A S1090 Invalid string or buffer length.

902B S0001 Base table or view already exists.

902C S0002 Table or view not found.

902D S0022 Column not found.

902E 22012 Division by zero.

 345

Errors
902F S1011 Operation invalid at this time.

9030 34000 Invalid cursor name.

9031 3C000 Duplicate cursor name.

9032 S1003 FCType must be SQL_C_BOOKMARK.

9033 S1002 Invalid column number.

9034 S1091 Descriptor type is out of range.

9035 01S01 Error in row.

9036 22002 Indicator required but not supplied.

9037 S1105 Invalid parameter type.

9038 S1094 Invalid scale value.

9039 S1104 Invalid precision value.

903A 07001 Wrong number of parameters.

903B 23000 Integrity constraint violation.

903C 01S03 No data for update/delete was found.

903D S1106 Fetch type out of range.

903E 01S06 Attempt to fetch before the start of the result set.

903F 42000 Syntax error or access violation.

9040 S1107 Row value out of range.

9041 S1109 Invalid cursor position.

9042 S1010 Function sequence error.

9043 24000 Invalid cursor state.

9044 S1103 Direction option out of range.

9048 S1008 Operation canceled.

The following error codes (which begin with A) are returned by the Query Processor.

A000 Column %s not found when parsing query.

A001 Column %s is ambiguous or invalid.

 346

Errors
A002 Cannot use entryID, aggregate or expression in this context.

A003 Invalid literal specification.

A004 Create Index failed, data source is %s, index name is %s.

A005 Create table failed, data source is %s, table name is %s.

A006 Add Column failed, data source is %s, table name is %s, column name is %s.

A007 Set Bound columns failed, table name is %s.

A008 Create Query Spec failed, data source is %s.

A00A Execute query failed, data source is %s, SQL text is %s.

A00B Failed to bind data source %s to data source %s.

A00C Load query spec failed, data source is %s, query spec name is %s.

A00D Failed to open table %s:%s

A00E Set Index failed, table name = %s, index id is %s

A00F Stored query spec Set bound columns failed, query spec name is %s.

A010 Get Property failed: Property ID = %s.

A011 Set Property failed: Property ID = %s.

A012 Stored query spec Get Params failed: SQS name = %s.

A013 Set Params failed.

A014 Get Column Cursor failed: Table name = %s.

A015 Get Rows on Column Cursor failed: Table name = %s.

A016 Get Rows on Row Cursor failed: Table name = %s.

A017 Get Rows on SubQuery failed.

A018 Set Bound Columns on SubQuery failed.

A019 Modify Rows failed: Table name = %s.

A01A Destroy Object on Row Cursor failed.

A01B Destroy Object on Column Cursor failed.

A01C Destroy Object on QuerySpec failed.

 347

Errors
A01D Destroy Object on data source failed.

A01E Move failed: Table name = %s, Bookmark = %s, Offset = %s.

A01F Requery failed: DS name = %s.

A020 Set Index failed: Table name = %s.

A021 Set Bound Columns on QuerySpec failed: DS name = %s.

A022 Failed to drop table %s:%s.

A023 Seek failed: Table name = %s.

A024 Get Column Cursor on QuerySpec failed.

A025 Get Column Cursor failed: Table name = %s.

A026 The function: %s is not supported in the matrix.

A027 The Operator %s is not supported for the operands of type %s and %s.

A028 The alias %s is duplicated.

A029 The provided information offset for the column %s is invalid.

A02A The column %s should be DBBINDING_ENTRYID_.

A02B The column %s should be DBBINDING_DEFAULT_.

A02C The binding specified for the column %s is wrong.

A02D The parameters passed to the function are invalid.

A02E The user specified %s parameters in SetParams, when there are only %s.

A02F The data for parameter No. %s is invalid.

A030 The parameter %s does not exist.

A031 The type of the column %s was changed in call to ReQuery.

A032 The column %s is ambiguous.

A033 The column %s was not found.

A034 The parameter %s is not allowed here.

A035 The parameter %s is too long.

A036 The identifier %s is too long.

 348

Errors
A037 The ordinal %s of column specified in %s BY clause is out of range.

A039 The stored query spec %s should appear after the table it depends on in the
FROM clause.

A03A The order column %s is ambiguous.

A03B The group by column %s is ambiguous.

A03C The column %s is an entryID, and can't be grouped or ordered by.

A03D The column %s is an array, and can't be grouped or ordered by.

A03E The stored query spec %s does not exist in the system catalogs.

A03F The SQL %s already exists in the system catalog, the type is %s and not table.

A040 The SQL contains a combination of aggregate and non-aggregate fields. The
SQL must contain a GROUP BY clause on all the non-aggregate fields.

A041 The column %s in the GROUP BY clause is not valid.

A042 The table %s is duplicated.

A043 The column %s is an array, so it can't be coerced.

A044 The column %s does not have enough allocated space to receive the coerced
data.

A045 The column %s has a set CIF field, but the user did not allocate space for it.

A046 The conversion from data type %s to data type %s failed.

A047 The SQL statement has a syntax error: Line = %s, Position = %s, Actual token
= %s (%s), Expected token = %s. SQL = %s.

A048 The execution tree of this SQL text is too big. Try increasing the variable
<queryProcessor firstTreeExtensions/> in the environment properties.

A049 Insert value list does not match column list – too few.

A04A Insert value list does not match column list – too many.

A04B Wrong number of parameters passed to saved query spec %s(). It has %s
parameters and not %s as specified.

A04C Mismatched DS type in segment %s of DS %s.

A04D Mismatched DS Syntax Name in segment %s of DS %s.

 349

Errors
A04E The number of columns this query returns exceeds the maximum (%s). (Check
the environment property <queryProcessor maxColumnsInParsing/>.)

A04F Column %s is not a hierarchical object.

A050 BLOBs can't be selected in queries over hierarchical queries.

A051 Aggregate query can't include embedded queries.

A052 Hierarchical table can't be used inside hierarchical query

A053 Hierarchical queries/embedded queries/chapters are not valid inside
subqueries.

A054 The table %s is not updateable.

A055 The column %s is not updateable.

A054 %ld In add column number %ld for binding.

A055 Set Bound Column for the binding failed with error %ld.

A056 Create Index for the binding failed with error %ld.

A057 Set Index for the binding failed with error %ld.

A058 Unable to add row to the binding due to error %ld.

A059 The identifier is too long. Maximum length is %s. (%s).

A05A The long number is too big. Refer to documentation. (%s)

A05B The string is too long. Maximum length is %s. (%s)

A05C The quoted string is too long. Maximum length is %s. (%s)

A05D Internal error: %s

A05E %s: could not allocate %s bytes of memory.

A05F %s: the parameter %s is invalid.

A060 %s: the name of the column %s is invalid.

A061 %s: operation on system file failed - %s .

A062 %s: DISAM failed file = %s operation = %s DISAM error code = %s.

A063 %s Call to SRT module %s failed.

A064 %s no current index set.

 350

Errors
A065 %s null value is invalid for non-nullable column.

A066 %s DSM getrow error : %s.

A067 %s DSM modify-row error : %s.

A068 %s DSM - invalid bookmark : %s

A069 %s DSM call to module %s failed.

A06F %s : DSM error: %s.

A070 %s : invalid column %s : %s.

A071 %s : DSM coerce failed for column %s.

A072 %s : SRT failed %s.

A073 Memory table (DSM) can't be downloaded to disk. Segments length exceeded
limit of %s bytes.

A074 Can't open binding %s for reading.

A075 Section %s is missing from the binding (%s).

A076 %s has no value in the binding (%s).

A077 Name %s does not appear in the binding.

A078 Binding for DS type %s cannot be performed.

A079 General error; Internal return code: %d.

A07A %s driver is not licensed.

A07B Illegal username and/or password were supplied for DS %s.

A07C No username and/or password have been supplied for DS %s.

A07D Insufficient disk space for temporary files created during Hash Join. (Check the
environment properties hashMaxOpenFiles, hashMaxDiskSpace and
tempDir.)

A07E Hash Join exceeded the maximum disk space allowed by hashMaxDiskSpace.

A07F Hierarchical table is allowed only in subqueries or queries over hierarchical
queries.

A080 Subquery is illegal in ON condition.

A081 GetChapterRowset() call failed in %s.

 351

Errors
A082 Type %s specified in the binding is unknown.

A083 An error has occurred while trying to load the DLLs for the DS %s.

A084 An unexpected error occurred while trying to bind to the DS %s.

A085 No License file exists. Contact Attunity.

A086 Error accessing the license file. The file could be in use or damaged.

A087 The license for %s has expired. Contact Attunity.

A088 The license is not valid. Contact Attunity.

A089 The license is not suitable for the current host machine (%s). Contact Attunity.

A08A The license is not suitable for the current platform (%s). Contact Attunity.

A08B The client and server versions do not match.

A08C The environment symbol NAVROOT is not defined.

A08D The binding %s was not found.

A08E ORDER BY clause is invalid in subquery/nested query.

A08F Specifying constant in GROUP BY is invalid.

A090 ORDER BY expression not found. In aggregate/distinct queries only expressions
from SELECT and GROUP BY can appear in ORDER BY.

A091 ESCAPE parameter of LIKE function should be single character.

A092 Second parameter of LIKE is limited to length of 255.

A093 Second parameter of LIKE can't be empty string.

A094 Negative number (%s) passed to SQRT function.

A095 Division by zero.

A096 Unknown function %s() with %s operands.

A097 %s separator is illegal for %s() function.

A098 Second operand (%s) of SUBSTR() function is out of range.

A099 Third operand (%s) of SUBSTR() function should be positive.

A0A0 Subquery returns more than one row.

 352

Errors
A0A1 Subquery returns more than one column.

A0A2 ON condition should be specified for Left Outer Join (LOJ).

A0A3 Number of expressions that can participate in ORDER/GROUP BY clause is
limited by %s.

A0A4 Identifier (%s) can't be used in VALUES clause of INSERT query.

A0A5 GROUP BY clause can't reference aggregate expressions.

A0A6 Invalid use of aggregate expression, which can appear only in SELECT or
HAVING clauses.

A0A7 Aggregate query can't be updateable.

A0A8 Number of nested subqueries exceeded the limit of %s.

A0A9 You can't nest aggregated functions in the same expression.

A0AA You are using a Demo version – Rows Limit has been exceeded.

A0AB Can't find remote binding %s.

A0AC Some parameters in the connect string are not valid.

A0AD All result expressions in CASE function should be of the same data type, size
and precision. %s'th operand fails this rule.

A0AE Syntax name %s is defined neither in local nor in remote environment
properties.

A0AF Failed to read file %s with error: "%s".

A0B0 Failed to write file %s with error: "%s".

A0B1 Failed to create file %s with error: "%s".

A0B2 OPTIMIZER WARNING: The index statistic for table "%s" index %s is not
reported.

A0B3 OPTIMIZER WARNING: The partial index statistic for table "%s" index %s
segment %s is not specified

A0B4 OPTIMIZER WARNING: No table statistics for table "%s"

A0B5 The field %s is a complex object. Selecting such fields is not supported in a
passthru query.

 353

Errors
A0B6 Warning: The stored query spec %s was saved in an older version. Resave it to
avoid recompiling it every time it is loaded.

A0B7 Redeclaration of syntax name %s defined in the syntax file. This syntax name
is reserved for Attunity Connect or already declared. Choose another name.

A0B8 The value %s is incorrect for the item %s in section %s in the syntax file. Check
the syntax.

A0BA The entry %s given in section %s in the syntax file is incorrect. Check the
syntax.

A0BB The number of parameters given in entry %s in section %s in the syntax file is
incorrect.

A0BC There are errors in the syntax file. Check nav.syn and the log file.

A0BD There are errors in section %s in the syntax file. This section is ignored.

A0BE Segmented databases are read only

A0BF A non-positive number was passed as parameter to LOG10/LN function.

A0C0 A non-positive number was passed as parameter to LPAD/RPAD function.

A0C1 Every predicate of ON expression in LOJ must include fields from right branch.

A0C2 A %s "%s" already exists. Choose another name for %s.

A0C3 A view can not contain parameters. Use CREATE PROC if appropriate.

A0C4 Too many parameters for DS %s. Try increasing the variable <queryProcessor
minNumberOfParametersAllocated/> in the environment properties.

A0C5 You can't mix named and unnamed parameters in one query

A0C6 Numeric overflow in function %s with value %s

A0C7 The token %s in entry %s in section %s in the syntax file is invalid.

A0C8 Failed to update environment settings, environment variable name was not
given.

A0C9 Value for column %s exceeds column's length.

A0CA The hints for table %s can't be satisfied.

A0CB The hints specified for a query can't be satisfied.

A0CC Number of hints for the table exceeds the maximum of %s hints.

 354

Errors
A0CD Outer joins are illegal for batch update queries.

A0CE Join hints are allowed for outer joins only

A0CF The %s feature is not licensed

A0D0 Neither the requested isolation level nor a strengthening of it can be supported
by DS %s

A0D1 Can't convert attunity-connect.pak to license.pak

A0D2 You should register a file other than NAVROOT\def\license.pak.

A0D3 Invalid data type definition. Valid data types are: CHAR [(size)], VARCHAR
[(size)], TINYINT, SMALLINT, INTEGER, FLOAT, DOUBLE, NUMERIC [(size [,
scale])], DATE, TIME, TIMESTAMP, TEXT, IMAGE, BINARY(size)

The following error codes (which begin with C) are returned by the Attunity Connect
communication subsystem (both on the client and on the server)

C000 Communication error with the server %s.

C000 Cannot shutdown a non-local IRPCD with a signal.

C001 Failed to open the IRPCD PID file.

C002 Cannot shutdown IRPCD, PID cannot be found.

C003 Invalid PID in the IRPCD PID file (%s).

C004 Failed to create a PID file (%s).

C005 Could not open the IRPCD log file for write.

C007 Server initialization failed.

C008 Setting server event handler failed.

C009 IRPCD process has been terminated by user request.

C00A Application %s not found.

C00B Invalid IRPCD client context.

C00C Daemon request requires a server login.

C00D Daemon request requires a client login.

C00E Daemon request requires an administrator login.

C00F Anonymous client logins are not allowed.

 355

Errors
C010 Anonymous server logins are not allowed.

C011 Client has already timed out.

C012 Invalid username/password.

C013 No such section in configuration.

C014 Client connection limit reached – try later.

C015 Failed to start server process.

C016 Unexpected server state.

C017 Active daemon clients exist. Shutdown canceled.

C018 Failed in loading the daemon configuration.

C019 Request is not granted because someone else is locking it.

C01A Lock %s not found.

C01B Unexpected error in %s.

C01C Cannot update configuration without _APPLICATIONS lock.

C01D Need to lock the application first.

C01E Cannot update the given configuration section.

C01F Cannot set configuration of a deleted application.

C020 Failed in looking up host name (gethostname())

C021 Required variable %s not found

C022 Server failed to connect and register with the daemon.

C023 Call made to unregistered module %d.

C024 Failed to create a socket

C025 Failed to set socket option %s.

C026 Failed to bind server to port %s.

C027 Cannot create TCP service for %s

C028 Unable to register (%s, %d, tcp).

C029 Failed to create a server thread.

 356

Errors
C02A Server thread failed to start.

C02B Stopping the %s server - no client.

C02C Unexpected event - a termination signal intercepted.

C02D Modified transport, context unknown/lost.

C02E Call made to non-existent procedure %d.

C02F Corrupted arguments passed to procedure %d.

C030 Unable to free arguments for %s() of %s.

C031 Cannot register a non-module RPC %s.

C032 An IRPC program is required.

C033 An IRPC super-server is required for module events.

C034 An invalid super-server module ID was specified, %d.

C035 Out of memory.

C036 Failed to register RPC procedure module %s.

C037 Failed to register an invalid RPC procedure number %x.

C038 Cannot re-register RPC procedure number %x.

C039 No conversion between server codepage %s and client codepage %s.

C040 Too many codepages in use, cannot load any additional codepages.

C041 Versions of Attunity Connect client (%d) and server (%d) do not match.

C042 There is no codepage defined in the server.

C042 Remote call to %s failed; %s.

C043 Failed to connect to host %s; %s

C044 Select() failed.

C045 Failed to create a client thread.

C046 Failed to resume an initially suspended client thread.

C047 %s out of memory.

C048 marshal_new_auth Fatal marshalling problem.

 357

Errors
C049 %s Fatal header serialization error.

C04A Failed in looking up host name (gethostname()).

C04B socket() failed.

C04C ioctl (get interface configuration – %s) failed.

C04D Port mapper use was disabled.

C04F Cannot create socket for broadcast rpc.

C050 Cannot set socket option SO_BROADCAST.

C051 Cannot send broadcast packet.

C052 Broadcast select problem

C053 Cannot receive reply to broadcast.

C054 Broadcast deserialization problem.

C055 Too many connections (%d), compilation constant FD_SETSIZE was only %.

C056 Failed to %s the service control socket.

C057 Unexpected operation on the service control socket.

C058 Bad auth_len gid %d str %d auth %d

C059 Cannot run, previous server did not fully stop.

C05A Failed to create a ZeroSvcLoop event.

C05C Service loop ended, no more sockets to serve.

C05D Can't reassign procedure number %d.

C05E Couldn't create an rpc server.

C05F Couldn't register prog %d vers %d.

C060 Universal RPC sendreply failed.

C061 Trouble replying to prog %d.

C062 Never registered prog %d.

C063 Tcp socket creation problem.

C064 Cannot getsockname or listen.

 358

Errors
C065 Udp socket creation problem.

The following error codes (which begin with D) are returned by the Attunity Connect drivers

D000 %s:invalid parameter.

D001 SetQueryParams: Buffer size of parameters is zero.

D002 GetQueryParams: The query has more parameters than the user specified.

D003 GetQueryParams: Could not coerce datatype %s to datatype %s.

D004 %s: Could not allocate %s bytes of memory.

D005 Execute: The query expects input arguments.

D006 %s: Could not create a new object instance.

D007 %s: Could not create a new TCB object.

D008 %s: Could not create a run-time buffer.

D009 Execute: The SQL query expects at least %s arguments. Only %s were passed.

D00A %s: Could not reset a TCB object.

D00B %s: Unsupported property id %s.

D00C InitTdp: Unknown database id %s.

D00D SetIndex: Table %s has no fields.

D00E %s: Could not convert datatype %s into datatype %s.

D00F GetRows: Field %s is nullable and has no indicator field.

D010 %s: Could not bind to non-existing field %s.

D011 ModifyRow: Cannot modify table %s. It is open for read only.

D012 The DS is in Read-Only mode.

D013 Failed to access remote (%s).

The following error codes (which begin with J) are returned by the Attunity Connect JDBC
driver

J0001 A default codepage could not be determined.

J0002 getXXX() should be called before wasNull().

 359

Errors
J0003 You have to read all results before accessing output params.

J0004 The requested method {0} is not supported by the driver.

J0005 The requested isolation level {0} is not supported by the data source.

J0006 Operation on already closed {0} was requested.

J0007 The IP address of the server wasn’t provided in connection information.

J0008 Wrong URL passed to getPropertyInfo().

J0009 {0}(String sql) cannot be called on a PreparedStatment.

J0010 Wrong parameter index {0}. Index should be in range 1..{1}.

J0011 No current record for requested method.

J0012 Wrong column index {0}. Index should be in range 1..{1}.

J0013 Column {0} doesn’t exist.

J0014 Return code is {0}. {1}.

J0015 Unable to call {0}. Conversion of type {1} is not supported.

J0016 A null argument is not allowed.

J0017 Invalid type id.

J0018 Character encoding error. {0}

J0019 {0} encoding not supported by JVM. Using default encoding.

J0020 Internal error: output param rowset has no records.

J0021 Logging was requested but the logging package is not on the classpath.

J0022 The following data type: {0} is not supported by the communication level.

J0023 Error encrypting string.

J0024 Navapi Logging was requested but the spy package is not on the classpath.

J0025 executeQuery() was called for query that doesn’t return ResultSet. The
requested action was executed.

J0026 Internal error: Could not instantiate class. {0}

J0027 executeUpdate() was called for query that return ResultSet.

 360

Errors
J0028 Internal error: Unknown XML tag "{0}"s.

J0029 Internal error: ACP class {0} doesn’t exist.

J0038 The requested cursor type {0} and concurrency {1} are not supported by the
driver.

J030 Internal error: Method {0} needs to be overwritten.

J031 Internal error: Required attribute {0} not found in {1} verb.

J032 Internal error: {0} ACP object was returned instead of {1} as expected.

J033 Internal error: Attempt to work with closed socket.

J034 Internal error: corrupted message; {0} bytes read instead of {1} as expected.

J035 Internal error: Invalid redirection address {0} returned by daemon.

J036 Internal error: Protocol exception {0} by {1} - "{2}".

J037 Internal error: No ACP response when {0} was expected.

J039 Internal error: "ACP root is not found in the XML".

J040 Input record is required for interaction "{0}" execution.

J041 No output record is returned for "{0}" interaction.

J042 Internal error: element is expected below "{0}" tag.

J043 Failed to initialize MetadataRepository: {0}.

J044 Operation "{0}" can’t be performed on non-connected metadata repository.

J045 Both the key and encryption methods required.

J046 Illegal key was received: only hex digits allowed when using {}.

J047 No key or illegal structure supply group/key structure.

J048 Invalid metadata type "{0}" is passed to "{1}" function.

J049 Record "{0}" doesn’t exist or is not presented in the repository.

J050 Key of the "put" method must be of type "String".

J051 Field "{0}" is not part of the record "{1}.

J052 Value of type "{0}" cant be assigned to field "{1}" of type "{2}".

 361

Errors
Attunity Connect Trace Return Codes

Trace return codes may be retuned to the application when the
generalTrace parameter of the debug node in the environment
properties is set to "true" (so that trace information is written to the log
file)

" It is recommended that you not change the default value for this parameter
unless specifically asked to by Attunity Connect support personnel. Changing
the default can degrade the performance of the Attunity Connect system.

Attunity Connect tracing has four primary classes of return codes:

! Success (rc = 0).
! Warning (rc > 0) – This indicates that the operation succeeded but

some unusual condition exists. One special warning code,
RET_WARN_BUFFEROVERRUN, indicates that a user's buffer was
not sufficiently large to hold the requested output, and the actual
length of the data is returned.

! End of Data (rc = RC_EOF or RET_ERR_NOTFOUND).
! Error (rc < 0).

The following list shows the return code categories:

J053 Field "{0}" is AttuRecord "{1}", while passed value is AttuRecord "{2}".

J054 String "{0}" is not part of enumeration "{1}".

J055 Integer "{0}" is not valid value for enumeration "{1}".

J056 Failed to convert from "{0}" to "{1}": "{2}".

J057 Value required for field "{0}".

J058 Array dimension of field "{0}" is {1}. Vector you supplied contains {2} elements.

J059 Value "{0}" is invalid for attribute "{1}".

J060 Invalid value supplied for argument "{0}".

Return code Type of Error

10 to 14 Sort warnings

15 to 25 Virtual driver warnings and other return codes

30 to 60 General warnings

 362

Errors
The following list is ordered according to the return codes' (absolute)
values:

10 to 14: Sort Warnings 10 RET_WARN_OVDISK /* overflow to disk */
11 RET_CONTINUE /* continue processing */
12 RET_WARN_LAST_IN_MEM /* inserting additional row will overflow
to disk */

15 to 25: Virtual Driver
Warnings and Other
Return Codes

15 RET_WARN_S_ENDOFCURSOR
16 RET_WARN_S_BADBOOKMARK
17 RET_WARN_S_BADFETCHPARM
18 RET_WARN_NOINDEX
19 RET_WARN_DUPLREC

61 to 80 Distributed transaction warnings

-200 to -249 Query processor compiler and parser errors

-250 to -260 Return codes for syntax errors during lex operation

-280 to -283 Return codes for QTREE processing

-400 to -500 AU imported code for math and convert

-501 to -550 Sort return codes

-1000 to -1050 Query Processor return codes

-1050 to -1199 Virtual driver return codes

-1200 to -1499 General return codes

-1500 to -1550 Optimizer return codes

-1601 to -1650 Communication return codes

-1651 to -1700 Administration return codes

-1800 to -1900 Distributed transaction and recovery errors

-2000 to -2099 Memory return codes

-2100 to -2500 Drivers return codes

-3000 to -3100 ADAQL driver return codes

-4000 to -4010 GST return codes

Return code Type of Error

 363

Errors
-20 RC_UNSUPPORTED_INTERFACE
21 RET_WARN_EOF_
-21 RC_UNSUPPORTED_METHOD_

30 to 60: General
Warnings

30 RET_WARN_MODIFY_FAILED
31 RET_WARN_BUFFEROVERRUN
33 RET_WARN_GST_DISABLE_
34 RET_WARN_INVALID_ENV_
35 RET_WARN_QSPEC_WAS_REUSED_ /* qp re-used executed state of a
qspec */
36 RET_WARN_STILL_EXECUTING_ /* operation is async and still
executing */
37 RET_WARN_TRY_GETPROP_DIRECT_ /* used in tbl_cache to flag
that we failed to read a cached property from the cache, but we need to
try to call getproperty directly */
38 RET_WARN_ROWCUR_IS_PARAMS_ /* returned in case of executing
a stored procedure and returned rowcursor is the parameters'
rowcursor (returned by nviqspec_execute and nviqspec_moreresults)*/
39 RET_WARN_REUSE_OF_OUTPUT_PARAM_ /* combination of
ret_warn_rowcur_is_params_ and ret_warn_qspec_was_reused_*/

61 to 80: Distributed
Transaction Warnings

61 RET_WARN_TRANS_MIXED_RECOVERY_ /* recovery types mixed
same tid*/
62 RET_WARN_TRANS_CANOT_RCVRTDP_ /* recovery -failed at least
for 1 data source*/
63 RET_WARN_RET_WARN_TRANS_STATUS_INDOUBT_ /*cannot
recover heuristically- trans prepared */_TO_DTC_/* at least 1 ole trans
unknown to dtc*/
65 RET_WARN_TRANS_NEED_MANUAL_RECOVERY_ /* at least 1 data
source needs manual recovery*/
66 RET_WARN_TRANS_CMTCNFRM_NOTDELETED_ /* failed to delete
CC record*/
67 RET_WARN_TRANS_GETSTATUS_PROBLEM_ /* getstatus problem*/
68 RET_WARN_TRANS_RECOVERY_PROBLEM_ /* recovery problem*/
69 RET_WARN_TRANS_TDP_RECOVER_BY_DTC_ /*ole data source
recovery- prepared stat, dtc caters */
70 RET_WARN_TRANS_STATUS_INDOUBT_ /*cannot recover
heuristically- trans prepared */

-200 to -249: Query
Processor Compiler
and Parser Errors

-201 RC_ERR_NESTED_AGG_
-202 RC_COLUMN_NOT_FOUND_
-203 RC_DUPLICATE_ALIASES_
-204 RC_DUPLICATE_TABLES_
-205 RC_AMBIGUOUS_COLUMN_
-206 TOO_MANY_NESTED_QUERIES_
-207 PARSER_STACK_OVF_
-208 RC_NAME_TOO_LONG_

 364

Errors
-209 RC_SUBQUERY_RET_MORE_COLUMNS_
-210 RC_NON_COMPATIBLE_TYPES_
-212 RC_ORDER_COLUMN_NOT_FOUND_
-213 RC_GROUP_COLUMN_NOT_FOUND_
-214 RC_FUNCTION_NOT_IN_MATRIX_
-215 RC_STREE_TOO_SMALL_
-216 RC_ORDER_COLUMN_IS_AMBIGUOUS_
-217 RC_POINTER_NOT_IN_STREEBLK_
-218 RC_AGGS_IN_WRONG_PART_OF_QUERY_
-219 RC_QSPEC_IS_EMPTY_
-220 RC_SQL_SYNTAX_ERROR_
-221 RC_TOOMANY_ORDERBY_OR_GROUPBY_
-222 RC_MIX_AGGS_COLS_WITHOUT_GROUP_ /* Cannot mix aggs and
cols without group by */
-223 RC_INVALID_GROUPBY_ /* Group by is valid only for nonaggs */
-224 RC_GROUP_COLUMN_IS_AMBIGUOUS_
-225 RC_TOO_MANY_COLS_FOR_DISTINCT_
-226 RC_COLUMN_NOT_IN_GROUPBY_ /* column must be part of group
by */
-227 RC_WRONGNUM_OF_ARGS_IN_SQSPEC /* wrong # of arguments
in stored query/procedure */
-228 RC_SEGMENTED_DB_IS_READONLY /* segmented DB should be
read-only */
-230 RC_BTN_OR_NIJ_NOT_FOUND_ /* neither base table node nor
nested found in RDBMS subtree */
-231 RC_UNKNOWN_OPERATOR_
-232 RC_UNKNOWN_NODE_ /* Unknown node in RDBMS subtree*/
-233 RC_INVALID_EXPRESSION_ /* Cannot use subqueries in HAVING
clauses */
-234 RC_OPERATORS_INVALID_WITH_ARRAYS_ /* Operators can't be
applied to entire array */
-235 RC_LOJ_WITHOUT_ON_ /* in LOJ, ON condition should be specified
*/
-236 RC_NOT_ENOUGH_SPACE_TO_COERCE_ /* qp_coerce - for atomic
data types */
-237 RC_UNSUPPORTED DB_ /* Tree2SQL called for unknownDB */
-238 RC_PARM_IN_WRONG_PART_OF_QUERY
-239 RC_PARAM_TOO_LONG_
-240 RC_ON_COND_ON_ONE_SIDE_ /* every compare operator in ON
conditions should act on tables from both sides of join */
-241 RC_TOO_MANY_JOIN_TABLES_
-242 RC_NOTHING_TO_SELECT_ /* the SELECT clause is empty (from
tree2sql) */
-243 RC_LOJ_INVALID_IN_UPD_QUERY_ /* LOJ is invalid as join in
Update/Delete */
-244 RC_FUNCTION_WITHOUT_OPERATORS_ /* function lacked
params */

 365

Errors
-245 RC_TOO_FEW_VALUES_ /* for INSERT INTO */
-246 RC_TOO_MANY_VALUES_ /* for INSERT INTO */
-247 RC_INVALID_VALUE_IN_LIST_ /* Can't have IDENTIFIERS in
VALUE LIST of INSERT query */
-248 RC_TOOMANY_SQS_PARAMS_ /* Too many parameters for Stored
Procedure */
-249 RC_NOT_HOMOGEN_SQS_PARAM_ /* inconsistently defined
parameters *

-250 to -280: Syntax
Errors During Lex
Operation

-250 RC_STRING_LITERAL_TOO_LONG_
-251 RC_LONG_LITERAL_TOO_BIG_
-252 RC_LONG_LITERAL_TOO_SMALL_
-253 RC_QSTRING_TOO_LONG_
-254 RC_SQS_PARAM_FROM_RIGHT_
-255 RC_ARRAY_CANTBE_GROUPED_ORDERED_ /* can't groupby or
orderby arrays */
-256 RC_BLOBS_IN_CHINESE_ /* cannot have complex objects in
chinese queries */
-257 RC_IN_LIST_WITH_DIFF_DTYPES_ /* dtype of members in list
must be the same */
-258 RC_DRV_PROP_ERROR_
-259 RC_COLUMN_NOT_ON_LEVEL_ /* column can't be found on
current level */
-260 RC_EID_IN_EXPR_
-261 RC_ODBC_WRONG_FORMAT_ /* { id expr } id != 'd' && id != 'ds' &&
id != 'fn' */
-262 RC_FUNC_REG_ERR_ /* error during ufnc_define */
-263 RC_UNKNOWN_FUNC_ /* id(....) not existing function id */
-264 RC_ILLEGAL_FUNC_SEPARATOR_ /* not ',' separator for functions
operands is used */
-265 RC_LEX_ERROR_ /* error during lex */
-266 RC_INTERVAL_ERROR_
-267 RC_HIERARH_BT_ERROR_ /*error during hierarchical bt parsing*/
-268 RC_QOHQ_ERROR_
-269 RC_FUNC_EXEC_ERROR_ /* error during function execution */
-270 RC_NUM_COLS_MISMATCH_ /* issued for "insert into t from
select" query, when #cols in select query is different from #cols in t */
-271 RC_VALUES_TRUNCATED_ /* insert/update for hoa - checks for
inserting too large strings */
-273 RC_HINT_FAILED_
-273 RC_HOA_CANT_PASSTHRU_ /* query can't be delegated to back
end. error in hoa */

-280 to -283: QTREE
Processing

-280 RC_OUT_OF_BASETABLE_SPACE_
-281 RC_QTREE_STARTING_SPACE_TOO_SMALL_
-282 RC_QTREE_NODE_SPACE_TOO_SMALL_
-283 RC_QTREE_INDEX_SPACE_TOO_SMALL_

 366

Errors
-400 to -500: AU
Imported Code for
Math and Convert

-400 RC_ILLEGAL_DECIMAL_NUMBER_
-401 RC_NUMBER_OUT_OF_RANGE_
-402 RC_CONVERSION_FAILED_

-501 to -550: Sort
Return Codes

-501 RET_ERR_FWRITE
-502 RET_ERR_FCLOSE
-503 RET_ERR_FOPEN
-504 RET_ERR_NOFILE
-505 RET_ERR_INTERNAL
-506 RET_ERR_UNKNOWN
-507 RET_ERR_NOTFOUND /* record not found (Seek)*/
-508 RET_ERR_NVOPR /* invalid operation */
-509 RET_ERR_NVBOOKMARK /* invalid bookmark */
-510 RET_ERR_NVALID_PARM /* invalid parameter */
-511 RET_ERR_NOCURROW /* no current row */
-512 RET_ERR_DISAM /* D-ISAM error */
-514 RET_ERR_NVKEY_SPEC /* invalid key specification */
-515 RET_ERR_ACCESS /* file lacks proper write/read permission */
-516 RET_ERR_TMPDIR_NOTFOUND /* temporary directory not found */
-517 RET_ERR_UNIQKEY_NSUPPORT /* "unique key" not supported in
Virtual driver */
-518 RET_ERR_STATE_OF_NVALID_BMK /* all old bookmarks are
invalid */
-519 RET_ERR_MEM_BUFF_FULL /* memory buffer full; DISAM doesn't
exist*/
-520 RET_ERR_API_UNSUPPORTED_WITHOUT_DISAMFILE_ /*can't
perform requested api without creating file */
-521 RET_ERR_SORT_MERGE_PROBLEM_ /* sort-merge problem */
-522 RET_ERR_DISAMKEY_TOOLONG_ /* can't overflow to disk */
-523 RET_ERR_HASHFILE_BAD_IO_ /* io to diskbucket-hash file
failed*/
-524 RET_ERR_SEQ_FILE_BAD_IO_ /* io to disk seq' file failed*/
-525 RET_ERR_TEMP_BLOB_BAD_IO_ /* io to disk temp blob file failed*/

-1000 to -1050: Query
Processor Return
Codes

-1000 RC_OPENTABLE_FAILED_
-1001 RC_NULL_WITHOUT_INDICATOR_
-1003 RC_DIVISION_BY_ZERO_
-1004 RC_PARAMETERS_WERE_NOT_SET
-1005 RC_FAILED_ON_CURSOR_STATUS_
-1006 RC_INVALID_ENTRY_ID_
-1007 RC_COLUMN_NOT_IN_TABLE_
-1008 RC_QSPEC_WAS_CHANGED_
-1009 RC_RESULT_IS_NULL_
-1010 RC_OPER_OUT_OF_RANGE_ /* for substr (), like()*/
-1011 RC_EXCEEDED_NUM_OF_OPER_ /* non-existent operand is asked
from _get_operand */
-1012 RC_ORDER_NOT_A_COLUMN_

 367

Errors
-1013 RC_INVALID_BIND_PARAM_ /* invalid parameters passed to set
column binding *(/
-1014 RC_ROOT_FROM_NEG_ /* square root from negative number */
-1015 RC_INV_COERCE_TYPE_
-1016 RC_UNEXPECTED_ERR_IN_HAVING_
-1017 RC_QSPEC_NAME_NOT_SUPPLIED_
-1018 RC_NO_TDP_SUPPLIED_
-1019 RC_VERSION_NUMBERS_DONT_MATCH_
-1020 RC_NON_EXISTING_PARAM_ /* wrong name in set_params */
-1023 RC_AGQUERY_CANOTBE_UPDATABLE_ /* Agg query cannot be
updateable */
-1024 RC_CANT_MODIFY_NONUPDTBLE_COL_ /* Trying to update a
nonupdateable column */
-1025 RC_TOO_MANY_BASETABLES_ /* too many basetables in updates
*/
-1026 RC_UNEXPECTED_NODE_TO_EVALUATE_ /* qp_eval detected
unexpected nvNODE */
-1027 RC_SQS_NOT_EXISTS_ /* stored Qspec/Procedure doesn't exist */
-1028 RC_MORE_ROWS_THAN_PERMITTED_ /*subquery returns too
many cols */
-1029 RC_ERR_INDEX_NOT_IN_ARRAY_ /* A[i], i is greater than number
of entries in the array */
-1030 RC_NON_LEGAL_NODE_BELOW_JOIN_ /* below join can be only:
join, basetable, or RDBMS nodes */
-1031
RC_EXECUTION_FLAGS_MUST_BATCHUPDATE_OR_BATCHUPDTE_NO
OPT_ /* for batch update queries */
-1032 RC_CANT_SETGET_BOUNDCOLS_ /* for BATCHUPDATE queries*/
-1033 RC_CANT_MODIFY_NONUPDATABLE_COL_ /* col cant be
updated */
-1034 RC_BOOKMARK_NOT_FOUND_ /* bookmark not found in
bookmark colbind */
-1035 RC_COLUMN_NOT_IN_SELECT_LIST_ /* cannot modify column
not in select list */
-1036 RC_NO_TABLES_TO_UPD_OR_DEL_ /* delete/update cannot be
performed on any table */
-1037 RC_CANT_COERCE_ARRAY_ /* returned from nav_coerce() when
receiving an array */
-1038 RC_VALDES_NOT_NAV_ARRAY_ /* returned from
nav_to_nav_array_coerce() */
-1039 RC_MASK_SIZE_BIGGER_255_ /* returned from nav_like when
mask > 255 */
-1040 RC_ARRAY_PARM_NOT_IN_RANGE_ /* returned from
nav_extract_array when wanted item of array > # of array elements */
-1041 RC_REQUERY_CANT_CHANGE_PARMS_TYPE_ /* ReQuery should
use same parms data type as SetParam() */
-1042 RC_EXECUTION_FLAGS_MUST_SCROLL_

 368

Errors
-1043 RC_TABLE_NAME_ALREADY_EXISTS_/*an attempt to create sqs
on a name that already exists for a table */
-1044 RC_NO_DISK_SPACE_FOR_HASH_/* there is no disk space for tmp
sequential files created during hash */
-1045 RC_HASH_DISK_SPACE_EXCEEDED_ /* hash_join took more
disk space than allowed by hash_max_disk_space */
-1046 RC_ROWS_LIMIT_EXCEEDED_ /* the limit on the number of rows
has been exceeded */
-1047 RC_TOO_MANY_PARAMETERS_ /* too many parameters*/
-1048 RC_ARITHMETIC_OVERFLOW_ /* arithmetic overflow in function
*/

-1050 to -1199 Virtual
driver Return Codes

-1050 RET_ERR_START_REC_DEF
-1051 RET_ERR_NO_POINT
-1052 RET_ERR_END_FIELDS
-1053 RET_ERR_POPULATED_ /* operation not allowed on populated
table */
-1054 RET_ERR_OVDISK_ /* Virtual driver overflowed to disk */
-1055 RET_ERR_BADFETCHPARM
-1056 RET_ERR_NULL_NOTALLOWED
-1057 RET_ERR_NOCOLUMN /* object has no columns */
-1058 RET_ERR_NOCOLBIND /* object has no column binding */
-1059 RET_ERR_NODATA
-1060 RET_ERR_NOINDEX
-1061 RET_ER_ADD_TO_SO /* cannot add to sysobject */
-1062 RET_ERR_ADD_TO_SC /* cannot add to syscol */
-1063 RET_ERR_ADD_TO_SI /* cannot add to sysidx */
-1064 RET_ERR_NOCURINDEX /* current index doesn't exist */
-1065 RET_ERR_DUPL_INDEX /* cannot create the duplicate index */
-1066 RET_ERR_DUPL_COL /* cannot create the duplicate column */
-1067 RET_ERR_DUPL_REC /* duplicate record */
-1068 RET_ERR_NO_SYSFILE /*sysobj ||syscol || sysidx not found */
-1069 RET_ERR_OPEN_SYSFILE /*cannot open sysobj || syscol ||
sysidx */
-1070 RET_ERR_NVALID_COLNAME
-1071 RET_ERR_NVALID_COLSIZE
-1072 RET_ERR_BAD_TOKEN /* unknown token in binding */
-1073 RET_ERR_EQ_NFOUND /* "= " sign missing from binding */
-1074 RET_ERR_LOAD_DLL_
-1075 RET_ERR_GET_PROC_
-1076 RC_UNSUPPORT_TDP_TYPE /* unsupported type of SYSTDP -
PSEUDO */
-1077 RET_ERR_BIND_FILE /* binding not found */
-1078 RET_ERR_BAD_CONNECT /* invalid Connect parameter in Bind*/
-1079 RC_ERR_BIND_FAIL_ /* binding failed */
-1080 RC_BIND_FNAME_NFOUND_ /* bindingname not found */
-1081 RC_ERR_NOT_SYSTDP_ /* system data source does not exist */

 369

Errors
-1082 RC_TDP_NOT_IN_FBIND_ /* description of data source not found
in binding configuration */
-1083 RET_ERR_HASH_NSUPPORT /* hash not supported */
-1084 RET_ERR_BIND_TO_NEXIST_COL /* binding to col that doesn't
exist */
-1085 RET_ERRINVALID_BMK_SIZE /* size of bookmark invalid */
-1086 RET_ERR_NVALID_COLNUMBER /* col number is invalid */
-1087 RET_ERR_NVALID_BLBFILE /* bad operation with blob file */
-1088 RET_ERR_BLB_READING /* error reading blob file */
-1089 RET_ERR_BLB_WRITING /* error writing blob file */
-1090 RET_ERR_BLB_NOT_FREE /* no more free blocks in blob */
-1091 RET_ERR_ /* general error */
-1092 RET_ERR_OPEN_BLB_FILE /* error opening blob file */
-1093 RET_ERR_BAD_ENTRYID_SIZE /* bad EntryID size */
-1094 RET_ERR_NVALID_COL_ID /* bad column id */
-1095 RET_ERR_NVALID_BLB_OFF /* bad blob offset in seek */
-1096 RET_ERR_NOVALUE_FOR_NOTNULLABLE_COL /* add row - no
val for col */
-1097 RET_ERR_SETKEYRANGE_FORHASH_ /* SetKeyRange for hash
idx */
-1098 RET_ERR_INVALID_MAX_OCCURENCE_VALUE_ /* AddColumn-
bad max occurrence */
-1099 RET_ERR_ARRAY_COL_CANNOT_BE_INDEX_ /* CreateIndex */
-1100 RET_ERR_INVALID_ARRAY_COUNTER_ /* ModifyRows */
-1101 RET_ERR_OBJECT_ISNOT_A_TABLE_ /* open a Virtual driver
table */
-1102 RET_ERR_INVALID_CONTENTS_TYPE_ /* gettdpcontents wrong
type*/
-1103 RET_ERR_INVALID_MASK_ /* gettdpcontents wrong mask */

-1200 to -1499: General -1200 RET_ERR_BADFETCHSIZE
-1201 RET_ERR_DUPL_USERID
-1202 RC_ERR_INVALID_PARMETERS_
-1203 RC_ILLEGAL_INPUT_OBJECT_
-1204 RC_CANT_DESTROY_TDP_WITH_ACTV_OBJ_
-1205 RC_TDP_NOT_EXPECTED_TOBE_FIRST_
-1206 RC_UNKNOWN_ENV_VAR_
-1207 RC_ERR_READING_ENVFILE_
-1208 RC_ERR_READING_BINDFILE_
-1209 RC_EOF_
-1209 RET_ERR_EOF
-1210 RC_UNSUPPORTED_PROPERTY_
-1211 RC_GET_PARAMS_WITHOUT_SET_
-1212 RC_TOO_FEW_ARGS_ /* too few arguments in GetParam */
-1213 RC_TOO_MANY_ARGS /* too many arguments in SetParams */
-1214 RC_INVALID_DATA_FOR_ARG_ /* invalid data passed to
SetParams */

 370

Errors
-1215 RC_UNEXPOSED_DATATYPE_
-1216 RC_BIND_ERR_SIZE_ /* The size is not valid.*/
-1217 RC_BIND_ERR_SCALE_ /* The scale is not valid.*/
-1218 RC_BIND_ERR_WIDTH_ /* The width is not valid.*/
-1219 RC_ERR_INVALID_OBJ_NAME_
-1220 RC_ERR_OBJECT_IN_USE_
-1221 RC_ERROR_UNKNOWN_SOURCE_ /* error occurred in previous
object but XError is empty */
-1222 RC_NOT_ENOUGH_SPACE_
-1223 RC_NO_XERROR_ /* no extended error in Xerror */
-1224 RC_NO_ROOT_ENV_ /* NAVROOT logical is not defined */
-1225 RC_MAXLEN_LT_SIZEOF_ARRAYCOUNT_ /* validate colbinding -
maxlen LT4 */
-1226 RC_INVALID_INFOOFFSET_ /* invalid cbInfoOffset */
-1227 RC_ENTRYID_OR_BLOBS_DWBINDINGS_ /* EntryIDs and BLOBs
must have proper dwBindings */
-1228 RC_SCALARS_BINDINGS_SHOULD_BE_DEFAULT_ /* scalars
must have default dwBindings */
-1229 RC_ERR_ACTIVE_ROW_CURSOR_ /* SetBoundColumns isn't
supported on active row cursor */
-1230 RC_TABLE_ISNT_UPDATABLE_ /* according to the 1-m join
connection, a table isn't updatable */
-1231 RC_NO_ERROR_IN_THIS_LEVEL_ /* Trying to get error from level
that does not exists */
-1232 RC_DATA_IS_LOCKED_
-1233C RC_DUPLICATE_KEY_VALUE_
-1234 RC_REDCLERATION_TYPE_ /*redeclaration of DB in nav.syn */
-1235 RC_UNSUPPORTED_SYNTAX_ /* The syntax required is not on
the server */
-1236 RC_UNSUPPORTED_CODEPAGE_ /* The codepage convertor is not
available */
-1237 RC_ERRORS_IN_SYNTAX_FILE_ /* Errors in nav.syn */
-1238 RC_BAD_CONNECT_STR__ /* Incorrect string for connect string */
-1239 RC_UNSUPPORTED_ISO_LEVEL_ /* The isolation level requested
is not supported*/

-1500 to -1550:
Optimizer Return
Codes

-1550 RC_BAD_TREE_

-1601 to -1650:
Communication Return
Codes

-1601 RC_COMM_ERR_
-1602 RC_SVC_FATAL_ERROR_
-1603 RC_CLNT_SVC_VERSION_NOT_SYNC
-1604 RC_COMM_DISCONNECTED_
-1605 RC_COMM_WAS_CLEANED_

 371

Errors
-1651 to -1700:
Administration Return
Codes (license, user
profile,...)

-1651 RC_ILLEGAL_FILE_OR_PASSWORD_
-1652 RC_ENCRYPT_DECRYPT_ERR_
-1653 RET_ERR_READ_SEC_FILE_
-1654 RET_ERR_WRITE_SEC_FILE_
-1655 RC_LMF_NOT_EXISTS_
-1656 RC_LMF_CANT_BE_ACCESSED_
-1657 RC_LIC_DATE_EXPIRED_
-1658 RC_LIC_FAILED_
-1659 RC_LIC_HARDWARE_ID_ /* HARDWARE ID == HOSTNAME in
TCP/IP */
-1660 RC_LIC_PLATFORM_ /* not the platform written in the LIC */
-1661 RC_DB_DRV_NOT_LICENSED_
-1662 RC_ERR_OPEN_SEC_FILE_
-1663 RC_ERR_OPEN_SEC_FILE_FOR_WRITE_
-1664 RC_NO_DB_USR_PASSWD_SUPPLIED_
-1665 RC_ILLEGAL_DB_USER_PASSWD /* illegal U/P supplied to
connect to DB */
-1666 RC_LIC_COUNTER_ /* number of licenses has been exceeded */

-1800 to -1900:
Distributed
Transactions and
Recovery Errors

-1800 RC_DIST_TRANS_CANNOTBE_CREATED_ /* cannot initiate
distributed trans */
-1801 RC_DIST_TRANS_ROLLED_BACK_ /*error during transaction
operation */
-1802 RC_DIST_TRANS_ID_NOT_SET_ /* no transaction-id*/
-1803 RC_DIST_TRANS_MULTI_1PHASE_TDPS_ /* more than 1 data
source is single-phased*/
-1804 RC_DIST_TRANS_ID_UNRECOGNIZED_ /* transaction-id not
recognized*/
-1805 RC_DIST_TRANS_DTC_RELEASE_ERR_
-1806 RC_DIST_TRANS_RECOVERY_ERROR_
-1807 RC_DIST_TRANS_LOGFILE_ERROR_ /* error during io to log*/
-1808 RC_DIST_TRANS_NO_2PHASE_TDPS_ /* no 2phase data sources
under systdp*/
-1809 RC_DIST_TRANS_ASYNC_T_DELAYED_ /* termination delayed*/
-1810 RC_DIST_TRANS_UNKNOWN_TO_DTC_ /* oletrans only- dtc cant
return outcome */
-1811 RC_DIST_TRANS_DTC_ERROR_ /* dtc is down or bad response*/
-1812 RC_DIST_TRANS_INCONSISTENCY_ /* outcome mixed-
consistency*/
-1813 RC_DIST_TRANS_TOO_FRESH_ /* trans too fresh to perform
recovery*/
-1814 RC_DIST_TRANS_LOG_UNSUPPORTED_ /* log not supported for
this machine*/
-1815 RC_DIST_TRANS_LOG_DISABLED_ /* log disabled(via env)*/
-1816 RC_DIST_TRANS_GETSTATUS_FAILED_

 372

Errors
-2000 to-2099: Memory -2000 RC_MEM_ALLOC_ERR_
-2001 RC_ERR_MEMPOOLFREE_
-2002 RC_FSMEM_ALLOC_ERR_
-2003 RET_ERR_MALLOC /* cannot allocate memory */
-2004 RC_MEM_FREE_ERR_

-2100 to -2500: Drivers -2100 RC_INVALID_BOOKMARK_
-2101 RC_INVALID_OFFSET_ /* in Move */
-2102 RC_INVALID_REC_
-2202 RC_ERR_GET_APTRECORD
-2203 RC_ERR_COPY_APTRECORD
-2204 RC_GET_ERROR
-2205 RC_ERR_WRONG_DATATYPE /* from set qparams */
-2206 RC_ERR_INVALID_SQLPARAMS
-2207 RC_DB_CLOSE_ERROR
-2208 RC_ERR_INVALID_SQLTEXT
-2209 RC_GET_HELP_ERROR
-2210 RC_OPEN_HELP_ERROR
-2211 RC_ERR_DB_SETUP
-2212 RC_ERR_DB_OPEN
-2213 RC_ERR_INVALID_QTEXT
-2214 RC_ERR_OPENED_FOR_METADATA_ONLY
-2215 RC_ERR_SHORTAGE_OF_SQLPARAMS
-2216 RC_ERR_OPEN_HELPRECORD
-2217 RC_ERR_UNKNOWN_TDPTYPE /* init data source */
-2218 RC_ERR_LOGON_FAILED /* init data source */
-2219 RC_ERR_LOAD_DBFUNCTIONS /* init data source */
-2220 RC_ERR_STARTUP_FAILED /* init data source */
-2221 RC_ERR_NO_DATABASE_NAME /* init data source */
-2222 RC_ERR_UNKNOWN_DATABASENAME /* init data source -no au
app_id */
-2223 RC_ERR_DATABASENAME_NOT_IN_DBMS /* init data source au
app_id invalid */
-2224 RC_ERR_EXEC_IMMEDIATE_FAILURE /* failure in execute
immediate*/
-2225 RC_ERR_TDP_IS_READ_ONLY
-2226 RC_ERR_DB_EXECUTE /* failure in execute immediate */
-2227 RC_ERR_DB_MORE_RESULT /* failure in execute immediate */

-3000 to -3100: ADAQL
Driver

-3000 RC_ERR_NO_CURRENT_INDEXES_ /* from SetKeyRange*/
-3001 RC_ERR_FILENAME_TOOLONG_ /* from OpenTable*/
-3002 RC_ERR_FILE_NOTFOUND_ /* from OpenTable */
-3003 RC_ERR_FILE_NOTADABAS_ /* from OpenTable */
-3004 RC_ERR_ADABAS_SYSQL_PROBLEM_ /* from OpenTable */
-3005 RC_ERR_NOCOLUMNS_FORTABLE_ /* from OpenTable*/
-3006 RC_ERR_UNSUPPORTED_DATATYPE_ /* from OpenTable */
-3007 RC_ERR_COL_NFOUND_INTERNAL_ /* from GetRows*/

 373

Events
-3008 RC_ERR_COMMAND_TOOLONG_ /* from GetRows */
-3009 RC_ERR_UNSUPPORTED_MOVE_ /* from Move */
-3010 RC_ERR_NOVALUES_FOR_FIND_ /* from GetRows */
-3011 RC_ERR_NO_CURRENT_BOOKMARK_ /* from Move */
-3012 RC_ERR_NO_ONE_CURRENT_INDEX_ /* from Seek */

-4000 to -4010: GST -4000 RC_THREAD_CREATION_FAILED
-4001 RC_EVENT_CREATION_FAILED
-4002 RC_CANT_ASYNC_ /* async not available since gst can't be
started on this data source */

Also see: "Communication Errors" on page 191, "Troubleshooting" on page 780.

Events
Attunity Connect events are handled by an event queue. The event
queue is defined as an adapter in Attunity Connect where interactions
are expected as events. The event queue itself is managed by a
dedicated server process, which is set up by defining an events
workspace in the daemon definition.

Thus, in order to handle events, you need to define the following:

! The event queue adapter.
! An events workspace.

In addition, in certain situations such as when the target application
might not be available when events are added to the queue or when the
target adapter is on a different machine, an event router can be defined.
For example, when a transaction on one machine sends events to an

<adapter name='...'
 type='EventQueue'

 definition='...'/>

application

<workspace> ... </workspace>

EventQueue

Event2
Event1

...

OS/390 and z/OS Platforms

An event queue can hold a maximum of 32,000 events.

 374

Events
application on a second machine, the network may be unavailable at
times so that he application sending the events cannot get directly at
the target adapter on the second machine. In this case, the event is sent
to an event router. For details, see "The Event Router Configuration"
on page 376.

The adapter that defines the event interactions is defined as an
EventQueue type in the Attunity Connect binding configuration under
the event node.

When defining the adapter you can automatically generate an event
queue for the adapter. When you define the adapter in Attunity Studio
with the Create event queue for the adapter box checked, an
event adapter is defined automatically. The event adapter is defined
with the same name as the adapter with the word event appended to it.
The adapter and the event adapter are linked in Attunity Studio. You
can jump from the adapter definition to the event definition by
right-clicking the adapter in the Configuration explorer list and
choosing Linked Event (or from the event to the adapter via Linked
Adapter).

Whenever an event is defined in Attunity Studio, a workspace to use
with the event is automatically defined. The workspace is defined with
a single server process defined with multiClient server mode. The
server type for the workspace is defined as events.

Creating an Adapter Definition for the Event

You can generate metadata for an event using the import utility in
Attunity Studio, if you have COBOL copybooks or Tuxedo FML/VIEW
files describing the input record for the event. Otherwise you must
create the metadata manually in the Metadata perspective of Attunity
Studio.

The following steps are used to import metadata from COBOL
copybooks.

DESCRIPTION

Get Input Files If COBOL copybooks are available defining the event: Specify these
copybooks.

For Tuxedo: If FML/VIEW files are available defining the event: Specify
these files.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

 375

Events
For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

Handling the Event

An application can include a set of Attunity Connect APIs that enable
handling events or the event router can be used to get the event and
pass it on to an adapter. For details of the Attunity Connect APIs, see
"C and COBOL APIs to Applications" on page 147, and specifically the
"The Get Event Function" on page 157. For details of the event router,
see below.

Setting Access Rights to an Event Queue

The users who can receive and send interactions to and from the event
queue are specified in Attunity Studio.

! To specify users who can receive and send events:

1. In the Configuration explorer, right-click the event you are
specifying users for and select Edit Event.

2. Open the Properties tab.
3. To set users who can receive interactions from the queue, click the

+ next to the routers node.
4. Right-click the users property and select Add Item.
5. Enter the name of the user in the Value column for the item added.

The user must be a valid user on the machine where the event is
defined.

Add Interactions For each interaction, you specify the input and output records used by
the interaction. The records are generated from the input files.

Generate Final
Metadata

Prepares the final XML defining the schema for the event.

Import Metadata The metadata can be imported to the machine where the event resides.
This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

DESCRIPTION

 376

Events
6. Do the same under senders to specify users who can send
interactions to the queue.

The Event Router Configuration

An Event Router is used to pass an event from the event queue to the
target when the target application might not be available when events
are added to the queue or when the event queue is on a different
machine from the target adapter.

To set up an event router, you need to define the following:

! A router workspace.
! The router configuration, which includes the source event queue

and the event target adapter. The target adapter can be any
suitable adapter, including an event queue.

The event router can sit on either the source machine or target
machine. Where the router sits depends on the network configuration
at the specific site.

 377

Events
The event router is configured in a binding configuration and includes
the definitions of the event queue and the target adapter.

The Router Workspace You need to define a workspace for the router. The workspace is defined
in the Attunity Connect daemon.

<workspace name="workspace_identifier"
 binding="the_router_binding"
 ... />

where:

name – An identifier for the workspace.

The following is an example of an event router workspace:

<workspace name='router' serverMode='multiClient'
 maxNAvailableServers='1' reuseLimit='0'
 serverLogFile='EventR_%i.log'
 binding='NAV'/>

The Router
Configuration

The router is defined in a binding configuration as an adapter, which
defines both the source event queue and the target adapter. The router
type is EventRouter.

The following are the properties used to configure the router adapter:

auditLog – The name of the file to which the event log is written.

<adapter name='...'
 type='EventQueue'

 definition='...'/>

<adapter name='...' type='EventRouter'
 preloaded='...'>
 <config userProfile='...' auditLog='...'>

 <sourceEventQueue>

 </sourceEventQueue>

 <targetAdapter>
 ...
 </targetAdapter>

 </config>
</adapter>

application application

Event queue Event Router Target Adapter

<workspace> ... </workspace>

<adapter>
 ...
</adapter>

 378

Exporting From the Repository
sourceEventQueue – The specification of the event queue to be used on
the source machine. The events from the application enter this event
queue.

adapter – The event queue identifier as defined in the binding
configuration.

event – The name of the anticipated event. To add items that are
part of the event array, right-click event.

eventWait – The time to wait for an event to arrive from the event
queue.

maxEventsAsBlock – The maximum amount of events to accept as a
block.

server – The machine and port where the event queue resides.

workspace – The workspace where the event queue runs.

targetAdapter – The target adapter configuration.

adapter – The name of the target adapter.

reconnectWait – The amount of time to wait before reconnecting
when a connection with the event queue is cut off.

server – The machine and port where the target adapter resides.

transaction – Whether transactions are used or not.

workspace – The workspace on the machine where the target
adapter resides.

userProfile – The user profile for the router. If a user profile is specified,
it must exist on both the source and target machines.

Exporting From the Repository
XML serves as the transport medium for moving information to and
from the repository, Attunity Connect’s internal storage mechanism.

You can export the repository content in Attunity Studio at any level,
by right-clicking the level and choosing Export XML definitions from the
popup menu.

" Attunity Connect also includes a command line utility, NAV_UTIL EXPORT
(see page 517).

 379

Extended Native Data Source Metadata
Extended Native Data Source Metadata
When native metadata lacks some features provided by Attunity
Connect metadata (ADD), performance can be improved by extending
the native metadata with ADD metadata.

For example, you can use the ADD to specify the number of rows and
blocks in an Rdb table.

When accessing the data, Attunity Connect uses both the native
metadata and this extended metadata.

! To specify extended metadata for a data source:

1. Display the metadata for the data source in the Metadata
perspective of Attunity Studio.

2. Change the relevant values for the table to be extended in the
Statistics tab. The table symbol in the explorer tree is marked with
an asterisk to show that the metadata has been extended.
" All the information in the other tabs are for reference only and can only be

viewed.

The noExtendedMetadata property in the data source definition in the
binding configuration is set to false.

 380

Firewalls
Firewalls
See "Accessing a Server Through a Firewall" on page 670.

Flat Files Driver
The Flat File driver supports:

! Variable length records.
! All flat files, including the following OS/390 and z/OS files:

! Queued Sequential Access Method Generation Data Group
(QSAM/GDG) of GDG filename (0), used to access sequential files
and partitioned data set members.

! Partitioned Data Set (PDS) library files.

The Flat File driver handles flat files larger than 2GB only on UNIX
platforms.

The Flat File driver does not support the following SQL statements:

! UPDATE statements (see page 709).
! DELETE statements (see page 714).

The Flat File driver does not support transactions.

The following sections provide information about the Attunity Connect
Flat File driver:

! Setting Up the Binding

! Metadata Considerations

The Flat File driver supports RFA usage. The RFA can be used as a
column in a WHERE clause, when the Flat File record is indexed. The
RFA column is an integer and contains the byte offset of each record.
This column and index is added automatically to each table.

Setting Up the Binding

! To connect to a flat file:

A flat file is set using Attunity Studio, in the Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.

 381

Flat Files Driver
! Select Flat files for the Type field.
! Specify the connect string as follows:

Data location – The directory where the flat files you create with
CREATE TABLE statements reside. You must specify the full path
for the directory.
" The data files are specified in the Data file field of the metadata

perspective of Attunity Studio, or when using NAV_UTIL EDIT, via the
filename attribute. For tables created using the CREATE TABLE
statement, the value specified in the Data directory field is used to create
the data files and is specified in the ADD metadata to locate the data. If a
value is not specified in this field, the data files are written to the DEF
directory under the directory where Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

headerRows="n" – Sets Attunity Connect to skip a specified number of
lines at the beginning of each file.

" You can override this value by specifying a <dbCommand> statement in ADD

newFileLocation="string" – (Data location in the connect string) The
directory where the flat files you create with CREATE TABLE
statements reside. You must specify the full path for the directory.

Metadata Considerations

To use the Attunity Connect Flat File driver, you need ADD (ADD is the
Attunity Connect Data Dictionary, which you use to store metadata).

 382

Heterogeneous Joins
Heterogeneous Joins
See "Joining Data from Multiple Data Sources in a Single Query" on
page 440.

Hierarchical Data
Data stored hierarchically in a data source (such as information stored
in arrays in RMS) can be referenced by using a -> to denote the parent
child relationship in the source:

FROM … parent_name->chapter1->chapter2… [alias]

Or, using an alias for the parent table:

FROM … parent_alias->chapter1->chapter2… [alias]

For example, the following hierarchical query uses an alias and
produces a list containing the children stored in an array called hchild
belonging to each employee:

SELECT emp_id,(SELECT name,age FROM e->hchild)
 FROM disam:emp_struct e

For more details about nesting a SELECT statement in the FROM clause
of another SELECT statement, refer to "Flattening Hierarchical Data
Using SQL" on page 384.

" Without an alias the query lists for each employee all of the children of all of the
employees:
SELECT emp_id,(SELECT name,age
 FROM disam:emp_struct->hchild
 FROM disam:emp_struct

The chaptered data is specified as part of the source syntax of the
FROM clause. You can use chaptered data:

! In an outer SELECT statement to flatten the chaptered data.
! Anywhere a FROM clause is used.

Example 1

The following query retrieves information about children of all
employees:

SELECT * FROM emp_struct->hchild

 383

Hierarchical Data
Access to the hchild rowsets is via the parent rowset emp_struct. Apart
from this access, the employee data is not required by the query.

" When child rowsets can be accessed as normal tables, it is generally more
efficient to access them directly. The presumption in the previous example is
that the child information is accessible only through a parent rowset (such as
emp_struct).

" If both the father and the mother of a particular child are employees, this child
will appear in two different chapters (once through the father rowset and again
through the mother rowset). This query may therefore return the information for
this child twice. If this behavior is undesirable, use the “SELECT DISTINCT *"
syntax.

Example 2

The following query counts the number of distinct schools where the
children of all employees studied:

SELECT COUNT(DISTINCT school_name)
 FROM emp_struct->hchild->hschool

This example illustrates a two-level hierarchy, with the child rowset
hchild itself serving as a parent of the child rowset hschool.

Example 3

The following query retrieves information about employees who have at
least one child:

SELECT * FROM emp_struct E
 WHERE EXISTS (SELECT * FROM E->hchild)

Note that E->hchild refers to the children of the given employee, not of
all employees, because the nested SELECT clause refers to the same
rowset as the outer SELECT clause. The emp_struct rowset appears in
the same role in both the outer and the inner query, with the name E
(whose use is mandatory).

Example 4

The following query retrieves information about all children who have
attended at least one school:

SELECT * FROM emp_struct->hchild C
 WHERE EXISTS (SELECT * FROM C->hschool)

The same scope rules as those of example 3 apply: the nested subquery
“SELECT * FROM C->hschool” is executed for the given row of hchild and
serves to filter out the children who have not attended any school.

 384

Hierarchical Data
Example 5

To better understand the scope issues when multiple hierarchies are
involved, consider the following queries:

SELECT * FROM emp_struct E
 WHERE EXISTS (SELECT * FROM E->hchild->hschool)

and:

SELECT * FROM emp_struct->hchild C
 WHERE EXISTS (SELECT * FROM C->hschool)

The nested subquery looks similar in both of these queries, but in the
first query the outer rowset that defines the context is the emp_struct
row, while in the second query it is the row of the child of an employee.
Thus, the first query specifies employees such that at least one of the
employee’s children went to at least one school, and the scope of the
subquery is all schools of all children of this employee. The second query
specifies all children that went to school, and the scope of the subquery
is all of the schools of this child.

Flattening Hierarchical Data Using SQL

You can produce a flattened view of hierarchical data by embedding a
SELECT statement inside the list of columns to be retrieved by another
SELECT statement. You use parentheses to delimit the nesting. This is
equivalent to specifying a left outer join between the parent rowset and
a child rowset, and the resulting rowset reproduces each row of the
parent, combining it with one row for each of its children.

The nested SELECT statement can reference a child rowset (using the
parent->child syntax) only in its FROM clause.

The following examples assume hierarchical data with a parent
employees rowset called emp_struct. This rowset has ordinary columns
plus a chapter column called hchild (one row for each of the children of
this employee). The child rowset hchild itself has (in addition to
ordinary columns) a chapter column called hschool (one row for each
school attended by this child).

Example 1

The following query retrieves the number of children that study in each
city for every city where the company has employees.

SELECT city, (SELECT COUNT(*)
 FROM emp_struct->hchild->hschool A

 385

Hierarchical Data
 WHERE A.city = B.city)
FROM cities B

This query demonstrates the use of a nested query within a SELECT
statement, using tables and not aliases.

Example 2

The following query retrieves the employee ID, address, the number
and names of children of each employee:

SELECT emp_id, child_counter,
 (SELECT name FROM E->hchild), Address
FROM emp_struct E

Employees who have no children (such as employee 1122 in the
example) appear and the corresponding child row is NULL (and the
output is like that of a left outer join).

When more than one child rowset is specified in the query (by including
more than one nested SELECT statement), the parent row is reproduced
a sufficient number of times to accommodate the largest number of the
parents' children, and the data from all children appears in parallel.
Thus, child rows are paired randomly, resulting in side-by-side columns
for the child rowsets. When one of the child rowsets is out of rows, its
columns are padded with NULLs. See example 3, below.

Example 3

For each employee, the following query retrieves the employee ID, the
number of the employee’s children, the first two salaries of the year and
the names of the children:

SELECT emp_id, child_counter,
 (SELECT sal FROM E->Sal
 WHERE month IN (’JAN’, ’FEB’)),
 (SELECT name FROM E->hchild) FROM emp_struct E

 386

Hierarchical Data
" Note the padded NULLs in the example.

When multiple levels of hierarchies are involved, the flattening
operation is repeated by nesting a SELECT statement inside another
nested SELECT statement. Conceptually a left outer join is performed
between the parent and child rowsets as above, and then another left
outer join is applied to the result and to the “grandchild” rowset. See
example 4, below.

Example 4

The following query retrieves the employee ID, address, the number
and names of the children of each employee and the number of different
schools at which each child studied:

SELECT emp_id, child_counter,
 (SELECT name,
 (SELECT COUNT(DISTINCT school_name)
 AS dist_schools FROM C->hschool)
 FROM E->hchild C)
 FROM emp_struct E

 387

Hierarchical Data
In this example the query at the deepest level of nesting is an aggregate
(COUNT DISTINCT), which returns a single value. A request for the
names and addresses of the schools would result in the child
information being repeated for each school where the child studied.

To order the retrieved information according to the employee ID and the
child name, use a query like the following:

SELECT emp_id, child_counter,
 (SELECT name,
 (SELECT COUNT(DISTINCT school_name)
 AS dist_schools FROM C->hschool)
 FROM E->hchild C)
 FROM emp_struct E
 ORDER BY emp_id, name

To order the rowset according to the child name and the number of
distinct schools where the child studied, use a query like the following:

SELECT emp_id, child_counter,
 (SELECT name,
 (SELECT COUNT(DISTINCT school_name)
 AS dist_schools FROM C->hschool)
 FROM E->hchild C)
 FROM emp_struct E
 ORDER BY 3, 4

 388

Hierarchical Data
You cannot specify ORDER BY inside a nested query. Ordering of the
result rowset is done in the main query only. Columns can be referenced
by name or by ordinal number. Ordinal numbers are determined by the
order the columns appear in the result set.

Using Virtual Tables to Represent Hierarchical Data

Attunity Connect enables you to handle arrays and array-like
structures (such a periodic group fields in Adabas) in non-relational
data sources by converting the array data into a virtual table that
resides in memory. The name assigned to the virtual table is a
composite, consisting of the parent field name and the array name. For
example, if a parent field is called Employee and the array is called
Empchild, the virtual table is called Employee_Empchild.

When arrays are nested within arrays, the virtual table name includes
the names of all the parent fields and array names. For example, if a
parent field is called Employee and an array called Empchild includes
a nested array called EmpChildSchools, the virtual table name is called
Employee_Empchild_EmpChildSchools.

A virtual table includes the following columns:

! The array fields.
! A column called _parent, which contains the bookmark of the

parent field. This column is generated automatically for the array
and is read-only.

! A column called _rownum, which identifies the row in the virtual
table. This column is generated automatically for the array and is
read-only.

The fields _parent and _rownum together uniquely identify each row in
the virtual table. Use the _parent field of the virtual table to identify
the array field in the parent record when joining parent and child
tables.

 389

Hierarchical Data
Example

A record NATION stores data about countries for a mail order
application and includes an array structure REGIONS. The array
structure is converted into a virtual table NATIONS_REGIONS. The
following SQL accesses data from the virtual table
NATIONS_REGIONS:

SELECT * FROM NATION N, NATION_REGIONS R
 WHERE R._PARENT = N.REGIONS

Once a virtual table has been created, it can be used in applications in
the same way as any other table.

Note that this SQL statement accessing a virtual table is equivalent to
the SQL statement using the -> syntax to access the array data in the
table:

SELECT * FROM NATION->REGIONS

Creating Virtual Tables Attunity Connect enables you to create tables in the following
situations:

! For data sources that use Attunity Connect metadata (ADD).

! For Adabas data, using Predict metadata.

You generate virtual tables for arrays using an option in the
Attunity Connect utility (NAV_UTIL) that generates the metadata
describing the array in the repository.

! To create virtual tables:

! Run the following command to generate the virtual tables for
arrays defined in the parent table:

nav_util gen_array_tables ds_name table_name

Example

A record nation stores data about countries for a mail order
application. The record includes an array structure regions. The
following command generates metadata for nation_regions in the
repository:

nav_util gen_array_tables DEMO nation

where DEMO is the name of a data source defined in the binding
configuration and nation is a table name that contains one or more
arrays.

The command line generates entries in the repository for the arrays
(in this example, nation_regions). You have no control over the

 390

Hierarchical Queries
names unless you included an alias (see the alias attribute on page
49) in the ADD metadata specification.

" When creating virtual tables for Adabas Predict, you have no control over the
generated table names.

Reference the virtual table in the query as you would reference any
other table, using the name of the generated repository entry as the
table name.

Hierarchical Queries
A hierarchical query is a query whose result is a hierarchy of rowsets
linked by chapters, reflecting parent-child relationships. For example,
Customers and Orders may constitute a hierarchical rowset, with each
chapter of the child Orders rowset corresponding to all of the orders of
one customer in the parent Customers rowset.

In Attunity Connect, rowsets with arrays of structures as columns
(which are supported by certain providers) are modeled such that the
rows of an array constitute the children of a column in the containing
parent row.

Hierarchical queries enable you to do the following:

! Arrange rowsets resulting from a query in a hierarchy, reflecting a
parent-child relationship. Use nested SELECT statements to do this
(see page 391).

! Manipulate data that is stored hierarchically in a data source (such
as information stored in arrays in RMS). See page 384.

Currently Attunity Connect supports arrays in the Adabas, CISAM,
DISAM, DBMS, Enscribe, RMS, and VSAM drivers.

You can handle this type of data in the following ways:
! By including the hierarchical data as chapters, reflecting a

parent-child relationship (see page 391).
! By flattening the hierarchical data (see page 384).
! By using virtual tables to represent the data (see page 388).
" You can use virtual driver columns in a DBMS database to produce a

chaptered result. For details, see page 283.

See "Hierarchical Queries From an Application" on page 392 to see how
the SQL is incorporated in an application.

Chapter A chapter is a group of rows within a hierarchy – the chapter
constitutes a collection of children of some row and column in a parent
rowset. The column in the parent rowset is called a chapter column and

 391

Hierarchical Queries
contains a chapter identifier. The column’s name is also the name
identifying the child rowset (which is meaningful only in the context of
the parent rowset).

Generating Hierarchical Results Using SQL

A hierarchical query nests a SELECT statement as one of the columns of
the rowset retrieved by a nested SELECT statement. You use braces ({})
to delimit the nesting. This type of query generates a chapter, which
enables you to incorporate drill-down operations in the application.

Example

The following hierarchical query produces a child rowset:

SELECT C_name,
 {SELECT O_orderkey,
 {SELECT L_partkey, L_linenumber
 FROM lineitem WHERE L_orderkey = O_orderkey}
 AS items
 FROM torder WHERE O_custkey=C_custkey} AS orders
FROM customer

The result has a three-tier hierarchical structure. The main (“root”)
rowset has two columns. The second column (orders) is a chapter:

" In the Attunity Connect Demo ADO Application, click a field in the second
column ([CHAPTER]) to displayed the contents of the chapter.

The second column can be opened to display another (“child”) rowset.
This child rowset includes items, a chaptered column that can be

 392

Hierarchical Queries
opened to display another child rowset (showing the L_partkey and
L_linenumber columns for the opened chapter):

" You can display chapters for only one parent row at a time. For example, you
can display the set of orders for only one customer at a time.

You can perform drill-down operations from an ADO, ODBC and
JDBC-based application. For details, see "Hierarchical Queries From an
Application" on page 392.

Hierarchical Queries From an Application

You can use hierarchical queries specified with Attunity Connect’s
extended SQL to execute drill-down operations on data within the
application. How the hierarchical query for drill-down operations is
implemented varies according to the application’s API:

! For ADO applications, you can use the standard ADO methods and
properties (see below).

! For ODBC applications, you need to use functionality provided with
Attunity Connect (see page 393).

! For Java, you can use standard Java (see page 399).

Drill-down Operations
in an ADO Application

Attunity Connect provides support for hierarchical queries using
standard ADO methods and properties. The following code is an
example of how to manipulate chapters:

Dim oConn As New ADODB.Connection
Dim oRST As New ADODB.Recordset
Dim oChild As ADODB.Recordset
Dim sSQL As String
’ Set active connect, use Attunity Connect
oConn.ConnectionString = "Provider=AttunityConnect;"
oConn.Open

 393

Hierarchical Queries
sSQL = "select n_name, {select c_name from customer where n_nationkey =
c_nationkey} as Customers from nation"
’ Execute SQL with forward only cursor and read only
oRST.Open sSQL, oConn, adOpenForwardOnly, adLockReadOnly

While Not oRST.EOF
 ’ Get the Customers chapter
 Set oChild = oRST("Customers").Value
 While Not oChild.EOF

 ’ Code that manipulates the chapter resultset
 oChild.MoveNext
 Wend

 ’ Release chapter
 Set oChild = Nothing
 oRST.MoveNext
Wend

Set oRST = Nothing
Set oConn = Nothing

Drill-down Operations
in an ODBC
Application

Attunity Connect provides support for hierarchical queries from both C
and RDO applications, as follows:

! In C you use standard ODBC APIs with standard arguments.
! In RDO you use standard methods and properties for

rdoConnection, rdoQuery, rdoResultset and rdoColumn objects and
their collections.

Attunity Connect additionally provides a number of functions that you
incorporate in an application in order to utilize hierarchical queries.
These functions use new descriptor types that have been added to the
ODBC API SQLColAttributes: SQL_COLUMN_IS_CHAPTER_ and
SQL_COLUMN_ORDINAL_.

! To determine which column is a chapter, use the descriptor type
SQL_COLUMN_IS_CHAPTER_.

! To determine the ordinal position for any column, use the descriptor
type SQL_COLUMN_ORDINAL_.

ODBC Drill-down
Operations Using RDO

Attunity Connect provides support for hierarchical queries in RDO
applications. In addition to the standard methods and properties for
rdoConnection, rdoQuery, rdoResultset and rdoColumn objects and
their collections, Attunity Connect provides the following functions:

GetChapterInfo – Returns chapter information. For details, see page 396.

 394

Hierarchical Queries
OpenEmbeddedRowset – Opens an embedded rowset for a parent
chapter column. For details, see page 396.

The following code is an example of how to manipulate chapters in RDO:

Dim oConn As New rdoConnection ’ RDO Connection
Dim oRST As rdoResultset

Dim rsChild As rdoResultset ’ Resultset for chapter
Dim quChild As New rdoQuery ’ Query for chapter (required by
’ OpenEmbeddedRowset)

Dim sSQL As String

’ ///// RDO Chapter support
Dim IsChapterCol() As Long ’ An array which indicates that a
' specific column is a chapter
Dim cChaptCols As Long ’ Number of chapter columns
Dim sCursorName As String ’ Cursor Name

’ Set active connect, Attunity-Demo is Attunity Connect's DSN
Set oConn = rdoEnvironments(0).OpenConnection("Attunity-Demo",
RDO.rdDriverNoPrompt, False, "UID=;PWD=;")

’ SQL statement
sSQL = "select n_name, {select c_name from customer where n_nationkey =
c_nationkey} as Customers from nation"

’ Execute SQL with forward only cursor and read only
Set oRST = oConn.OpenResultset(sSQL)

’ Redims according to the number of columns
ReDim IsChapterCol(oRST.rdoColumns.Count - 1)

’Calling Attunity Connect help routine to set the necessary info
GetChapterInfo oRST, sCursorName, IsChapterCol(), cChaptCols

While Not oRST.EOF

 ’ Open Customers chapter - lock type of child is derived from parent
 OpenEmbeddedRowset sCursorName, oRST("Customers"), oConn, quChild,
rsChild, oRST.LockType
 If rsChild Is Nothing Then
 ’ Failed to open chapter
 MsgBox "Failed to open the chapter!"
 Exit Sub
 End If

 395

Hierarchical Queries
 While Not rsChild.EOF

 ’ Code that manipulates the chapter resultset

 rsChild.MoveNext
 Wend

 ’ Release chapter
 Set oChild = Nothing
 oRST.MoveNext
Wend

Set oRST = Nothing
Set oConn = Nothing

Notes

! Before you can open any chapter in a parent resultset, you need to
know which columns in the resultset are chapters. You save the
ordinal positions of these columns and the cursor name of the
parent statement in order to bind the parent column to child
rowsets.

! To identify a chapter column, use the Attunity Connect RDO
function GetChapterInfo. If cChaptCols > 0 is returned by
GetChapterInfo, the parent resultset includes chapter columns.
The information about child rdoResultset objects and parent
chapter columns is set in a special array.

! Go to the needed row in the parent rdoResultset by using the
oRST.MoveFirst, oRST.MoveNext or oRST.Move methods.

! Call the parent chapter column using the OpenEmbeddedRowset
function.
" If you want to use the Requery method on the child rdoResultset objects,

save information about the embedded rowsets in an array. Use a user
structure similar to the following:

Type TypeChildResultset
clParentOrdinal As Integer ’ Ordinal position of
 ’ parent chapter column
rsChild As rdoResultset
quChild As New rdoQuery
End Type

You need to save only the ordinal position of a parent chapter
column. You can refer to any rdoColumn object using the
following syntax: rsParent.rdoColumns(clParentOrdinal
– 1).

" Close all child rdoResultset objects before closing the parent rdoResultset
object.

 396

Hierarchical Queries
GetChapterInfo (RDO)

GetChapterInfo returns the following chapter information:

! The number of chapter columns in a parent resultset.
! The ordinal positions of these columns.
! The cursor name of the parent statement (in order to bind the

parent column with child rowsets).

GetChapterInfo returns TRUE if successful.

Syntax

GetChapterInfo rsParent, sCursorName, isChapter(),
cChaptCols

rsParent (input) – A parent rdoResultset object.

sCursorName (output) – A string containing the parent cursor name.

isChapter() (output) – An array of long isChapter flags for each column
of the parent resultset. The flag is set to 1 for a chapter column and
unset for any other column. You can use the isChapter array with each
column of the parent rdoResultset to determine whether the current
column is a chapter.

" The isChapter flag is set by calling for each column of parent rdoResultset the
ODBC API SQLColAttributes with the additional descriptor type
SQL_COLUMN_IS_CHAPTER_. If a chapter column exists, the cursor name
is retrieved by calling the ODBC API SQLGetCursorName.

cChaptCols (output) – A long value returns the number of chapter
columns in the parent resultset.

In its pfDesc argument, SQLColAttributes returns 1 for chapter
columns and 0 for non-chapter columns.

OpenEmbedded Rowset (RDO)

OpenEmbedded Rowset opens an embedded rowset for a parent chapter
column.

" This method does not return data from the embedded rowset.

Syntax

OpenEmbeddedRowset sCursorName, clParent, cn,
quChild, rsChild

sCursorName (output) – A string with the parent cursor name.

 397

Hierarchical Queries
clParent (input) – An rdoColumn object representing the parent chapter
column.

Cn (input) – An rdoConnection object.

quChild (input/output) – A child rdoQuery object. The first time the
chapter is opened for this parent column, quChild is NULL.

rsChild (input/output) – A child rdoResultset object. The first time the
chapter is opened for this parent column, rsChild is NULL.

ODBC Drill-down
Operations Using C

An example C program that manipulates chapters is included in the
Attunity Connect installation, in the Sample\OdbcDemo directory
under the directory where Attunity Connect is installed.

When handling chapter data, note the following:

! Before you can open any chapter in a parent resultset, you need to
know which columns in the resultset are chapters. You save the
ordinal positions of these columns and the cursor name of the
parent statement in order to bind the parent column to child
rowsets, using the Attunity Connect-provided function
GetChapterInfo. GetChapterInfo returns 1 when the parent
resultset includes chapter columns.

! Open each chapter using the Attunity Connect
OpenEmbeddedRowset function. When you call this function with
the prepared child statement, the function changes only the active
chapter bookmark and calls SQLExecute.

" Free all child statements before freeing the parent statement.

GetChapterInfo (C)

GetChapterInfo returns the following chapter information:

! The number of columns in a parent resultset.
! The ordinal positions of these columns.
! The cursor name of the parent statement (in order to bind it with

child rowsets).

HP (Compaq) NonStop Platforms

The sample program is in the subvolume where Attunity Connect is
installed

OS/390 and z/OS Platforms

The sample program is in NAVROOT.SAMPLES.ODBCDEMO, where
NAVROOT is the high level qualifier of the Attunity Connect
installation.

 398

Hierarchical Queries
GetChapterInfo returns 1 if successful.

Syntax

int GetChapterInfo(SQLHENV henv, SQLHDBC hdbc,
SQLHSTMT hstmt, UCHAR*
 szCursorName, COLDESC *pColDesc, SWORD cCols, long
*cChapters)

where:

henv (input) – The ODBC Environment handle.

hdbc (input) – The ODBC Connection handle.

hstmt (input) – The ODBC SQL handle.

szCursorName (input/output) – The parent cursor name.

" Allocate szCursorName before calling GetChapterInfo.

pColDesc (input/output) – An array of descriptor information for all
columns.

cCols (input) – The number of columns in the resultset.

cChapters (output) – The number of chapter columns in the parent
resultset.

To save standard and additional descriptor information for each
column, use the Attunity Connect user structure stColumnDescriptor
(see below).

stColumnDescriptor User Structure (C)

stColumnDescriptor is a user structure to save standard and additional
descriptor information for each column:

typedef struct stColumnDescriptor {
 UDWORD cbPrec; /* Precision of the column */
 SWORD iCol; /* Column number */
 UCHAR szColName[MAX_COLNAME+1]; /* Column name */
 SWORD fSQLType; /* SQL data type */
 Char szTypeName[MAX_COLNAME+1]; /* Name of the SQL type */
 SWORD fSQLCType; /* C data type */
 SWORD cbScale; /* Scale of the column */
 SWORD fNullable; /* Indicates if column allows NULL values */
 SDWORD iLength; /* Length in bytes of the column */
 PTR rgbValue; /* Buffer used in SQLGetData */
 SDWORD dataOffset; /* Data offset in rgbValue buffer */

 399

Hierarchical Queries
 SDWORD cbValueMax; /* Maximum length of rgbValue */
 SDWORD *cbValue; /* SQL_NULL_DATA or total number of bytes
 available to return in rgbValue */
 SDWORD iChapterOrdinal; /* Save chapter ordinal position for
 chapter columns, 0 for other columns */
 SQLHSTMT hstmtSon; /* hstmt handle for child rowset binding
 with this column */
} COLDESC;

OpenEmbedded Rowset

OpenEmbeddedRowset opens a chapter (embedded rowset).

" This function does not return data from the embedded rowset.

Syntax

int OpenEmbeddedRowset(SQLHENV henv, SQLHDBC hdbc,
 SQLHSTMT hstmtParent,
 UCHAR* szParentCursorName,
 COLDESC *pOneColDesc)

where:

henv (input) – The ODBC Environment handle.

hdbc (input)– The ODBC Connection handle.

hstmt (input) – The ODBC SQL handle.

SzParentCursorName (input) – The parent cursor name.

POneColDesc (input/output) – The pointer to the descriptor information
of the parent chapter column.

Drill-down Operations
in a Java Application

Attunity Connect provides support for hierarchical queries using the
OTHER type and getObject of the Attunity Connect JDBC driver. The
following code is an example of a method to determine whether a
column is a chapter column:

public static boolean IsChapter(ResultSetMetaData parentRsmd, int column)
throws SQLException {

 if (parentRsmd.getColumnType(column) == java.sql.Types.OTHER)
 {
 String sTypeName = parentRsmd.getColumnTypeName(column);
 return sTypeName.equalsIgnoreCase("CHAPTER");
 }
 else
 {

 400

Hot Server
 return false;
 }
}

This code checks both the column type and the column type name. In
the code you need to check only one of them.

To retrieve a chapter column, call getObject and cast it to a ResultSet
as follows:

ResultSet rsChild =
(ResultSet)parentRs.getObject(column);

" Because of the need to cast the returned object, first make sure that the column
is a chapter column.

Also see: "Chapters" on page 167.

Hot Server
See "Connection Pooling" on page 212 and "Prestarted Servers" on page
599.

 401

Impersonation
Impersonation
Impersonation is the ability of a server to execute in a security context
that is different from the context of the process that owns the server.

The primary reason for impersonation is to cause access checks to be
performed against the client's identity. Using the client's identity for
access checks can cause access to be either restricted or expanded,
depending on what the client has permission to do. For example,
suppose a file server has files containing confidential information and
that each of these files is protected by a security system. To prevent a
client from obtaining unauthorized access to information in these files,
the server can impersonate the client before accessing the files.

Impersonation through Attunity Connect is available on all platforms.

OS/390 and z/OS Platforms

Set up impersonation as follows:

On the OS/390 or z/OS platform:

1. APF authorize all the steplibs in the server script. For example:

setprog... ada622-volume adavol
 CICS.CICS.SDFHEXCI - p390dx
 navroot.load - 111111
 navroot.loadaut - 111111

navroot is the high level qualifier where Attunity Connect is
installed.

2. Run NAVROOT.USERLIB(NAVCMD) and enter “EDIT daemons” or
“EDIT daemon daemon_name” at the prompt.

Set workspaceAccount=''
" That is, the workspaceAccount has two single quotes.

For example:

<workspace name='NAVIGATOR'
description='Attunity Connect Server'
serverMode='reusable' startupScript='ATTSRVR.AB'
nAvailableServers='1' workspaceAccount=''/>

" Note the suffix for the startupScript: This is a suffix that enables instances of
the server process for the workspace. Any suffix can be used and Attunity
Connect automatically extends the suffix for each instance.

 402

Impersonation
On the Client platform:

Define a user profile for the OS/390 or z/OS remote machine with the
required username and password u/p for the remote machine in the
user profile.

Use either Attunity Studio to add a new user authenticator of type
machine or Nav_Util edit user and add a line similar to the following:

<authenticator resource='OS390_machine'
 username='user1' password='password'
 authenticatorType='remoteMachine'/>

The password entered via Nav_Util is not encrypted (it is encrypted if
entered via Attunity Studio and then viewed via Nav_Util). To encrypt
the password entry, use Nav_Util password to provide a master
password for all the user profiles, and then remove the master
password so access to individual profiles is available, but the list of
resources is encrypted.

Impersonation for DB2 – In addition to the above procedure, to
implement impersonation for DB2, a call to an Attunity Connect load
module must be implemented from a DB2 Exit routine.

If the site has a DB2 Exit routine, a call is added in this routine to an
Attunity Connect load module. If the site does not have a DB2 Exit
routine, the Exit routine (DSN3SATH) supplied with Attunity Connect
can be used.

! To implement impersonation for DB2:

1. Save the ATYDSN3 text file in any PSD.
2. If the site has a DB2 Exit routine, add the following line:

CALL ATYDSN3

3. Modify the following lines in the DSNTIJEX job so that the high level
qualifier is valid for the site (instead of DEV.SHLOMO):

//ASM.SYSIN DD DISP=SHR,DSN=DEV.SHLOMO.DB2(&MEM)
// DD DISP=SHR,DSN=DEV.SHLOMO.DB2(ATYDSN3)

" If you are not using the supplied Attunity Connect DB2 Exit routine
(DSN3SATH), replace the parameter, MEM, with the name of the exit
routine used at the site.

4. Submit the DSNTIJEX job.

The DSNTIJEX job builds both the exit routine and load module in
the DB2 libraries at the site.

Shutdown and restart DB2, so that the changes are applied.

 403

Import Utilities
Also see: "Security" on page 662.

Import Utilities
Using Attunity Studio, you can import metadata for the following:

! Adapters
! CICS
! IMS/TM
! Tuxedo
! Any adapter with a COBOL copybook describing the schema.

! Data sources
! Enscribe from COBOL copybooks
! IMS/DB
! RMS from COBOL copybooks
! VSAM
! Any data source with a COBOL copybook describing the

metadata.
! Events

! Any event with a COBOL copybook describing the schema.

Attunity Connect provides stand-alone utilities for importing existing
metadata for the following data sources:

Adabas DDM import (DDM_ADL) – imports Adabas non-PREDICT
metadata (nsd files) into ADD metadata.

BASIC mapfiles import (BAS_ADL) – produces ADD metadata from BASIC
mapfiles.

Btrieve DDF file import (BTR_ADL) – produces ADD metadata from
standard data dictionary files (DDF) files used to hold Btrieve
metadata.

DBMS Import (DBMS_ADL) – produces ADD metadata from a DBMS
database.

HP (Compaq) NonStop Enscribe Import (ADDIMP) – produces ADD
metadata for HP (Compaq) NonStop Enscribe data from a DDL
subvolume and COBOL copybooks. You can generate the metadata from
COBOL copybooks in Attunity Studio.

HP (Compaq) NonStop Enscribe Import (TALIMP) – produces ADD
metadata for HP (Compaq) NonStop Enscribe data sources from TAL
datafiles and a DDL subvolume.

 404

Importing to the Repository
RMS CDD Import (CDD_ADL) – extracts the information stored in an RMS
CDD directory into ADD metadata. You can generate the metadata from
COBOL copybooks in Attunity Studio.

" Importing the metadata for other data sources (such as IMS/DB) is done using
the Metadata import perspective in Attunity Studio.

Importing to the Repository
XML serves as the transport medium for moving information to and
from the repository, Attunity Connect’s internal storage mechanism.

You can import the repository content in Attunity Studio at any level,
by right-clicking the level and choosing Import XML definitions.

" Attunity Connect also includes a command line utility, NAV_UTIL IMPORT
(see page 521).

IMS/DB DBCTL (OS/390 and z/OS Only)
Attunity Connect supports IMS/DB data on IBM OS/390 and z/OS
platforms under CICS. The IMS/DB DBCTL driver accesses IMS/DB data
under CICS.

The Attunity Connect IMS/DB DBCTL driver supports the following:

! Hierarchical structures within the database, provided there exists
a unique key field for all segments within the hierarchy, with the
exception of the end-segments.

! Transaction processing.

" The IMS/DB DBCTL driver accesses IMS/DB data under CICS.
If you are accessing IMS/DB data directly, use the IMS/DB DLI
If you are accessing IMS/DB data under IMS/TM, use the IMS-DBDC .

In order to access IMS/DB data under CICS, do the following:

1. Copy the ATYDBCTL member from NAVROOT.LOAD to a CICS
DFHRPL library (such as 'CICS.USER.LOAD') and then define the
ATYDBCTL program under CICS using any available group such as
ATY group:

CEDA DEF PROG(ATYDBCTL) G(ATY) LANG(C) DA(ANY) DE(ATY IMSDB CICS PROGRAM)

NAVROOT is the high-level qualifier where the Attunity Connect is
installed.

After defining the ATYDBCTL program to a group, install it as follows:

CEDA IN G(ATY)

 405

IMS/DB DBCTL (OS/390 and z/OS Only)
2. Under CICS, run the CDBC transaction and choose the first option
(Connection). Provide the startup table suffix and DBCTL ID
override value.

The following sections provide information about the Attunity Connect
IMS/DB driver:

! Setting Up the Binding
! Metadata Considerations

Setting Up the Binding

! To connect to IMS/DB data under CICS:

The IMS/DB data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select IMS-DBCTL for the Type field.
! Specify the connect string as follows:

PSB Name – The name of the PSB file that contains details of all the
IMS/DB databases that you want to access.

Target System – The VTAM applid of the CICS target system. The
default value is CICS. This parameter is used when updating VSAM
data. You can determine this value by activating the CEMT
transaction on the target CICS system. On the bottom right corner
of the screen appears the legend APPLID=target_system.

VTAM NetName – The VTAM netname of the specific connection being
used by EXCI (and MRO) to relay the program call to the CICS target
system. For example, if you issue to CEMT the following command:

CEMT INQ CONN

You see on the display screen that the netname is BATCHCLI (this
is the default connection supplied by IBM upon the installation of
CICS). The default value is ATYCLIEN.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

cicsProgname="string" – The UPDTRNS program that is supplied by
Attunity Connect to enable updating VSAM data. To use the UPDTRNS
program, copy the program from NAVROOT.LOAD to a CICS DFHRPL

 406

IMS/DB DBCTL (OS/390 and z/OS Only)
library (such as 'CICS.USER.LOAD') and then define the UPDTRNS
program under CICS using any available group such as ATY group:

CEDA DEF PROG(UPDTRNS) G(ATY) LANG(C) DA(ANY) DE(ATTUNIT VSAM UPDATE PROG)

" NAVROOT is the high level qualifier where Attunity Connect is installed.

After defining the UPDTRNS program to a group, install it as follows:

CEDA IN G(ATY)

cicsTraceQueue="string" – The name of queue for output which is
defined under CICS when tracing the output of the UPDTRNS program.
When not defined, the default CICS queue is used.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

exciTransid="string" – The CICS TRANSID. This value must be EXCI or a
copy of this transaction.

psbName="string" – (PSB Name in the connect string) The name of the
PSB file that contains details of all the IMS/DB databases that you want
to access.

targetSystemApplid="string" – (Target System in the connect string) The
VTAM applid of the CICS target system. The default value is CICS. This
parameter is used when updating VSAM data. You can determine this
value by activating the CEMT transaction on the target CICS system.
On the bottom right corner of the screen appears the legend
APPLID=target_system.

vtamNetname="string" – (VTAM NetName in the connect string) The
VTAM netname of the specific connection being used by EXCI (and MRO)
to relay the program call to the CICS target system. The default value
is ATYCLIEN.

Metadata Considerations

The Attunity Connect IMS DBCTL driver requires Attunity Connect
metadata. The mapping of IMS metadata to Attunity Connect metadata
has the following rules:

! Segments are defined as tables within <table> elements.
! Tables inherit the key fields of their ancestors.
! Tables have indexes for their full hierarchical paths.
! Additional information is defined in dbCommand attributes

specified within the <table> and <field> elements.

 407

IMS/DB DBCTL (OS/390 and z/OS Only)
If COBOL copybook files and psb files describing the data source are
available, you can import the metadata by running the metadata
import. The metadata import is run in the Attunity Studio Metadata
Import perspective.

The following table maps the steps needed to import metadata
according to the metadata data source.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files Specify the COBOL copybook and psb files.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables you want to import metadata for according to the
following parameters:
Source and Table Name – The tables and the files defining them.
Data Set – Data sets for the tables.
Parents – The table hierarchy.

Match DBD to COBOL The table and the Cobol file defining the table are matched in this step.
DBD Tables – Specify the tables defined in the DBD file.
COBOL Files – Specify the Cobol files defining the tables.
COBOL Tables – Specify the tables defined in the Cobol file.

Resolve Table
Names

In cases where there are multiple tables with the same name, the
source file that describes each specific table is specified.

Create PSB Creates the metadata PSB file.

Create JCL Creates a JCL template and submits the DFHCSDUP batch utility
program to add the resource definitions to the DFHCSD dataset

Generate Final
Metadata

Generates the final XML defining the schema for the adapter. This file
is stored in the output directory specified in the Get Output Directory
step.

Import Metadata The metadata is imported to the machine where the data source
resides. This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 408

IMS/DB DBDC Driver (OS/390 and z/OS Only)
IMS/DB DBDC Driver (OS/390 and z/OS Only)
Attunity Connect supports IMS/DB data on IBM OS/390 and z/OS
platforms under IMS/TM. The IMS/DB DBDC driver accesses IMS/DB
data under IMS/TM.

The Attunity Connect IMS/DB DBDC driver supports the following:

! Hierarchical structures within the database, provided there exists
a unique key field for all segments within the hierarchy, with the
exception of the end-segments.

! Secondary indexes.

The Attunity Connect IMS/DB DBDC driver does not support
transaction processing.

" The IMS/DB DBDC driver accesses IMS/DB data under IMS/TM.
If you are accessing IMS/DB data directly, use the IMS/DB DLI
If you are accessing IMS/DB data under CICS, use the IMS DBCTL .

In order to access IMS/DB data under IMS/TM, do the following:

1. Copy the ATYDBDC program from NAVROOT.LOAD to an IMS/TM
program library (such as 'IMS.PGMLIB') with the name of the PSB
used to access the IMS/DB data.

2. Define a transaction to point to the program, using statements
similar to the following:

APPLCTN PSB=ATYDBDC,SCHDTYP=PARALLEL
TRANSACT CODE=ATYIMSTM,PRTY=(7,10,2),INQUIRY=NO,MODE=SNGL,EDIT=ULC

" The default transaction name is ATYIMSTM. If you use a different
transaction, the transaction name must be less than or equal to eight
characters and you must specify this value in the imsTransname driver
property in the binding (see below).

3. Set up OTMA, as described below.

The following sections provide information about the Attunity Connect
IMS/DB driver:

! Setting Up OTMA
! Setting Up the Binding
! Metadata Considerations

 409

IMS/DB DBDC Driver (OS/390 and z/OS Only)
Setting Up OTMA

In order to execute an IMS transaction with Attunity Connect, you need
to set OTMA as described below.

! To set OTMA to work with Attunity Connect:

1. Install OTMA with OTMA C/I where IMS resides, since OTMA is not
automatically installed using the IMS INSTALL/IVP Dialog.

2. During IMS system definition, set the startup parameter in the IMS
procedure to OTMA=YES.

In addition, set additional OTMA-related parameters such as
GRNAME= for the XCF group name and OTMANM= for the IMS
member name in that XCF group, as in the following example:

EDIT IMS.PROCLIB(DFSPBIV1) - 01.03
command ===>
000082 AOIS =,
000083 GRNAME=IMSATT01,
000084 OTMA=YES,
000085 MAXPST=
000086 OTMANM=

3. Start the OTMA Callable Interface (C/I).

Add an entry in the program properties table (PPT) for the OTMA
C/I initialization program as follows:
a) Edit the SCHEDxx member of the SYS1.PARMLIB data set by

adding the following entry:

PPT PGMNAME(DFSYSVI0)/*PROGRAM NAME =DFSYSVI0 */
CANCEL /*PROGRAM CAN BE CANCELED */
KEY(7) /*PROTECT KEY ASSIGNED IS 7 */
SWAP /*PROGRAM IS SWAPPABLE */
NOPRIV /*PROGRAM IS NOT PRIVILEGED */
DSI /*REQUIRES DATA SET INTEGRITY */
PASS /*CANNOT BYPASS PASSWORD PROTECTION */
SYST /*PROGRAM IS A SYSTEM TASK */
AFF(NONE) /*NO CPU AFFINITY */
NOPREF /*NO PREFERRED STORAGE FRAMES */

b) Do one of the following to make the SCHEDxx changes take
effect:
! Re-IPL the system.
! Issue the MVS SET SCH= command.

c) Edit and submit the following JCL procedure to run DFSYSVI0:

//OTMAINIT PROC RGN=3000K,SOUT=A,
/PARM1=

 410

IMS/DB DBDC Driver (OS/390 and z/OS Only)
//*
//IEFPROC EXEC PGM=DFSYSVI0,
//REGION=&RGN
//*
//STEPLIB DD DISP=SHR,UNIT=SYSDA,
//DSN=IMSVS.RESLIB
//*
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//*

Run DFSYSVI0 after the IPL, to initialize OTMA C/I.

Setting Up the Binding

! To connect to IMS/DB data directly:

The IMS/DB data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select IMS-DBDC for the Type field.
! Specify the connect string as follows:

XCF group – The Cross System Coupling Facility collection of XCF
members the connection belongs to. A group may consist of up to eight
characters, and may span between multiple systems.

XCF server – The Cross System Coupling Facility group member.

TPipe prefix – The transaction pipe prefix used to associate between the
transaction and the transaction pipe it is using. The default is ATTU.

User name – The security facility user identification (for example, the
RACF user identification).

Group name – The security facility group identification (for example, the
RACF group identification).

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

 411

IMS/DB DBDC Driver (OS/390 and z/OS Only)
imsTransname="string" – The name of the IMS transaction that points
to the program that is used to access the PSB used to access the IMS/DB
data. The default name of the transaction is ATYIMSTM.

maxSessions="n" – The maximum number of sessions allowed. The
default value is 5.

racfGroupId="string" – The security facility group identification (for
example, the RACF group identification).

racfUserId="string" – The security resource user name.

tpipePrefix="string" – (TPipe prefix in the connect string) The
transaction pipe prefix used to associate between the transaction and
the transaction pipe it is using. The default is ATTU.

xcfClient="string" – The client name for the Cross System Coupling
Facility the connection belongs to.

xcfGroup="string" – (XCF group in the connect string) The Cross System
Coupling Facility collection of XCF members the connection belongs to.
A group may consist of up to eight characters, and may span between
multiple systems.

xcfImsMember=string" – The Cross System Coupling Facility group
member.

xcfServer=string" – (XCF server in the connect string) The Cross System
Coupling Facility group member.

userName=string" – (User name in the connect string) The security
facility user identification (for example, the RACF user identification).

Metadata Considerations

The Attunity Connect IMS/DB DBDC driver requires Attunity Connect
metadata. The mapping of IMS metadata to Attunity Connect metadata
format has the following rules:

! Segments are defined as tables within <table> elements.
! Tables inherit the key fields of their ancestors.
! Tables have indexes for their full hierarchical paths.
! Additional information is defined in dbCommand attributes

specified within the <table> and <field> elements.

 412

IMS/DB DBDC Driver (OS/390 and z/OS Only)
If COBOL copybook files and psb files describing the data source are
available, you can import the metadata by running the metadata
import. The metadata import is run in the Attunity Studio Metadata
Import perspective.

The following table maps the steps needed to import metadata
according to the metadata data source.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files Specify the COBOL copybook and psb files.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables you want to import metadata for according to the
following parameters:
Source and Table Name – The tables and the files defining them.
Data Set – Data sets for the tables.
Parents – The table hierarchy.

Match DBD to COBOL The table and the Cobol file defining the table are matched in this step.
DBD Tables – Specify the tables defined in the DBD file.
COBOL Files – Specify the Cobol files defining the tables.
COBOL Tables – Specify the tables defined in the Cobol file.

Resolve Table
Names

In cases where there are multiple tables by the same name, the names
of the tables are resolved to enable their distinction.

Create PSB Creates the metadata PSB file.

Create JCL Creates a JCL template and submits the DFHCSDUP batch utility
program to add the resource definitions to the DFHCSD dataset

Generate Final
Metadata

Generates the final XML defining the schema for the adapter. This file
is stored in the output directory specified in the Get Output Directory
step.

Import Metadata The metadata is imported to the machine where the data source
resides. This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 413

IMS/DB DLI Driver (OS/390 And Z/OS Only)
IMS/DB DLI Driver (OS/390 And Z/OS Only)
Attunity Connect supports IMS/DB data on IBM OS/390 and z/OS
platforms.

The Attunity Connect IMS/DB DLI driver supports hierarchical
structures within the database, provided there exists a unique key field
for all segments within the hierarchy, with the exception of the
end-segments.

The Attunity Connect IMS/DB DLI driver does not support transaction
processing.

" The IMS/DB DLI driver connects directly to the IMS/DB data. However, the
IMS/DB DLI driver exclusively locks the database when it writes to IMS/DB.
Therefore:
If you are writing to IMS/DB under CICS, use the IMS-DBCTL driver.
If you are writing to IMS/DB under IMS/TM, use the IMS-DBDC driver.

" Change the allocation size of the IEFREDR data set, dependent on server
usage. If the data set is used too often it a DUMP results.

The following sections provide information about the Attunity Connect
IMS/DB driver:

! Setting Up the Binding
! Setting Up the Daemon Workspace
! Metadata Considerations

Setting Up the Binding

! To connect to IMS/DB data directly:

The IMS/DB data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select IMS-DLI for the Type field.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

 414

IMS/DB DLI Driver (OS/390 And Z/OS Only)
Setting Up the Daemon Workspace

To access IMS/DB, you need to configure a daemon workspace to run the
IMS server.

Either use the default NVIMSSRV workspace, supplied as part of the
Attunity Connect installation, or in the workspace that you define, set
the server type to IMS in the WS Info tab, and the start up script to
NVIMSSRV.XY.

The NVIMSSRV workspace has the same settings as the normal
Navigator default workspace, except that it uses the IMS server.

" Note the suffix for the startupScript: This is a suffix that enables instances of
the server process for the workspace. Any suffix can be used and Attunity
Connect automatically extends the suffix for each instance.

" The remote machine specification in the binding setting for the IMS/DB data
source on the client must include the workspace. For details, see
"<remoteMachine> Statement" on page 135.

Metadata Considerations

The Attunity Connect IMS/DB driver requires Attunity Connect
metadata. The mapping of IMS metadata to Attunity Connect metadata
format has the following rules:

! Segments are defined as tables within <table> elements.
! Tables inherit the key fields of their ancestors.
! Tables have indexes for their full hierarchical paths.
! Additional information is defined in dbCommand attributes

specified within the <table> and <field> elements.

If COBOL copybook files and psb files describing the data source are
available, you can import the metadata by running the metadata
import. The metadata import is run in the Attunity Studio Metadata
Import perspective.

The following table maps the steps needed to import metadata
according to the metadata data source.

 415

IMS/DB DLI Driver (OS/390 And Z/OS Only)
The following table maps the steps needed to import metadata
according to the metadata data source.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files Specify the COBOL copybook and psb files.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables you want to import metadata for according to the
following parameters:
Source and Table Name – The tables and the files defining them.
Data Set – Data sets for the tables.
Parents – The table hierarchy.

Match DBD to COBOL The table and the Cobol file defining the table are matched in this step.
DBD Tables – Specify the tables defined in the DBD file.
COBOL Files – Specify the Cobol files defining the tables.
COBOL Tables – Specify the tables defined in the Cobol file.

Resolve Table
Names

In cases where there are multiple tables by the same name, the names
of the tables are resolved to enable their distinction.

Create PSB Creates the metadata PSB file.

Create JCL Creates a JCL template and submits the DFHCSDUP batch utility
program to add the resource definitions to the DFHCSD dataset

Generate Final
Metadata

Generates the final XML defining the schema for the adapter. This file
is stored in the output directory specified in the Get Output Directory
step.

Import Metadata The metadata is imported to the machine where the data source
resides. This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 416

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
IMS/TM as a Client – Invoking an Application Adapter (OS/390
and z/OS Only)

Attunity Connect includes an IMS/TM transaction that can be called
from a C or COBOL program that enables invoking an application
adapter. The IMS/TM transaction is used instead of using the C or
COBOL APIs directly.

" For details of the APIs, refer to "C and COBOL APIs to Applications" on page
147.

In order to invoke an application adapter using an IMS/TM transaction,
you need to perform the following tasks:

! Setting Up the IBM OS/390 Machine
! Setting Up a Call to the Transaction

Setting Up the IBM OS/390 Machine

Before using the IMS/TM transaction, you need to set the IBM OS/390
machine using the following procedure:

1. Copy NAVROOT.LOAD(BASE) to an IMS/TM program library (such
as IMS.PGMLIB).

2. To use the transaction in a C program, copy
NAVROOT.LOAD(ATYDC3GC) to the same IMS/TM program library
(such as IMS.PGMLIB).

3. To use the transaction in a COBOL program, copy
NAVROOT.LOAD(ATYDC3GL) to the same IMS/TM program library
(such as IMS.PGMLIB).

Setting Up a Call to the Transaction

The C or COBOL program sets up a buffer that contains the information
needed for the inbound interaction and then calls the ATYDC3GL (C) or
ATYDC3GL (COBOL) program to send the interaction.

The buffer is formatted as follows:

Parameter Size Description

Version 4 The version of the APIs used. The expected value is 1.

ServersUrl 256 The URL of the OS/390 machine and the port number
where the daemon runs. For example, IP1:2551, where
IP1 is the URL and 2551 is the port.

 417

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
Username 64 A valid username to access the OS/390 machine.

Password 64 A valid password for the user name.

Workspace 64 A daemon workspace. The default is Navigator.

AdapterName 64 The name of the adapter.

SchemaFileName 256 For future use. Leave blank.

EncKeyName 64 For future use. Leave blank.

EncKeyValue 256 For future use. Leave blank.

InteractionName 64 The name of the interaction.

Flags 4 The following flags are available:
1 – A trace of the XML is performed.
2 – A trace of the communication calls is performed.
3 – Both the XML and communication calls are traced.
4 – The NAT firewall protocol is used, with a fixed
address for the daemon.
5 – A trace of the XML is performed and the NAT
firewall protocol is used, with a fixed address for the
daemon.
6 – A trace of the communication calls is performed and
the NAT firewall protocol is used, with a fixed address
for the daemon.
7 – Both the XML and communication calls are traced
and the NAT firewall protocol is used, with a fixed
address for the daemon.

Input format 4 The following formats are available:
0 – Input is provided as XML.
1 – Input is provided using parameters.

Parameter Size Description

 418

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
Username 64 A valid username to access the OS/390 machine.

Password 64 A valid password for the user name.

Workspace 64 A daemon workspace. The default is Navigator.

AdapterName 64 The name of the adapter.

SchemaFileName 256 For future use. Leave blank.

EncKeyName 64 For future use. Leave blank.

EncKeyValue 256 For future use. Leave blank.

InteractionName 64 The name of the interaction.

Flags 4 The following flags are available:
1 – A trace of the XML is performed.
2 – A trace of the communication calls is performed.
3 – Both the XML and communication calls are traced.
4 – The NAT firewall protocol is used, with a fixed
address for the daemon.
5 – A trace of the XML is performed and the NAT
firewall protocol is used, with a fixed address for the
daemon.
6 – A trace of the communication calls is performed and
the NAT firewall protocol is used, with a fixed address
for the daemon.
7 – Both the XML and communication calls are traced
and the NAT firewall protocol is used, with a fixed
address for the daemon.

Input format 4 The following formats are available:
0 – Input is provided as XML.
1 – Input is provided using parameters.

Parameter Size Description

 419

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
Calling the Transaction

C The ATYDC3GC transaction is called as follows:

unsigned char commDataBuff[5000];
short comlen = 5000;

typedef void (*f_ptr)(char *, short int*);

static f_ptr fetch_ptr;
fetch_ptr = (f_ptr) fetch("ATYDC3GC");

....... preparing the buffer

fetch_ptr(commDataBuff , &comlen);

Input - The size of the input depends on the value specified in
the Input size parameter.
If the Input format is set to 0 (XML), the input is
formatted as follows:
! The first four bytes specify the size of the input XML

string.
! The next 64 bytes specifies the name of the record

used for the output (the inbound interaction).
! The next bytes (to the exact length specified in the

first four bytes) specify the input XML string. For
example: <findorder ORDER_NO=’17’ /> where
findorder is the inbound interaction name.

If the Input format is set to 1 (the input is done using
parameters), the input is formatted as follows:
! The first four bytes specify the number of

parameters.
! The next 4 bytes specify the maximum size of any

parameter value.
! The next 64 bytes specify the name of the record used

for the output (the inbound interaction).
! The next 32 bytes specify the name of the parameter.
! The next bytes (to the exact length specified in the

first four bytes) specify the input parameter.
! The following bytes repeat the last two entries until

all the parameters are specified.

Parameter Size Description

 420

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
....... preparing the buffer

fetch_ptr(commDataBuff , &comlen);

where:

commDataBuff – The buffer with the interaction details.

comlen – The size of the buffer. This value is also used to determine the size
of the output string. Thus make sure the value is big enough for the expected
output.

After defining the buffer and calling the ATYDC3GC transaction,
compile and move the C program to the IMS/TM program library (such
as IMS.PGMLIB).

COBOL Call The ATYDC3GL transaction is called using a template similar to the
following:

*
* COBOL COPY OF DATA BUFFER
*
01 COMM-DATA-BUFF PIC X(5000).

01 COMM-DATA-BUFF-ERROR REDEFINES COMM-DATA-BUFF.
 05 COMM-ERROR-STATUS PIC S9(8) COMP SYNC.
 05 COMM-ERROR-MSG PIC X(256).

01 COMM-DATA-BUFF-INPUT REDEFINES COMM-DATA-BUFF.

 05 INPUT-COMMAREA-3GL.
 10 INCOM-VERSION PIC S9(8) COMP SYNC.
 10 INCOM-SERVERS-URLS PIC X(256).
* /* IP1:PORT[,IP2:PORT] [,...] */
 10 INCOM-USER-NAME PIC X(64).
 10 INCOM-PASSWORD PIC X(64).
 10 INCOM-WORKSPACE PIC X(64).
 10 INCOM-ADAPTER-NAME PIC X(64).
 10 INCOM-SCHEMA-FILE-NAME PIC X(256).
 10 INCOM-ENC-KEY-NAME PIC X(64).
 10 INCOM-ENC-KEY-VALUE PIC X(256).
 10 INCOM-INTERACTION-NAME PIC X(64).
 10 INCOM-DW-FLAGS PIC S9(8) COMP SYNC.
 10 INCOM-INP-FORMAT PIC S9(8) COMP SYNC.
 10 INCOM-EXEC-INPUT.
 15 INCOM-XML-BUFF.
 20 INCOM-XML-ILEN PIC S9(8) COMP SYNC.
 20 INCOM-XML-INTER-OUTREC-NAME
 PIC X(64).
*====>>> CHANGE ??? TO LEN SPECIFIED IN INCOM-XML-ILEN
 20 INCOM-XML-INPUT PIC X(???).
 15 INCOM-PARAM-BUFF REDEFINES INCOM-XML-BUFF.
 20 INCOM-PARAM-COUNT PIC S9(8) COMP SYNC.
 20 INCOM-PARAM-VALUE-LEN PIC S9(8) COMP SYNC.
 20 INCOM-PARAM-INT-OUTREC-NAME PIC X(64).

 421

IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
*====>>> CHANGE ?? TO COUNT SPECIFIED IN INCOM-PARAM-COUNT
 20 INCOM-PARAM-NAME-VALUE OCCURS ?? TIMES.
 25 INCOM-PARAM-NAME PIC X(32).
*====>>> CHANGE ?? TO
LEN SPECIFIED IN INCOM-PARAM-VALUE-LEN
 25 INCOM-PARAM-VALUE PIC X(??).

01 COMM-DATA-BUFF-OUTPUT REDEFINES COMM-DATA-BUFF.

 05 COMM-OUT-STATUS PIC S9(8) COMP SYNC.
 05 COMM-OUT-LENGTH PIC S9(8) COMP SYNC.

 05 COMM-OUT-DATA PIC X(4992)

77 COMLEN PIC S9(4) COMP SYNC VALUE +5000.
77 API-INTERFACE PIC X(8) VALUE 'ATYDC3GL'.

CALL API-INTERFACE USING COMM-DATA-BUFF COMLEN.

where:

COMM-DATA-BUFF – The buffer with the interaction details.

COMLEN – The size of the buffer. This value is also used to determine the
size of the output string. Thus make sure the value is big enough for the
expected output.

The first time the CALL is performed, it will do a one-time fetch and a
call. Thereafter, it will do only a call.

To release the module just before termination of the calling program,
write the following line of code:

CANCEL API-INTERFACE.

After defining the buffer and calling the ATYDC3GL transaction,
compile and move the COBOL program to the IMS/TM program library
(such as IMS.PGMLIB).

The Transaction Output

The output includes a 4 byte success flag: Zero for success, otherwise
failure. The output overrides the input. If the result is failure, an error
message with a length of 256 bytes is returned.

If XML was specified for the input and the result is success, the output
is formatted as XML, as follows:

! The first four bytes specify the size of the output.
! The following bytes make up the XML output.

 422

IMS/TM Application Adapter (OS/390 and z/OS Only)
If parameters were specified for the input and the result is success, the
output is formatted as follows:

! The first four bytes specify the size of the output.
! The next 32 bytes specify the name of the output attribute.
! The next bytes (to the exact length specified for the input string in

the) specify the output value.
! The following bytes repeat the last two entries until all the output

is specified.

IMS/TM Application Adapter (OS/390 and z/OS Only)
You can execute a program via IMS/TM with Attunity Connect using the
Attunity Connect IMS/TM adapter.

Executing a program via IMS/TM with Attunity Connect is done using
OTMA/CI and requires IMS version 6.1 or higher.

The following sections provide information about the Attunity Connect
IMS/TM adapter:

! Setting Up OTMA
! Setting Up the Binding
! The Adapter Definition
! Transaction Support

Setting Up OTMA

In order to execute an IMS transaction with Attunity Connect, you need
to set OTMA as described below.

! To set OTMA to work with Attunity Connect:

1. Install OTMA with OTMA C/I where IMS resides, since OTMA is not
automatically installed using the IMS INSTALL/IVP Dialog.

2. During IMS system definition, set the startup parameter in the IMS
procedure to OTMA=YES.

In addition, set additional OTMA-related parameters such as
GRNAME= for the XCF group name and OTMANM= for the IMS
member name in that XCF group, as in the following example:

EDIT IMS.PROCLIB(DFSPBIV1) - 01.03
command ===>
000082 AOIS =,
000083 GRNAME=IMSATT01,

 423

IMS/TM Application Adapter (OS/390 and z/OS Only)
000084 OTMA=YES,
000085 MAXPST=
000086 OTMANM=

3. Start the OTMA Callable Interface (C/I).

Add an entry in the program properties table (PPT) for the OTMA
C/I initialization program as follows:
d) Edit the SCHEDxx member of the SYS1.PARMLIB data set by

adding the following entry:

PPT PGMNAME(DFSYSVI0)/*PROGRAM NAME =DFSYSVI0 */
CANCEL /*PROGRAM CAN BE CANCELED */
KEY(7) /*PROTECT KEY ASSIGNED IS 7 */
SWAP /*PROGRAM IS SWAPPABLE */
NOPRIV /*PROGRAM IS NOT PRIVILEGED */
DSI /*REQUIRES DATA SET INTEGRITY */
PASS /*CANNOT BYPASS PASSWORD PROTECTION */
SYST /*PROGRAM IS A SYSTEM TASK */
AFF(NONE) /*NO CPU AFFINITY */
NOPREF /*NO PREFERRED STORAGE FRAMES */

e) Do one of the following to make the SCHEDxx changes take
effect:
! Re-IPL the system.
! Issue the MVS SET SCH= command.

f) Edit and submit the following JCL procedure to run DFSYSVI0:

//OTMAINIT PROC RGN=3000K,SOUT=A,
/PARM1=
//*
//IEFPROC EXEC PGM=DFSYSVI0,
//REGION=&RGN
//*
//STEPLIB DD DISP=SHR,UNIT=SYSDA,
//DSN=IMSVS.RESLIB
//*
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//*

Run DFSYSVI0 after the IPL, to initialize OTMA C/I.

 424

IMS/TM Application Adapter (OS/390 and z/OS Only)
Setting Up the Binding

! To connect to IMS/TM:

The IMS/TM adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.
! Specify a name for the adapter in the Name field.
! Select IMSTM for the Type field.

After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

xcfGroup – The Cross System Coupling Facility collection of XCF
members the connection belongs to.

A group may consist of up to eight characters, and may span
between multiple systems.

xcfImsMember="xcf_member_name" – The Cross System Coupling
Facility group member.

tpipePrefix – The transaction pipe prefix used to associate between
the transaction and the transaction pipe it is using. The default is
ATTU.

maxSessions – The maximum number of sessions allowed. The
default value is 5.

secUserid – The security facility user identification (for example,
the RACF user identification).

secGroupId – The security facility group identification (for example,
the RACF group identification).

The Adapter Definition

If COBOL copybook files describing the adapter are available, you can
generate the adapter definition by running the metadata import. The
metadata import is run in the Attunity Studio Metadata Import
perspective.

 425

IMS/TM Application Adapter (OS/390 and z/OS Only)
The following are the steps needed to import metadata for the adapter.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

" For details about the definition syntax, refer to "Application Adapter Definition"
on page 93.

Transaction Support

The Attunity Connect IMS/TM application adapter supports two-phase
commit and can fully participate in a distributed transaction when the
transaction environment property convertAllToDistributed is set to
true.

To use Attunity Connect with 2PC, you must have RRS installed and
configured.

" If RRS is not running, the data source can participate in a distributed
transaction, as the only one-phase commit data source, if the logFile
parameter is set to NORRS in the transactions node of the binding properties
for the relevant binding configuration, in the Configuration perspective of the
Attunity Studio. The XML representation is as follows:

<transactions logFile="log,NORRS" />

where log is the high level qualifier and name of the log file. If this parameter is
not specified, the format is the following:

<transactions logFile=",NORRS" />

DESCRIPTION

Get Input Files Specify the COBOL and text files defining the adapter.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Add Interactions The interactions defined in the specified input files are added.

Generate Final
Metadata

Prepares the final XML defining the schema for the adapter.

Import Metadata The metadata is imported to the machine where the adapter resides.
This step can be returned to and redone at any time.

" When reopening an import item in the Metadata Import explorer and choosing
Manual Import. The import wizard opens, displaying what has previously
been imported.

 426

IMS/TM Application Adapter (OS/390 and z/OS Only)
That is, the comma must be specified.

For further details about setting up a data source to be one-phase commit in a
distributed transaction, refer to "The CommitConfirm Table" on page 779.

To use two-phase commit capability to access data on the OS/390 or z/OS
machine, define every library in the ATTSRVR JCL as an
APF-authorized library.

" To define a DSN as APF-authorized, in the SDSF screen enter the command:
"/setprog apf,add,dsn=navroot.library,volume=ac002"
where ac002 is the volume where you installed Attunity Connect and
NAVROOT is the high level qualifier where Attunity Connect is installed.

If the Attunity Connect installation volume is managed by SMS, when defining
APF-authorization enter the following command in the SDSF screen:
"/setprog apf,add,dsn=navroot.library,SMS"

Make sure that the library is APF-authorized, even after an IPL (reboot) of the
machine.

Informix Driver

The following sections provide information about the Attunity Connect
Informix driver:

! Setting Up the Binding
! Mapping Informix Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

Setting Up the Binding

! To connect to Informix data:

The Informix data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Specify the connect string as follows:

 427

IMS/TM Application Adapter (OS/390 and z/OS Only)
Database name – Specifies the name of the database being used
along with the server name, if this is not the local machine, with the
format dbname[@servername].
" If you specify only database name, the driver binds to the database

residing on the local Informix server (as specified in the environment
variable INFORMIXSERVER).

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

dbName="string" – (Database name in the connect string) Specifies the
name of the database being used along with the server name, if this is
not the local machine, with the format dbname[@servername].

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolationted serially.
Treats data as if transactions are executed sequentially.

If the specified level is not supported by the data source,
Attunity Connect defaults to the next highest level.

Checking the Informix
Installation

Check the following:

! Informix database is readable by Attunity Connect.
! Informix Embedded SQL (ESQL) is installed on the machine where

the Informix client resides.

UNIX and Windows Platforms

The default supplied by Attunity Connect is for use with Informix
version 7.x. If the version of Informix you are using is version 9 or
higher, overwrite the nvdb_inf shareable image with the nvdb_inf9
shareable image. You can revert back to the default by overwriting the
nvdb_inf shareable image with the nvdb_inf7 shareable image. All
three files (nvdb_inf, nvdb_inf7 and nvdb_inf9) are in NAVROOT/lib,
where NAVROOT is the directory where Attunity Connect is installed.

 428

IMS/TM Application Adapter (OS/390 and z/OS Only)
Mapping Informix Data Types

The following table shows how Attunity Connect maps Informix data
types to OLE DB and ODBC data types:

UNIX Platforms

Check that the INFORMIXDIR and INFORMIXSERVER environment
variables are correctly set and that the shared library environment
variable (such as SHLIB_PATH, LD_LIBRARY_PATH, etc., depending on
the platform) includes $INFORMIXDIR/lib and $INFORMIXDIR/lib/esql.

Set the shared library environment variable in the Attunity Connect
nav_login or site_nav_login file. For details refer to the Attunity
Connect Installation Guide for UNIX.

Informix OLE DB ODBC

Byte DBTYPE_BYTESa SQL_LONGVARBINARY

Char(m<256),
Character(m<256)

DBTYPE_STR SQL_CHAR

Char(m>255),
Character(m>255)

DBTYPE_STR SQL_LONGVARCHARb

Date DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Datetime DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Dec, Decimal DBTYPE_NUMERIC SQL_NUMERIC

Double DBTYPE_R8 SQL_DOUBLE

Float DBTYPE_R8 SQL_DOUBLE

Int, Integer DBTYPE_I4 SQL_INTEGER

Interval DBTYPE_STR SQL_CHAR

Money DBTYPE_NUMERIC SQL_NUMERIC

Nchar (not supported)

Numeric DBTYPE_NUMERIC SQL_NUMERIC

Nvarchar (not supported)

Precision DBTYPE_R8 SQL_DOUBLE

 429

IMS/TM Application Adapter (OS/390 and z/OS Only)
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Informix data types:

Real DBTYPE_R4 SQL_REAL

Serial DBTYPE_I4 SQL_INTEGER

Smallfloat DBTYPE_R4 SQL_REAL

Smallint DBTYPE_I2 SQL_SMALLINT

Text DBTYPE_STRa SQL_LONGVARCHAR

Varchar(m<256) DBTYPE_STR SQL_CHAR

Varchar(m>255) DBTYPE_STR SQL_LONGVARCHARb

a. IS_LONG attribute is TRUE.
b. Precision of 2147483647. If the <odbc longVarcharLenAsBlob> parameter is set to true in

the Attunity Connect environment settings, then precision of m.

Informix OLE DB ODBC

CREATE TABLE Informix

Binary Byte

Char[(m)] Char[(m)]

Date Datetime year to second

Double Float

Float Real

Image Byte

Integer Integer

Numeric[(p[,s])] Numeric[(p[,s])]

Smallint Smallint

Text Text

Time Datetime year to second

 430

IMS/TM Application Adapter (OS/390 and z/OS Only)
Stored Procedures

The Attunity Connect Informix driver supports Informix stored
procedures.

To retrieve output parameters and the return code from the stored
procedure, use the "? = CALL" syntax, described on page 728.

Transaction Support

The Attunity Connect Informix driver for Informix version 9 supports
two-phase commit and can fully participate in a distributed transaction
when the transaction environment property convertAllToDistributed is
set to true. (The default Informix driver works with Informix version
7.x and does not support two-phase commit. For details about changing
the driver refer to "Checking the Informix Installation" on page 427.)

" Transaction logging must be enabled in the Informix database, or transactions
are not supported by the driver (the driver is always in auto commit mode).

You use Informix with its two-phase commit capability through an XA
connection.The daemon server mode must be configured to
Single-client mode (see "Server Mode" on page 680).

To use distributed transactions with Informix, use DBAccess to change
the locking level of tables to row level locking. Also, from an
ODBC-based application, ensure that AUTOCOMMIT is set to 0.

" An Informix client on a PC cannot use MTS as the transaction manager. MTS
can be used as the transaction manager when Informix is on the server only.

Isolation Levels and Locking

The Attunity Connect Informix driver supports the following isolation
levels:

! Dirty read
! Committed read
! Cursor stability

Timestamp Datetime year to second

Tinyint Smallint

Varchar(m) Varchar2(m)

CREATE TABLE Informix

 431

Ingres and Ingres II (OpenIngres) Drivers
! Repeatable read

" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

Informix supports page level locking.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

Ingres and Ingres II (OpenIngres) Drivers
The following sections provide information about the Attunity Connect
Ingres and Ingres II (OpenIngres) drivers:

! Setting Up the Binding
! Mapping Ingres and Ingres II Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

" Use the CONVERT function (see "Data Type Conversion Functions" on page
739) to ensure that data types match when using the Ingres LOCATE function
(which is equivalent to the Attunity Connect POSITION function).

Setting Up the Binding

! To connect to Ingres data:

The Ingres data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select OpenIngres (Ingres II) or Ingres for the Type field.
! Specify the connect string as follows:

vnode::database_name

 432

Ingres and Ingres II (OpenIngres) Drivers
Where:

vnode – The name of the virtual node which is used by the
Ingres II client to access a remote networked Ingres II server.
You can retrieve a list if the available nodes on the machine by
running the Ingres net_util utility.
"If you specify only database name, omitting vnode name, the driver

binds to the specified local database.

Database name – The name of the database. You can specify a
logical name (environment variable in UNIX) instead of the
database name if the logical database is distributed among
several physical databases. The Ingres driver translates the
logical name before binding. For example, a logical name
(ALL_SITES) can be defined to use as the Database name for a
logical database distributed among two physical databases
(BOSTON_DB and PARIS_DB), as follows:

If you want to connect to a particular Ingres class-server
instance that is already defined, specify the following in the
Database name field:

database/Ingres_instance

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

Ingres:

caseSensitive="true|false" – Specifies whether the data is case
sensitive.

dbName="string" – (Database name in the connect string) The name
of the virtual node which is used by the Ingres client to access a
remote networked Ingres II server and the name of the database
with the format vnode::database_name. You can specify a logical
name (environment variable in UNIX) instead of the database name
if the logical database is distributed among several physical
databases. The Ingres driver translates the logical name before
binding. For example, a logical name (ALL_SITES) can be defined to
use as the Database name for a logical database distributed among
two physical databases (BOSTON_DB and PARIS_DB), as follows:

OpenVMS DCL
define ALL_SITES BOSTON_DB,PARIS_DB

UNIX C-shell
setenv ALL_SITES BOSTON_DB,PARIS_DB

OpenVMS DCL
define ALL_SITES BOSTON_DB,PARIS_DB

 433

Ingres and Ingres II (OpenIngres) Drivers
If you want to connect to a particular Ingres class-server instance
that is already defined, specify the following in the Database name
field:

database/Ingres_instance

timezone="n" – Sets the time (in hours) on the client to be the same
as the time on the server, when the two times are different. For
example, if the client time is 13:00 and the server time is 9:00 set
<Properties "timezone=4" />. A negative number sets the number
of hours ahead of the client.

Ingres II (Open Ingress):

isolationLevel ="value" – Specifies the default isolation level for the
data source. Values are:
! readUncommitted – Specifies that corrupt data is not be read.

This is the lowest isolation level.
! readCommitted – Specifies that only the data committed before

the query began is displayed.
! repeatableRead – Specifies that data used in a query is locked

and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolationted serially.
Treats data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

lockWait="n" Specifies how many seconds a transaction waits before
timing out when it encounters a locked row, as follows:

-1 – sets the transaction to wait indefinitely (the default).

0 – sets the transaction to wait the minimum amount of time
possible.

n (>0) – specifies how many seconds the transaction waits.

openIngresConnect="string" – (Connect String in the connect string)
The name of the virtual node which is used by the Ingres client to
access a remote networked Ingres II server and the name of the
database with the format vnode::database_name. You can specify a
logical name (environment variable in UNIX) instead of the
database name if the logical database is distributed among several
physical databases. The Ingres driver translates the logical name
before binding. For example, a logical name (ALL_SITES) can be
defined to use as the Database name for a logical database

UNIX C-shell
setenv ALL_SITES BOSTON_DB,PARIS_DB

 434

Ingres and Ingres II (OpenIngres) Drivers
distributed among two physical databases (BOSTON_DB and
PARIS_DB), as follows:

readLockMode="read | write" – Specifies the lock mode as either
read only or writable.

timezone="n" – Sets the time (in hours) on the client to be the same
as the time on the server, when the two times are different. For
example, if the client time is 13:00 and the server time is 9:00 set
<Properties "timezone=4" />. A negative number sets the number
of hours ahead of the client.

Checking Ingres
Environment Variables

For Ingres II, check that the II_SYSTEM environment variable is
correctly set and that the Ingres database is readable by
Attunity Connect. For example, set the following in the nav_login or
site_nav_login file on a UNIX machine:

setenv II_SYSTEM /ingsw
setenv PATH
$II_SYSTEM/ingres/utility:$II_SYSTEM/ingres/bin:$PATH
setenv PATH usr/openwin/bin:$PATH
setenv LD_LIBRARY_PATH
$II_SYSTEM/ingres/lib:$LD_LIBRARY_PATH

Make sure that the Ingres user has enough privileges or the driver
returns the following error: II_SS01007_PRIV_NOT_GRANTED. Use the
Ingres accessdb utility to add or modify users so that they have the
correct privileges.

Mapping Ingres and Ingres II Data Types

The following table shows how Attunity Connect maps Ingres and
Ingres II data types to OLE DB and ODBC data types:

OpenVMS DCL
define ALL_SITES BOSTON_DB,PARIS_DB

UNIX C-shell
setenv ALL_SITES BOSTON_DB,PARIS_DB

Ingres OLE DB ODBC

Bytea DBTYPE_BYTES SQL_LONGVARBINARY

Char (m<256), C DBTYPE_STR SQL_CHAR

Char (m>255), C DBTYPE_STR SQL_LONGVARCHARb

 435

Ingres and Ingres II (OpenIngres) Drivers
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Ingres and Ingres II data types:

Date DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Float, Float8 DBTYPE_R8 SQL_DOUBLE

Float4 DBTYPE_R4 SQL_REAL

Integer, Integer4 DBTYPE_I4 SQL_INTEGER

Integer1 DBTYPE_I1 SQL_TINYINT

Integer2 DBTYPE_I2 SQL_SMALLINT

Money DBTYPE_R8 SQL_DOUBLE

Long Byte (not supported)

Long Varchar (not supported)

SmallInt DBTYPE_I2 SQL_SMALLINT

Text DBTYPE_STR SQL_VARCHAR

Varchar (m<256) DBTYPE_STR SQL_CHAR

Varchar (m>255) DBTYPE_STR SQL_LONGVARCHARb

a. Only supported for Ingres II.
b. Precision of 2147483647.If the <odbc longVarcharLenAsBlob> parameter is set to

true in the Attunity Connect environment settings, then precision of m.

Ingres OLE DB ODBC

CREATE TABLE Ingres

Binary Bytea

Char[(m)] Char[(m)]

Date Date

Double Float

Float Real

 436

Ingres and Ingres II (OpenIngres) Drivers
Stored Procedures

The Attunity Connect Ingres II driver supports Ingres II stored
procedures.

To retrieve output parameters and the return code from the stored
procedure, use the "? = CALL" syntax, described on page 728.

Transaction Support

The Attunity Connect OPENINGRES (Ingres II) driver supports
two-phase commit and can fully participate in a distributed transaction
when the transaction environment property convertAllToDistributed is
set to true.

You use Ingres II with its two-phase commit capability through an XA
connection.The daemon server mode must be configured to
Single-client mode (see "Server Mode" on page 680).

" To use distributed transactions with Ingres II from an ODBC-based application,
ensure that AUTOCOMMIT is set to 0.

Image Long Bytea

Integer Integer

Numeric [(p[,s])] Float

Smallint Smallint

Text Long Varchara

Time Date

Timestamp Date

Tinyint Integer1

Varchar(m) Varchar(m)

a. Only supported for Ingres II.

CREATE TABLE Ingres

 437

Invoking APIs to Applications
Isolation Levels and Locking

The Attunity Connect Ingres driver does not support isolation levels.

The Attunity Connect Ingres II driver supports the following isolation
levels:

! Read uncommitted

! Read committed

! Repeatable read

! Serializable read

Ingres and Ingres II support page level locking. Updates are performed
with the no wait flag – if one of the records is locked, the update
operation fails (note that this value cannot be changed - once a record
is locked all other update operations fail).

In accordance with ANSI standards, if the user or application specifies
the read-uncommitted isolation level, Ingres and Ingres II by default
grant read-only access. If the user or application specifies a different
isolation level, Ingres by default grants read-write permission.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

Invoking APIs to Applications
Attunity Connect includes APIs that enable invoking Attunity Connect
application adapters, either locally or on a remote machine directly
from a C or COBOL program. See "C and COBOL APIs to Applications"
on page 147.

Transactions calling the APIs are provided for CICS and IMS/TM. For
details, see "CICS as a Client – Invoking an Application Adapter
(OS/390 and z/OS Only)" on page 168 and "IMS/TM as a Client –
Invoking an Application Adapter (OS/390 and z/OS Only)" on page 416.

 438

IRPCD
IRPCD
The Attunity Connect daemon (also called IRPCD) authenticates
clients, authorizes requests for a server process within a certain server
workspace and provides the clients with the required servers. The
daemon is built as a standard single-threaded RPC server. Two types of
messages invoke the daemon's services:

! Remote requests to connect to a server and to receive a connection
handle.

! Administrative commands from the daemon's command interface.
See "Daemon Command Interface" on page 222.

Also see: "Daemon" on page 213, "Daemon Configuration" on page 227.

Isolation Levels
The isolation level supported depends on the data source. For details,
refer to the specific data source. The default isolation level is Read
Committed. Thus, you see other users' changes only after they have
been committed, regardless of the state of your own transaction.

In OLE DB, when working in single-row deferred update mode
(IRowsetChange), no change is visible outside this rowset until an
Update command is issued; at that point the isolation semantics
become data source-dependent.

The isolation level can be specified in one of the following ways:

! In the binding settings – Specify the isolation level as part of the
<datasource> entry, as follows:

isolationLevel="level"

After setting the binding, you can set driver properties: right-click
the data source and choose Edit data source and then select the
Properties tab.

level can be one of the following:
! readUncommitted
! readCommitted
! repeatableRead
! serializable

! By using the sp_config_datasource procedure:

call nav_proc:sp_config_datasource('ds_name',
'<Properties Isolation_Level="level"/>') ;

 439

Isolation Levels
where ds_name is the name of the data source as specified in the
binding settings.

level can be one of the following:
! read_uncommitted
! read_committed
! repeatable_read
! serializable

If you set an isolation level that is not supported by the data source,
Attunity Connect defaults to the next highest isolation level for the data
source.

The isolation level is used only within a transaction.

 440

JCA

JCA
You can use an Attunity Connect application adapter via the
Attunity Connect implementation of the Sun J2EE Connector
Architecture (JCA) API.

Full details of the Attunity Connect JCA implementation are provided
in the Attunity Connect thin client documentation.

JDBC
Attunity Connect provides JDBC support to allow Java applets,
servlets, and applications, using the JDK version 1.3 and higher, to
access data sources via Attunity Connect. Attunity Connect provides a
Type III (pure Java) JDBC driver for use with JDBC version 2.

Full details of the Attunity Connect JDBC implementation are provided
in the Attunity Connect thin client documentation.

Joining Data from Multiple Data Sources in a Single Query
In the SQL, differentiate between data sources by using the data source
names that are assigned to the data sources in the binding settings.
Separate this data source name and the table name with a colon (:). For
example, if you have data sources called DEMO and DEMO1 defined in
the binding configuration, part of the SQL can look like the following:

select * from demo:table,demo1:file1

Example

The following example joins data from an Oracle relational database
and an RMS file system:

SELECT au_lname, au_fname from Oracle:authors
 where city = ANY
 (SELECT city FROM rms:publishers)

 441

Languages
Languages
See "National Language Support (NLS)" on page 471.

Legacy Plug Adapter
The Attunity Connect Legacy Plug adapter provides access to legacy
applications using interfaces such as XML, JCA and COM.

" The Legacy Plug adapter enables executing a program via JCA, XML or on a
Microsoft Windows platform from a COM-based application, as opposed to the
Procedure driver, which enables an SQL frontend to the program. For details
of the Procedure driver, refer to "Procedure Driver (Application Connector)" on
page 600.

If the procedure returns an array, you must use the Legacy Plug adapter and
not the PROCEDURE driver.

The following sections provide information about the Attunity Connect
Legacy Plug adapter:

! Setting Up the Binding
! The Adapter Definition for a Legacy Plug Adapter

Setting Up the Binding

! To connect to a legacy application:

The Legacy Plug adapter is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.
! Specify a name for the adapter in the Name field.
! Select Legacy Plug for the Type field.

After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

dllName (Optional) – The path and name of the DLL. If the DLL
information is not specified here it must to be specified for each
interaction in the adapter definition, as described below.

 442

Legacy Plug Adapter
The Adapter Definition for a Legacy Plug Adapter

After setting up the binding, write an adapter definition for the Legacy
Plug adapter, which describes, for each required interaction, the
function name to be called.

The schema part of the adapter definition can be generated from an
existing COBOL copybook within Attunity Studio. After the definition is
generated, you can add the program to the interaction in the Source
XML. For details of the COBOL import, refer to "COBOL Copybook
Import for Application Adapter Definitions" on page 181.

In the Attunity Studio Metadata perspective right-click the adapter
and choose Edit definition from the popup menu. Use the Source tab to
write or modify the adapter definition.

The <interactionSpec> statement specifies the program that contains
the code that the interaction describes.

" For details about the definition syntax, refer to "Application Adapter Definition"
on page 93.

Example

<interaction name=’mathInOut’ mode=’sync-send-receive’
 input=’MATH_INOUT_IN’ output=’MATH_INOUT_OUT’>
 <interactionSpec dllName=’D:\Program Files\Attunity\Connect\
 Samples\Prc_Samples.dll’
 symbolName=’math_inout’/>
</interaction>

where:

dllName (Optional) – The path and name of the DLL. If the DLL
information is not specified here it must to be specified in the binding
configuration, as described above.

symbolName (Optional) – The function in the program to be executed. If
a value is not specified, symbolName defaults to the interaction name.

The schema definitions specify the input and output structure fields
and records for each interaction. The field and record parameters
contain information regarding the method (using the mechanism
attribute) by which this field is passed/received by the procedure and
the procedure’s argument number (using the paramnum attribute).

For example:

<schema version=’1.0’>
 <record name=’MATH_INOUT_OUT’>

 443

Local Data
 <field name=’SUM1’ type=’int’ paramnum=’4’/>
 <field name=’SUBTRACT’ type=’int’ paramnum=’1’/>
 <field name=’MULTIPLY’ type=’int’ paramNum=’2’/>
 <field name=’DIVIDE’ type=’int’ paramNum=’3’/>
 </record>

 <record name=’MATH_RETURN_OUT’>
 <field name=’SUM1’ type=’int’ paramNum=’0’ mechanism=’byValue’/>
 <field name=’SUBTRACT’ type=’int’ paramNum=’1’/>
 <field name=’MULTIPLY’ type=’int’ paramNum=’2’/>
 <field name=’DIVIDE’ type=’int’ paramNum=’3’/>
 </record>
</schema>

where:

mechanism – The method by which the field is passed or received by the
procedure. The mechanism attribute can be set to byValue and
byReference. For outer-level (non-nested) parameters, structure
parameters (for the structure itself, and not structure members), and
variant parameters, the default value is byReference.

When a parameter is used for both input and output, the mechanism
must be set as the same for both the input and the output.

paramNum – The procedure argument number. The paramNum
attribute can be specified as 0 to indicate it is a return value, 1 to
indicate it is first argument, and so on.

If paramNum is specified at the record level, it cannot be specified for
any of the record members (at the field level).

Local Data
Local data is data that does not require the Attunity Connect daemon
to access the data.

" When using the JDBC driver, even if the data resides on the same machine as
the application, access to the data is via the Attunity Connect daemon and thus
the data is considered to be remote.

LOCAL_COPY Metadata (Metadata Caching)
When access to a data source via its native metadata is slow but the
metadata is static, performance can be improved by creating a local
copy (“snapshot”) of the data source metadata and then run queries
using this metadata instead of the data source metadata.

 444

Locking Considerations
Examples of when this is beneficial is when the native metadata is not
up to date or information like statistics is not available.

! To make a copy of data source metadata:

1. Display the metadata for the data source in the Metadata
perspective of Attunity Studio.

2. Right-click the data source and choose Manage Cached Metadata
from the popup menu.

3. Select the tables that you want to use a local copy and move them
to the right pane.

4. Click Finish. The tables are displayed under the data source.
" The table symbol changes from the relational data source symbol to a data

source symbol that requires Attunity Connect metadata.

The localCopy property in the data source definition in the binding
configuration is set to true.

Only the tables that have cached metadata are displayed in the
explorer tree. To revert back to using non-cached metadata, you can
either right-click individual tables and choose Delete Cached Table
from the popup menu or, for all the tables, right-click the data source
and choose Set Metadata followed by Native Metadata from the popup
menu.

Also see: "NAV_UTIL LOCAL_COPY" on page 522.

Locking Considerations
SQL UPDATE and DELETE statements are automatically executed in
pessimistic locking mode.

With SQL SELECT statements, Attunity Connect supports the following
locking modes:

! Optimistic locking
! Pessimistic locking
! No locking

With chapters, child rowsets cannot be updated if the parent rowset is
locked.

" Refer to the specific driver for additional locking information.

Optimistic Locking With optimistic locking, records are locked just before an update
operation. Before locking the row, Attunity Connect checks that
another user hasn't changed the specified data.

 445

Locking Considerations
Optimistic locking has the following advantages over pessimistic
locking:

! Performance is improved when you use optimistic locking.
! Concurrency is ensured.

Pessimistic Locking With pessimistic locking, records are locked as they are read.
Pessimistic locking is slower than optimistic locking.

" When connecting to data via Microsoft Jet or SQL Server, you must open a
transaction before issuing the query.

No Locking With no locking, records are not locked and are read-only.

JDBC Locking Considerations

Attunity Connect supports optimistic locking.

ODBC Locking Considerations

Attunity Connect establishes locking using SQLSetStmtOptions with
fOption = SQL_CONCURRENCY specified.

The following locking values are available for vParam:

SQL_CONCUR_VALUES – Optimistic locking (the locking itself is done
during SQLSetPos if fLock = SQL_LOCK_EXCLUSIVE is specified).

" SQL_CONCUR_ROWVER is treated as if you specified
SQL_CONCUR_VALUES.

SQL_CONCUR_LOCK – Pessimistic locking.

SQL_CONCUR_READ_ONLY – Read-only mode. This is the default value.

Example

To enable pessimistic locking:

SQLSetStmtOption(hstmt, SQL_CONCURRENCY,
SQL_CONCUR_LOCK)

 446

Logging
ADO Locking Considerations

Attunity Connect establishes locking using LockType property of the
Recordset object.

The following locking values are available:

adLockReadOnly (default) – Read-only mode.

adLockPessimistic – Pessimistic locking.

adLockOptimistic – Optimistic locking.

adLockBatchOptimistic – Optimistic batch updates. Required for batch
update mode as opposed to immediate update mode.

" These locking values should be used with ADO version 2.1 and higher.

Logging
Attunity Connect provides the following logs:

! NAV log – Logs operations of Attunity Connect. The settings for this
log are defined in the debug category of the Attunity Connect
environment properties. The default log file is called NAV.LOG and
is located in the TMP directory under the directory where Attunity
Connect is installed.

For additional information see "debug Category" on page 327.

! Daemon Log – Logs the activity of an Attunity Connect daemon. The
Daemon log is defined in the Daemon Logging tab accessed via the
Configuration perspective.

The Daemon Logging tab defines the daemon log file settings and
the location where the log is saved.

For additional information see "Daemon Logging" on page 231.
! Server Log – Logs the activity of server processes of a workspace.

The server log is defined via the WS Logging tab in the
Configuration perspective.

For additional information see "Workspace Logging" on page 244.

The daemon activity on any machine running a daemon and defined in
Attunity Studio can be monitored using the Runtime Manager
perspective. See "Runtime Perspective" on page 658.

 447

Metadata
Metadata
Metadata is used to describe the data sources, adapters and events
accessed by Attunity Connect.

Data Sources Metadata defines the structure of the data and where it is located.
Attunity Connect relies on the native metadata of the data source when
connecting to relational data sources (such as Informix, Oracle and
Sybase) and some non-relational data sources (such as Adabas, using
PREDICT). For other data sources whose metadata is not readable by
Attunity Connect or which do not have metadata, Attunity Connect
requires its own metadata.

Attunity Connect metadata is additionally used to define metadata for
Attunity Connect procedures. (For information about Attunity Connect
procedures, see "Attunity Connect Procedure" on page 103.)

Attunity Connect metadata is stored in a proprietary data dictionary
called the Attunity Connect Data Dictionary (ADD). You need ADD for
each record or Attunity Connect procedure for which you need
metadata. The ADD definition for a record is viewable and updateable
via the Metadata perspective of Attunity Studio or via an XML file. The
ADD for each data source file or Attunity Connect procedure is stored in
a repository for the data source, on the machine where the data resides.

Applications Metadata defines the interactions for the application adapter and the
structures of any input and output records used by the interactions. The
metadata for each application adapter is stored in the SYS repository as
an adapter definition, on the machine where the data resides.

Events Metadata defines the interactions for the event and the structures of
any records used by the interactions. The metadata for each event is
stored in the SYS repository as an adapter definition, on the machine
where the data resides.

Also see: "ADD Supported Data Types" on page 38, "ADD Syntax" on page 48, "Application
Adapter Definition" on page 93, "Metadata Import Utilities for Data Sources" on page 452,
"Metadata Import Perspective" on page 448, "Metadata Perspective" on page 453.

 448

Metadata ADD Utilities
Metadata ADD Utilities
The NAV_UTIL utility includes the following utilities for handling
metadata:

! The LOCAL_COPY utility, which stores native metadata
information in the repository. (See page 522.)

! The GEN_ARRAY_TABLES utility, which creates metadata in the
repository for arrays, such that the arrays appear as virtual tables.
(See page 517.)

! UPDATE utility, which collects information about tables, indexes,
and optionally column cardinalities, for use by the Attunity
Connect Query Optimizer – See page 525. (This utility can be run
from within the Attunity Studio Metadata perspective – with the
Update button from the Statistics tab.)

Metadata Caching
See "LOCAL_COPY Metadata (Metadata Caching)" on page 443.

Metadata Import Perspective
Metadata for adapters, data sources and events can be imported and
saved using the Metadata Import perspective.

The Metadata Import perspective enables you to do the following:

! Import metadata for Enscribe, IMS/DB, RMS and VSAM data sources
using tailored import wizards.

! Import metadata for a data source, if one or more COBOL copybooks
exist, that describe the data source.

! Import the adapter definition for the CICS, IMS/TM and Tuxedo
application adapters using tailored import wizards.

! Import an adapter definition for an application adapter, if one or
more COBOL copybooks exist, that describe the input and output
records for the application.

! Import an adapter definition for events, if one or more COBOL
copybooks exist or for an event to Tuxedo, if one or more VIEW or
FML files exists, that describe the input record for the event.

 449

Metadata Import Perspective
! To import metadata:

1. In the Configuration perspective, right-click the adapter, data
source or event for which you want to import the metadata.

2. Choose Open import perspective from the popup menu.

The Metadata Import perspective opens with the selected adapter,
data source or event displayed in the explorer tree.
" Optionally, you can open the Metadata Import perspective and right-click

Adapters, Data sources or Events in the Metadata Import explorer to add
the adapter, data source or event that you want to import metadata for to
the explorer tree.

3. To import the metadata for the adapter, data source or event,
right-click the adapter, data source or event in the Metadata Import
explorer tree and select New Import.

4. In the New Metadata Import window specify the import name and
type and click Finish.

A metadata import wizard opens. The import is dependent on the
adapter, data source or event. Thus, some imports have fewer steps
than other imports and require different information. The wizard
guides you through the import.

The metadata can be imported in stages and does not have to be
imported all at once. You can import some of the metadata and at a
later stage import more of the metadata.

 450

Metadata Import Perspective
For example, if the metadata is provided in a number of COBOL
copybooks, you can import the metadata from a selected number of
these copybooks and later import from other copybooks.

" Imported metadata it is independent of it’s origin. Therefore, any changes
made to the source metadata is not applied to the Attunity Connect metadata.
You can also save a metadata import for reuse. To rerun an import, right-click
on the import item in the Metadata Import explorer and choose Open to rerun
the import step by step using the previously entered information or Replay to
rerun the import in background.

Importing Adapter Metadata

The following table maps the steps needed to import adapter metadata.

For additional information on importing metadata, refer to specific
adapters.

CICS COBOL
(Generic
Import)

IMS/TM Tuxedo

Get Input Files
Specify the files for the adapter.

+ + + +

Add Records
Add specific record buffer definitions.

+

Apply Filters
Apply specific filters to the input files.

+ + + +

Add Interactions
Interactions defined in the input files are added.

+ + + +

Generate Final Metadata
Prepares the final XML adapter definition.

+ + +

Import Metadata
Imports the adapter definition to the machine where the
adapter resides.

+ + + +

 451

Metadata Import Perspective
Importing Data Source Metadata

The following table maps the steps needed to import data source
metadata.

COBOL
(Generic
Import)

Enscribe IMS/DB RMS VSAM VSAMCICS

Get Input Files
Specify the files for the data source.

+ + + + + +

Apply Filters
Apply specific filters to the input files.

+ + + + + +

Select Tables
Select the tables for which you want to
generate metadata.

+ + + + + +

Match DBD to COBOL
Match the table to the COBOL file.

+

Resolve Table Names
In cases where there are multiple
tables with the same name, match the
table names with the source input file.

+ + + + + +

Assign File Names
Assign the physical (VSAM) or logical
(VSAMVCICS) file names to the tables.

+ +

Create Indexes
The table indexes are created.

+ +

Assign Index File Names
Assign the index file names to the
tables.

+

Create PSB
Creates the metadata PSB file.

+

Create JCL
Creates a JCL template and submits
the DFHCSDUP batch utility program
to add the resource definitions to the
DFHCSD dataset.

+

 452

Metadata Import Utilities for Data Sources
For additional information on importing metadata, refer to the specific
data source entry.

Importing Event Metadata

The following maps the steps needed to import event metadata.

Metadata Import Utilities for Data Sources
Metadata for Enscribe, IMS/DB, RMS and VSAM and any data source
with COBOL copybooks describing the metadata can be imported via the
Metadata Import perspective of Attunity Studio.

" Adapter definitions for any application adapter or event with COBOL
copybooks describing the input and output records for the application can be
imported via the Metadata Import perspective of Attunity Studio.

Generate Final Metadata
Prepares the final XML defining the
metadata.

+ + + + + +

Import Metadata
Imports the metadata to the machine
where the data source resides.

+ + + + + +

COBOL
(Generic
Import)

Enscribe IMS/DB RMS VSAM VSAMCICS

Get Input Files
You specify the files defining the adapter.

Apply Filters
Specific filters can be appointed to the files.

Add Interactions
Interactions defined in the input files are added.

Generate Final Metadata
Generates the adapter definition from the supplied information.

Import Metadata
Imports the adapter definition to the machine where the adapter
resides.

 453

Metadata Perspective
Attunity Connect provides stand-alone utilities for importing existing
metadata for the following data sources:

Adabas DDM import (DDM_ADL) – imports Adabas non-PREDICT
metadata (nsd files) into ADD metadata.

BASIC mapfiles import (BAS_ADL) – produces ADD metadata from BASIC
mapfiles.

Btrieve DDF file import (BTR_ADL) – produces ADD metadata from
standard data dictionary files (DDF) files used to hold Btrieve
metadata.

DBMS Import (DBMS_ADL) – produces ADD metadata from a DBMS
database.

HP (Compaq) NonStop Enscribe Import (ADDIMP) – produces ADD
metadata for HP (Compaq) NonStop Enscribe data from a DDL
subvolume and COBOL copybooks. You can generate the metadata from
COBOL copybooks in Attunity Studio.

HP (Compaq) NonStop Enscribe Import (TALIMP) – produces ADD
metadata for HP (Compaq) NonStop Enscribe data sources from TAL
datafiles and a DDL subvolume.

RMS CDD Import (CDD_ADL) – extracts the information stored in an RMS
CDD directory into ADD metadata. You can generate the metadata from
COBOL copybooks in Attunity Studio.

Also see: "Metadata Import Perspective" on page 448.

Metadata Perspective
The Metadata perspective is used to view and modify Attunity Connect
metadata for data sources, application adapters and events.

1. In the Configuration perspective, right-click the adapter, data
source or event for which you want to manage the metadata.

2. Choose Edit metadata from the popup menu.

The Metadata perspective opens with the selected adapter, data
source or event displayed in the explorer tree.
" Optionally, you can open the Metadata perspective and right-click

Adapters, Data sources or Events node in the Metadata explorer to add
the adapter, data source or event that you want to import metadata for to
the explorer tree.

 454

Metadata Perspective
3. To edit the metadata for the adapter, data source or event
right-click the resource (such as the data source table) in the
Metadata explorer and select Edit.

Adapter Metadata

Adapters are edited using the following tabs:

General – Information about the adapter, such as the adapter name and
the way in which you connect to the adapter.

Interaction General and Interaction Advanced – Details of the Interaction.
The interaction Advanced tab is displayed for some adapters only, such
as the Database adapter.

Schema General – The general adapter schema details such as it’s name
and header.

Schema Record – The input and output record structures for the
adapter.

General Tab The General tab enables includes general information describing the
adapter and the connection to it.

 455

Metadata Perspective
This tab has the following fields:

Name – The name of the adapter definition. The definition name is
usually the same as the name representing the adapter in the binding.

Description – An optional description of the adapter.

Authentication mechanism – The authentication as:

! kerbv5
! none
! basic password

Max Request size – The maximum size, in bytes, for an XML ACX
request or response. Larger messages are rejected with an error.

Max Active connections – The maximum number of simultaneous
connections for an adapter (per process).

Max idle timeout – The maximum time, in seconds, that an active
connection can stay idle. After that time, the connection is closed.

Adapter Specifications – Adapter specific properties.

Interaction Tab The Interaction tab defines the general details of the interaction in
addition to its input and output definitions and additional information
specific to the interaction.

 456

Metadata Perspective
This tab has the following fields:

Name – The name of the interaction.

Description – An optional description of the interaction.

Mode – The interaction mode:
! sync-send-receive – The interaction sends a request and expects

to receive a response.
! sync-send – The interaction sends a request and does not expect

to receive a response.
! sync-receive – The interaction expects to receive a response.
! async-send – The interaction sends a request that is divorced

from the current interaction. This mode is used with events, to
identify an event request.

Input/Output Definitions – Identifies the input and output records.

Interaction Specific Parameters – Specific properties for the interaction.
When an Interaction Advanced tab is used, this section is not displayed.
The parameters shown are for a legacy plug adapter.

 457

Metadata Perspective
Interaction Advanced
Tab

The Interaction Advanced tab defines the complex interaction specific
details.

The fields in this tab are dependent on the specific adapter. In the above
screen the tab is displayed for the Database adapter and enables
building or modifying an SQL statement, as described in "To manually
create interactions:" on page 255.

 458

Metadata Perspective
Schema General Tab The Schema General tab defines the general attributes of the adapter.

Name – The name of the adapter.

Version – The schema version.

Header – A C header file with the data structures for the adapter. This
header file is used when the C API to applications is used.

 459

Metadata Perspective
Schema Record Tab The Schema Record tab defines the grouping of fields.

Fields list – Defines the single data item within a record.

Name – The name of the field

Type – The data type of the field. The following are valid data types:

Length – The size of the field including a null terminator, when the
data type supports null termination (such as the cstring data type).

Specifications – Defines specific field properties. To display the
properties, select the specific field in the Fields list.

Source Tab The metadata in its XML representation.

Binary Boolean Byte

Date Double Enum

Float Int Long

Numeric[(p[,s])] Short String

Time Timestamp

 460

Metadata Perspective
Data Source Metadata

Data source tables are edited using the following tabs:

General – Defines general information about the table, such as the table
name and the way the table is organized, and the location of the table.

Columns – Specifies the table columns and their properties. For
example, the column data type, size and scale.

Indexes – Enables you to specify the indexes of a table. The indexes are
described by the order of the rows they retrieve and the data source
commands used and the index type.

Statistics – Enables you to specify statistics for the table, including the
number of rows and blocks of the table.

" Attunity Connect provides a relational model for all data sources defined to it.
Thus, relational terminology is used, even when referring to non-relational data
sources. For example, the metadata for an RMS record is referred to as the
metadata for an RMS table.

Metadata for Data
Sources that Do Not
Require Attunity
Connect Metadata

The Metadata perspective can be used to display the metadata of any
data source, including those data sources with native metadata that
Attunity Connect uses to access the data (such as relational data
sources and Adabas).

Metadata for data sources with native metadata that Attunity Connect
uses to access the data can be viewed but not changed.

" Within Attunity Studio, an orange database symbol represents a data source
that requires Attunity Connect metadata. A table symbol over an orange
database symbol represents a data source that does not require Attunity
Connect metadata. A white database symbol represents a data source that
uses the Attunity Connect Virtual driver.

 461

Metadata Perspective
General Tab The General tab enables you to maintain information about the whole
table, such as the table name and the way the table is organized.

" The fields displayed are data source specific. Thus, some field are not shown
for some data sources.

This tab has the following fields:

Table name – The name of the table.

Comment – An optional description of the table.

Data file – The location of the file containing the table.

" The file name must include its suffix, except for CISAM and DISAM data, where
the suffix must not be specified. For example, for an RMS record, the value for
this field is similar to the following: DISK$2:[DB]COLLEGES.DAT

 462

Metadata Perspective
Organization – Specifies how the record represented by the table is
organized:

! Index
! Sequential
! Relative – Access to a specific record number of a relative file is

performed by using a pseudo column to specify the record position.
The hash symbol (#) is used to specify a pseudo column.

Examples
! SELECT * FROM colleges WHERE # = 6

! INSERT INTO
colleges(coll_id,coll_name,coll_status,#)
 VALUES(111,’New collage’,2,5)

! Unstructured – For use with Enscribe data (for details, see
"Enscribe Driver (HP (Compaq) NonStop Only)" on page 314.

Record format – Specifies how the record represented by the table is
formatted:

! Undefined
! Fixed
! Variable

Maximum record length – The maximum size, in bytes, of the record. This
field is useful when you want to use only part of the record.

" The value for this field is generated automatically for RMS, ENSCRIBE,
DISAM, CISAM and Btrieve data. For these data sources, leave this field
empty.

Delimited – The character that delimits fields.

" If you do not specify this field, ADD assumes that a comma (,) functions as the
delimiting character.

Quote character – The character that quotes a string field.

Filter expression – A WHERE clause added to every query using this
table. Specify a filter when more than one logical table is stored in the
same physical file, using the following syntax:

"$$$.expression"

where expression is a valid SQL expression combining one or more
constants, literals and column names connected by operators.

Example: "$$$.RECORD_TYPE = 80"

 463

Metadata Perspective
" In order to use a filter, the useTableFilterExpressions parameter in the
environment properties must be set to "true". (You specify this parameter in the
Query Processor node of the environment properties for the relevant binding
configuration, in the Configuration perspective of Attunity Studio.)

Columns Tab The Columns tab enables you to specify ADD metadata describing the
columns of the table.

This tab has the following fields:

Column name – The name of the column.

Data type – The data type of the column. Selecting this field displays a
drop-down box listing the possible data types. For details about these
data types, see "ADD Supported Data Types" on page 38.

Size – The size of the column

 464

Metadata Perspective
Scale – The definition depends on the data type:

For decimal data types – The number of digits to the right of the
decimal place. This number must not be greater than the number
of digits. The default value is 0.

For scaled data types – The total number of digits. The number must
be negative.

Offset – An absolute offset for the field in a record.

The buttons on the right of the grid are used for the following:

Insert – Inserts a column to the table.

Up – Moves a field below the next field in the list of columns.

Down – Moves a field above the previous field in the list of columns.

Rename – Enables renaming the selected column.

Delete – Deletes the selected column.

Find – Displays all the columns of the table, alphabetically. When a
column is selected and OK clicked, the column in the list of columns is
highlighted.

Calc offset – Calculates the absolute offset for each of the columns.

The following Column Properties specifically relate to a selected
column.

Alias – A name used to replace the default virtual table name for an
array. Virtual table names are generated by appending the array name
to the record name. Thus, when an array includes another array the
name of the nested array is the name of the record and the parent array
and the nested array. When the default generated virtual table name is
too long to be usable, specify an Alias to replace the long name.

Array dimension – The maximum number of occurrences of the group of
columns that make up the array.

Comment – A comment about the specific column.

Chapter of – Used for DBMS metadata and specifies that the set member
field is a chapter of an owner field. A value must be included when
accessing a set member as a chapter in an ADO application.

OnBit – The position of the bit in a BIT field and the starting bit in a BITS
field.

 465

Metadata Perspective
Empty value – The value for the field during an insert operation, when a
value is not specified.

Null value – The null value for the field during an insert operation, when
a value is not specified.

Subfield of – The value is generated automatically when you generate
ADD metadata from ADABAS data that includes a superdescriptor
based on a subfield. A field is created to base this index on, set to the
offset specified as the value of the Subfield start field.

" If a value in the Subfield start field is not specified, the subfield is set by default
to an offset of 1.

Subfield start – The offset within the parent field where a subfield starts.

DB command – Specific data source-specific commands for the column.

The following values can be selected for use by the columns:

Nullable – The current field can contain NULL values.

Updateable – The current field can be updated.

Explicit Select – The current field is not returned when you execute a
"SELECT * FROM..." statement. To return this field, you must
explicitly ask for it (in a query such as "SELECT NATION_ID, SYSKEY
FROM NATION" where SYSKEY is a field defined with explicitSelect).

" You cannot include the asterisk (*) in a query where you want to retrieve a field
defined with explicitSelect. That is, a statement such as "SELECT *, SYSKEY
FROM NATION" will not return SYSKEY.

You can disable this attribute by specifying the disableExplicitSelect attribute
for the data source in the binding.

Auto Increment – The current field is updated automatically by the data
source during an INSERT statement and shouldn’t be explicitly
specified in the INSERT statement. The INSERT statement should
include an explicit list of values. This attribute is used for fields such as
an order number field whose value is incremented each time a new
order is entered to the data source.

Hidden – The current field is hidden from users. The field is not
displayed when a DESCRIBE statement is executed on the table.

Non Selectable – The current field is never returned when you execute a
SQL statement. The field is displayed when a DESCRIBE statement is
executed on the table.

 466

Metadata Perspective
Blob – Specifies that the field contains a binary image or text data
(Binary Large Object). The data type for binary data is filler, and the
data type for text data is string. This attribute is relevant only for files
that are read by Attunity Connect.

Indexes Tab The Indexes tab enables you to specify ADD metadata describing the
indexes of a table.

" This tab contains information only if the Organization field in the Table tab is
set to Index.

This tab has the following fields:

Name – The names of existing indexes for the current table.

Order – The ordering of the rows retrieved by the index.

DB Command – Specific data source-specific commands for the index.

 467

Metadata Perspective
The following index or segment details can be specified:

Properties – Properties describing the index or segment. The list is
dependent on the data source. For details of the available properties,
refer to "Key Attributes" on page 69 and "Segment Attributes" on page
73.

The buttons on the right of the grid are used for the following:

Insert– Inserts an index to the table.

Rename Index – Enables renaming the selected index.

Delete – Deletes the selected index.

Statistics Tab The Statistics tab enables you to specify metadata statistics for a table.

The statistics can be updated using the update statistics utility (see
"Metadata Import Utilities for Data Sources" on page 452).

 468

Metadata Perspective
The Table group box enables you to specify the statistical information
for the table:

No. of Rows – The approximate number of rows in the table. If the value
is -1, the number of rows in the table is unknown (a value wasn’t
supplied and the update statistics utility was not run to update the
value). A value of 0 indicates that this table is empty.

No. of Blocks – The approximate number of blocks in the table.

" If neither the number of rows nor the number of blocks is specified for a table,
queries over the table might be executed in a non-optimal manner.

The Columns group box enables you to specify cardinality for each of
the columns in the table:

Column Name – The columns in the table.

Cardinality – The number of distinct values for the column. If the value
is -1, the number of distinct values for the column is unknown (a value
wasn’t supplied and the update statistics utility was not run to update
the value). A value of 0 indicates that there are no distinct values for
the column.

The Indexes group box enables you to specify cardinality for the
columns in each of the indexes in the table:

Indexes and Segments – The indexes and segments in the table.

Cardinality – The number of distinct key values in the index. If the value
is -1, the number of distinct key values in the index is unknown (a value
wasn’t supplied and the update statistics utility was not run to update
the value). A value of 0 indicates that there are no distinct key values
in the index.

 469

Metadata Perspective
Update – Opens the Metadata Statistics Update window:

where:

Type – The type of statistic information being added.
Estimated – An estimation of the amount of statistical
information returned.
Estimated with Rows – An estimation of the amount of statistical
information returned. Including an estimation of the number of
rows in the table. Specify the number in the text box. This
number is used to shorten the time to produce the statistics,
assuming that the value specified here is the correct value, or
close to the correct value.
"When the number of rows in the table is not provided, the number of

rows used is determined as the maximum value between the value
specified in the <tuning DsmMaxBufferSize> environment property and
the value set in the nRows attribute (specified as part of the metadata
for the data source).

Exact – The exact statistical information returned. Note that
this can be a lengthy task and can lead to disk space problems
with large tables.

Resolution – The level od the statistical information returned.
Default – Only information about the table and indexes is
collected. Information for partial indexes and columns is not
collected.
All Columns and Indexes – Information about the table, indexes,
partial indexes and columns is collected.

 470

Metadata Perspective
Select Columns and Indexes – Enables you to select the columns
and indexes you want to collect statistics for. In the enabled list
of columns and/or indexes left click those columns you want
included (you can use shift-click and control-click to select a
number of columns and/or indexes).

The statistics are updated on the server, enabling work to continue in
Attunity Studio. A message is displayed in Attunity Studio when the
statistics on the server have been updated.

" To update the statistics for more than one table at a time, use the UPDATE
utility. For details, see "NAV_UTIL UPDATE" on page 525.

Source Tab The metadata in its XML representation.

 471

National Language Support (NLS)
National Language Support (NLS)
Attunity Connect uses codepages to support different character sets.

Codepages are set in the following situations:

! When the character set only partially employs the standard Latin
character set.

! When Attunity Connect client and server use different codepages.
In this case, Attunity Connect must ‘translate’ the textual data as
it moves between the client and the server.

! When the textual data in a table (or in a particular column) is
encoded in a codepage different from the one used by the local
Attunity Connect.

! When reading/writing XML documents.

Attunity Connect recognizes three codepage categories:

! Single-byte codepages

In these codepages each character in the alphabet of a language is
encoded by exactly one byte. Single-byte codepages are typical of
western languages.

! Multi-byte codepages

In these codepages characters in the alphabet of a language may be
encoded by one or more bytes. Multi-byte codepages are typical in
languages of the far-east.

! Unicode (UTF-8 and UTF-16 are supported) – The universal
character encoding scheme.

Setting NLS Support

NLS support is specified via the following Attunity Connect
environment settings:

! language
! codepage

Attunity Connect also enables you to work with a field whose codepage
is other than that of the system codepage. For details, see "NLS Support
at the Field Level" on page 476.

OS/400 Platforms

! When using European languages that include additional characters
(such as the French). See "NLS Support on OS/400 Platforms" on
page 476.

 472

National Language Support (NLS)
! To define the language and codepage:

The language and codepage is set using Attunity Studio, in the
Configuration perspective.

1. In the Configuration perspective, right-click the machine with the
binding configuration you want to set.

2. Under the Bindings node, select the relevant binding configuration.
3. Right-click the binding configuration and choose Edit Binding.

The environment properties are listed in the Properties tab. The
language and codepage are set under the misc group.

4. In the Value field for the language property, specify one of the
following for the language required:

5. In the Value field for the codepage property, specify the codepage
required. The following table lists the supported codepages
according to language:

ARA – Arabic ENG – English
HEB – Hebrew JPN – Japanese
KOR – Korean SCHI – Simple Chinese
SPA – Spanish TCHI – Traditional Chinese

Language Supported
Codepage Values

Description

Arabic AR8ISO8859P6 ISO 8859-6 Arabic (ASCII)

AR8MSWIN1256 Windows Arabic

Q8CP NonStop Himalaya ASCII Arabic (ARCII)

English ASCII

EBCDIC

 473

National Language Support (NLS)
European D8EBCDIC273 EBCDIC codepage 273 8-bit Austrian German

DK8EBCDIC277 EBCDIC codepage 277 8-bit Danish

S8EBCDIC278 EBCDIC codepage 278 8-bit Swedish

I8EBCDIC280 EBCDIC codepage 280 8-bit Italian

WE8EBCDIC284 EBCDIC codepage 284 8-bit Latin American/Spanish

WE8EBCDIC285 EBCDIC codepage 285 West European

F8EBCDIC297 EBCDIC codepage 297 8-bit French

WE8EBCDIC500 EBCDIC codepage 500 West European

Hebrew IW8EBCDIC424 EBCDIC codepage 424 8-bit Latin/Hebrew (new EBCDIC)

IW8EBCDIC806 EBCDIC codepage 806 8-bit Latin/Hebrew (old EBCDIC)

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew (ASCII 8-bit) (also known as
codepage 862)

Japanese JA16SJIS or SJIS Shift-JIS 16-bit

JA16EUC or EUC EUC 16-bit

JA16VMS or SDECK Super DEC Kanji (EUC+) 16-bit

JA16DBCS IBM EBCDIC 16-bit with Latin characters

JA16EBCDIC930 IBM DBCS codepage 390 16-bita

Korean KO16KSC5601 KSC5601 16-bit

KO16DBCS IBM EBCDIC 16-bit

Simple
Chinese

ZHS16CGB231280 16-bit Simple Chinese

ZHS16DBCS IBM EBCDIC 16-bit Simple Chinese

Spanish WE8ISO8859P1 ISO 8859-1 Spanish (ASCII)

WE8EBCDICLATIN EBCDIC codepage with Spanish extensions

Language Supported
Codepage Values

Description

 474

National Language Support (NLS)
The following table lists the default codepages according to
machine:

The following table lists the names of codepages (as specified in the
codepage attribute of the Attunity Connect environment setting)

Traditional
Chinese

ZHT16BIG5 BIG5 16-bit Traditional Chinese

ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese

a. This codepage has no encoding for lowercase Latin letters. All resources should be defined in uppercase.

Language Supported
Codepage Values

Description

Default (ENG) ARA HEB JPN

HP (Compaq) NonStop ASCII Q8CP – JA16SJIS

IBM OS/390 and z/OS EBCDIC AR8ISO8859P6 IW8EBCDIC424 JA1616DBCS

IBM OS/400 EBCDIC AR8ISO8859P6 IW8EBCDIC424 JA1616DBCS

OpenVMS ASCII AR8ISO8859P6 – SDECK

UNIX – Sun ASCII AR8ISO8859P6 IW8ISO8859P8 JA16EUC

UNIX – Other ASCII AR8ISO8859P6 IW8ISO8859P8 JA16SJIS

Windows ASCII AR8ISO8859P6 IW8ISO8859P8 JA16SJIS

KOR SCHI SPA TCHI

HP (Compaq) NonStop KO16KSC5601 ZHS16CGB231280 WE8ISO8859P1 ZHT16BIG5

IBM OS/390 and z/OS KO16DBCS ZHS16DBCS WE8EBCDICLATIN ZHT16DBCS

IBM OS/400 KO16DBCS ZHS16DBCS WE8ISO8859P1 ZHT16DBCS

OpenVMS KO16KSC5601 ZHS16CGB231280 WE8ISO8859P1 ZHT16BIG5

UNIX – Sun KO16KSC5601 ZHS16CGB231280 WE8ISO8859P1 ZHT16BIG5

UNIX – Other KO16KSC5601 ZHS16CGB231280 WE8ISO8859P1 ZHT16BIG5

Windows KO16KSC5601 ZHS16CGB231280 WE8ISO8859P1 ZHT16BIG5

 475

National Language Support (NLS)
and their corresponding names when working with XML or a Java
Virtual Machine:

Codepage name XML encoding name Java file.encodinga

AR8ISO8859P6 ISO-8859-6 ISO8859_6

AR8MSWIN1256 Windows-1256 Cp1256

ASCII ISO-8859-1 ISO8859_1

D8EBCDIC273 – –

DK8EBCDIC277 EBCDIC-CP-DK –

F8EBCDIC297 ebcdic-cp-fr Cp297

EBCDIC US-EBCDIC Cp037

I8EBCDIC280 ebcdic-cp-it Cp280

IW8EBCDIC424 ebcdic-cp-he Cp424

IW8EBCDIC806 ebcdic-cp-heb-old Cp806

IW8ISO8859P8 ISO-8859-8 ISO8859_8

JA16SJIS Shift_Jis SJIS

JA16EUC EUC-JP EUC_JP

JA16VMS or SDECK VMS-JP –

JA16EBCDIC930 ebcdic-cp930-ja Cp930

JA16DBCS ebcdic-cp-ja Cp939

KO16KSC5601 EUC_KR EUC_KR

KO16DBCS ebcdic-cp-ko Cp933

Q8CP ISO-8859-6 ISO8859_6

S8EBCDIC278 ebcdic-cp-fi Cp278

WE8EBCDIC284 ebcdic-cp-es Cp284

WE8EBCDIC285 ebcdic-cp-gb Cp285

WE8EBCDIC500 ebcdic-cp-be Cp500

 476

National Language Support (NLS)
NLS Support at the Field Level

Attunity Connect enables you to work with a field whose codepage is
other than the system codepage. You do this by defining NLS support at
the level of a particular field, which involves two steps:

! Defining the data type of a field as nlsString.
! Specifying the nlsString parameter of the Attunity Connect

environment setting.

! To define a field's data type as nlsString:

A field is defined with a data type of nlsString using Attunity Studio, in
the Metadata perspective.

1. In the Configuration perspective, right-click the data source.
2. Choose Edit metadata from the popup menu.

The Metadata perspective opens with the selected data source
displayed in the explorer tree.

3. Select the table that contains the field, right-click and choose Edit
from the popup menu.

WE8EBCDICLATIN ISO-8859-1 ISO8859_1

WE8ISO8859P1 ISO-8859-1 ISO8859_1

ZHS16CGB231280 GB2312 Cp936

ZHT16BIG5 BIG5 Big5

ZHT16DBCS ebcdic-cp-ch Cp950

a. file.encoding is a Java Virtual Machine system property.

Codepage name XML encoding name Java file.encodinga

NLS Support on OS/400 Platforms

When running Attunity Connect on an AS/400 machine, using a
European Language (such as French), define an environment variable
called ACLANG, with the following structure:

euro:name_of_codepage

For example, to set an AS/400 machine to use French, set the ACLANG
variable as follows:

euro:F8EBCDIC297

 477

National Language Support (NLS)
4. In the Columns tab, select the field and specify nlsString as the
data type. For details about the Columns tab, see "Columns Tab" on
page 463.

! To define the nlsString environment properties:

The language and codepage is set using Attunity Studio, in the
Configuration perspective.

1. In the Configuration perspective, right-click the machine with the
binding configuration you want to set.

2. Under the Bindings node, select the relevant binding configuration.
3. Right-click the binding configuration and choose Edit Binding.

The environment properties are listed in the Properties tab. The
nlsString property is set under the misc group.

4. In the Value field for the nlsString property, specify the name of the
codepage and, optionally, a comma and whether the character set
reads from right to left (as in middle eastern character sets).

The default is false (read from left to right).

Examples

Specifying the following in the Value field defines a Japanese EUC
16 bit code page:

JA16EUC

Specifying the following in the Value field defines an Israeli
standard 960 7-bit Latin/Hebrew (ASCII 7-bit), where the character
set reads from right to left:

IW7IS960,true

See "NLS and 7-Bit Hebrew" on page 480 for more details about
working with 7-bit Hebrew.

NLS Support Across Machines with Different Codepages

The daemon must be set to recognize requests from a machine with a
codepage that is different from the codepage on the machine where the
daemon is running.

! To define the daemon codepage:

The language and codepage is set using Attunity Studio, in the
Configuration perspective.

1. In the Configuration perspective, right-click the machine with the
daemon you want to set.

2. Under the Daemons node, select the daemon configuration.

 478

National Language Support (NLS)
3. Right-click the daemon configuration and choose Edit Daemon.
4. In the Default language field in the Daemon Control tab, choose

the language. The following values are available:
! English (the default)
! Hebrew
! Japanese
! Korean
! Simple Chinese
! Traditional Chinese

" When mapping between Unicode and a local codepage, unrecognized
Unicode characters are identified in the converted data with a question mark
(?).

NLS and XML

XML support for different codepages is determined by the encoding
parameter in the first line of the XML. The following table lists the
names of codepages (as specified in the codepage attribute of the
Attunity Connect environment setting) and their corresponding names
when working with XML:

Codepage name XML encoding name

ASCII ISO-8859-1

EBCDIC US-EBCDIC

JA16SJIS Shift_Jis

JA16EUC EUC-JP

JA16VMS VMS-JP

JA16SDECK VMS-JP

JA16EBCDIC930 ebcdic-cp930-ja

JA16DBCS ebcdic-cp-ja

KO16KSC5601 EUC_KR

KO16DBCS ebcdic-cp-ko

IW8EBCDIC424 ebcdic-cp-he

IW8EBCDIC806 ebcdic-cp-heb-old

 479

National Language Support (NLS)
Example

The following example shows an XML document using the JA16SJIS
codepage (specified as Shift_Jis in the XML document):

<?xml version="1.0" encoding='Shift_Jis'?>
<acx type="request" >
 <connect adapter="query"
 idleTimeout="60" persistent="false">
 </connect>
 <execute>
 <query >
 select * from disam_sj:nv_dept_."__
 </query>
 </execute>
</acx>

IW8ISO8859P8 ISO-8859-8

ZHS16CGB231280 GB2312

ZHT16BIG5 BIG5

ZHT16DBCS ebcdic-cp-ch

D8EBCDIC273

DK8EBCDIC277 EBCDIC-CP-DK

S8EBCDIC278 ebcdic-cp-fi

I8EBCDIC280 ebcdic-cp-it

WE8EBCDIC284 ebcdic-cp-es

WE8EBCDIC285 ebcdic-cp-gb

F8EBCDIC297 ebcdic-cp-fr

WE8EBCDIC500 ebcdic-cp-be

Codepage name XML encoding name

 480

National Language Support (NLS)
NLS and 7-Bit Hebrew

7-bit Hebrew data can only be applied to fields defined as nlsString (see
"NLS Support at the Field Level" on page 476).

" Setting the definitions to enable working with 7-bit Hebrew must be done both
on the server and the client.

! To define the 7-bit Hebrew environment setting:

1. In the Configuration perspective, right-click the machine with the
binding configuration you want to set.

2. Under the Bindings node, select the relevant binding configuration.
3. Right-click the binding configuration and choose Edit Binding.

The environment properties are listed in the Properties tab. The
language and nlsString properties are set under the misc group.

4. In the Value field for the language property, specify HEB for the
language required.

5. In the Value field for the nlsString property, specify IW7IS960 for
the codepage followed by a comma and true, since the character set
reads from right to left:

IW7IS960,true

SQL Functions For Use With Graphic Strings

The following string functions are available when using graphic
strings:

! MBLENGTH
! MBPOSITION
! MBSUBSTR

These functions use characters instead of bytes when executing the
function. For details, refer to "String Functions" on page 746.

In addition, the TO_GRAPHIC data type conversion function is available
to convert a single byte string to a double byte graphic string. For
details, refer to "Data Type Conversion Functions" on page 739.

 481

National Language Support (NLS)
Mapping to an Unsupported Codepage

To map to and from a codepage not supported by Attunity Connect with
a codepage supported by Attunity Connect, do the following:

! Define a text file that maps the required codepage to the supported
codepage.

! Use the NAV_UTIL CODEPAGE utility to generate a binary file with
this mapping as follows:

nav_util CODEPAGE text_file

This generates a binary file named <name of the language>.cp, where
<name of the language> is specified as the value for the NAME
parameter in the text file whose syntax is described below.

The structure of the text file defining the mapping is as follows:

; This file defines the xxx language and related codepages for
; Attunity Connect
;
; To generate the xxx.cp file from this file use the following command
; (example for Windows):
;
; $ nav_util codepage xxx.txt
;
; The xxx.cp file is written to NAVROOT/def.
;
; [LANGUAGE] - Section defining general language properties
;
; NAME - The name of the defined language used in the binding properties
; the name of the generated .cp file in the NAVROOT/def directory.
; BASE - The base codepage for the language. All codepage tables
; defined in this file relate to conversions to/from this base codepage.
; Usually, the base codepage is selected based on several considerations:
; - ASCII based (rather than EBCDIC based)
; - Common in use
; - Contain all required characters and symbols
; MS_WIN_CP - The Microsoft Windows codepage number to be used for this
; language. It must match the codepage used as the machine codepage in
; the environment definition.
;
[LANGUAGE]
NAME = XXX
BASE = BASE_CODEPAGE
MS_WIN_CP = nnnn

 482

National Language Support (NLS)
; [CODEPAGES] - Section defining new codepages
;
; <codepage-name> = <conversion-table-name> - Each entry defines a new
; codepage and the conversion table to use for conversions from/to the
 base codepage. The tables mentioned here are defined later in this file.
;
[CODEPAGES]
CODEPAGE1 = CONVERSION1
CODEPAGE2 = CONVERSION2

; [DEFAULTS] - Section defining default codepages per platform
;
; <platform-name> = <codepage-name> - Each entry defines a default
; codepage for a platform. The last entry may specify the wildcard ’*’
; as a platform to signify 'other platforms not specifically listed'
;
[DEFAULTS]
OS390 = CODEPAGE1
AS400 = CODEPAGE1
* = CODEPAGE2

; [XML-ENCODING] - Section defining encoding names for use in generated
; XML documents
;
; <xml-encoding-name> = <codepage-name> - Each entry defines an XML
; encoding name for a given codepage name. Thus, if a codepage is in
; effect, the XML encoding name used is determined in this section.
;
[XML-ENCODING]
ISO-8859-8 = CODEPAGE2
US-EBCDIC = CODEPAGE1

; [ALIAS] - Section defining codepage aliases.
;
; <alias-name> = <codepage-name> - Each entry of this form defines a
; codepage alias.
;
[ALIAS]
ISO-8859-8 = CODEPAGE2
ASCII = CODEPAGE2
US-EBCDIC = CODEPAGE1

; [<conversion-table-name>] - Sections with the name of a conversion
; table define the conversion tables used for converting values between
; the base codepage and the defined codepage. There are as many sets of
; conversion tables (two per codepage) as there are codepages to map.
;

 483

National Language Support (NLS)
 There are two tables defined per codepage:
; - The 'F' table (lines starting with Fi, i=0..F) describes the
; conversion From the base codepage to the defined codepage.
; - The 'T' table (lines starting with Ti, i=0..F) describes the
; conversion To the base codepage from the defined codepage.
;
; For example, consider the character 65 Dec (41 Hex) in the base
; codepage. To find its value in the defined codepage, look for the line
; starting with "F4 =" and find the 2nd value on the line (the first value
; refer to 40 Hex, the second to 41 Hex etc.).
; In a similar manner, to convert from the defined codepage to the base
; codepage, use the ’T’ table.

; Conversion table
[CODEPAGE2]
; 0 1 2 3 4 5 6 7 8 9 A B C D E F
F0 = "00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F"
F1 = "10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F"
F2 = "40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61"
...
FE = "50 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96"
FF = "97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB B9 EA BB 41"

; 0 1 2 3 4 5 6 7 8 9 A B C D E F
T0 = "00 01 02 03 EC 09 CA 7F E2 D2 D3 0B 0C 0D 0E 0F"
T1 = "10 11 12 13 EF 0A 08 CB 18 19 DC D8 00 1D FD 1F"
...
TE = "5C F6 53 54 55 56 57 58 59 5A FD F5 99 F7 F0 F9"
TF = "30 31 32 33 34 35 36 37 38 39 DB FB 9A F4 EA C9"

; [UNICODE] - Section defining the conversion between the base
; codepage and Unicode. Other codepages are converted to/from Unicode
; via the base codepage.
;
; Two tables are defined here:
; - The ’F’ table (lines starting with Fi, i=0..F) describes the
; conversion From the base codepage to Unicode.
; - The ranges table (lines starting with RNGi, i=0,1,..). Describes the
; conversion to the base codepage from the Unicode. Each line has the
; form:
;
; RNG<i> = <1st-Unicode-char> <last-Unicode-char> <start-codepage-char>
;
; For example, consider the character 65 Dec (41 Hex) in the base
; codepage. To find its Unicode value, we look for the line starting
; with "F4 =" and find the 2nd value on the line (the first value refer
; to 40 Hex, the second to 41 Hex etc.). The values are unsigned 16-bit

 484

Native Metadata
; numbers in hexadecimal.
;
; In a similar manner, to convert from a Unicode character C, scan the
; ranges table for a range that contains the C character. Then, get the
; codepage character value using this formula:
;
; <codepage-char> = <C> - <1st-Unicode-character> + <start-codepage-char>
;
[UNICODE]
; 0 1 2 3 4 5 6 7 8 9 A B C D E F
F0 = "0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 000A 000B 000C
000D 000E 000F"
F1 = "0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 001A 001B 001C
001D 001E 001F"
F2 = "0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 002A 002B 002C
002D 002E 002F"
...
FF = "05E0 05E1 05E2 05E3 05E4 05E5 05E6 05E7 05E8 05E9 05EA 00FF 00FF
200E 200F 00ff"

;
RNG0 = "0000 00A9 00"
RNG1 = "05D0 05EA E0"
...
RNG5 = "200E 200F FD"

Native Metadata
Native metadata refers to metadata for a data source that is used by
Attunity Connect as opposed to Attunity Connect metadata (ADD). For
example, all relational databases have metadata that is used by
Attunity Connect.

Natural/CICS Transactions (OS/390 and z/OS Only)
Attunity Connect provides a Natural driver and agent to execute
Natural subprograms in CICS as remote procedure calls.

The Natural driver receives a remote procedure call from the client and
passes it via a CICS EXCI-interface transaction to the Agent in CICS
(ATYNAGNT). The Agent receives control and assigns a server task to
process the client request. The server executes the subprogram call and
passes the results back to the Agent. The Agent packages the results for
the EXCI interface, which passes them back to the Natural driver,
which then returns the results to the client.

 485

Natural/CICS Transactions (OS/390 and z/OS Only)
The following diagram shows a simplified model of the how the
Attunity Connect Natural driver and Agent work within a CICS
environment.

Writing a Natural Remote Procedure Call

A Natural Remote Procedure Call is a Natural subprogram, which uses
an API supplied as part of the kit to receive input parameters from and
return output parameters to the Attunity Connect Natural Agent. In
addition, the API may be used to retrieve context data from and return
it to the Agent, as a means of saving the state between procedure calls.

Every Natural subprogram called by the Attunity Connect Natural
Agent must include a Local Data Area (LDA) called ATYPARMS. This
LDA was stored in the ATTUNITY library during installation of the
Attunity Connect Natural Agent. To make it available to the user, copy
ATYPARMS to the SYSTEM library or to the user's application library,

ATYPTASK

Attunity Connect

Natural
driver

ATYLSTN
(Agent)

ATYLCBLK
T

h
read

 #1
T

h
read

 #2
T

h
read

 #3
T

h
read

 #4
T

h
read

 #5
T

h
read

 #6
COMMAREA

ATYI

ATYIN006
ATYIN005

ATYIN004
ATYIN003

ATYIN002
ATYIN001
(input
params)

ATYOU006
ATYOU005

ATYOU004
ATYOU003

ATYOU002
ATYOU001
(output
params)

OS/390 or z/OS

ADABAS
Natural
Server 1

Natural
Server 2

Natural
Server 3

Natural
Server 4

Natural
Server 5

Natural
Server 6

Service Modules

CICS

 486

Natural/CICS Transactions (OS/390 and z/OS Only)
or, alternatively, the ATTUNITY library can be added to the user's
STEPLIB.

The programmer codes the following in the data definition portion of
the subprogram:

LOCAL USING ATYPARMS

Include the ATYLRTN routine as part of the subprogram. This is the
Attunity Connect Natural Agent general service routine to implement
the API. The routine includes a number of call requests available for use
by the user, including:

GETPARMS – Retrieve input parameters from the Attunity Connect
Natural Agent. The GETPARMS call has the following format:

CALL ’ATYLRTN’ ’GETPARMS’ ATYL_STRUCT
 len1 inparm1 len2 inparm2 len3 inparm3 ...

The first parameter is the group-field ATYL_STRUCT, which is defined
in the LDA mentioned above. Following this field are a series of one or
more parameter definitions, where each definition consists of an
optional length override field and the actual input parameter field. The
length override field is a four-byte signed binary integer (I4 in Natural
terminology), which is normally set to zero but may be set to an override
value. If the length override is set to zero, the length of the input
parameter is taken from its Natural data definition. If the length
override is set to a value greater than zero, that value defines the length
of the input parameter, as in the following example, where the data
definition portion of the subprogram contains the following:

DEFINE DATA LOCAL USING ATYPARMS
LOCAL
1 #LAST-NAME (A20)
1 #JOB-TITLE (A20)
1 #ADDRESS (A30)
1 #CITY (A20)
1 #L70 (I4) CONST <70>
1 #L0 (I4) CONST <0>
...
END-DEFINE

The subprogram could receive from the Natural Agent a 70-byte group
field containing the elementary fields #JOB-TITLE, #ADDRESS, and
#CITY, as well as a 20-byte elementary field containing #LAST-NAME,
using the following call:

CALL ’ATYLRTN’ USING ’GETPARMS’ ATYL_STRUCT #L70
 #JOB-TITLE #L0 #LAST-NAME

 487

Natural/CICS Transactions (OS/390 and z/OS Only)
" The specification of the input parameters in the call must match their
specification in the ADD metadata defined for the Natural procedure call on the
client side (see "Metadata Considerations" on page 491).

GETCTEXT – Retrieve context data from the Attunity Connect Natural
Agent. The GETCTEXT call has the following format:

CALL ’ATYLRTN’ ’GETCTEXT’ ATYL_STRUCT len cdata

The first parameter is the group-field ATYL_STRUCT, which is defined
in the LDA mentioned above. Following this field is a parameter
definition consisting of an optional length override field and the actual
context data field. The length override field is a four-byte signed binary
integer (I4 in Natural terminology), which is normally set to zero but
may be set to an override value. If the length override is set to zero, the
length of the context data is taken from its Natural data definition. If
the length override is set to a value greater than zero, that value defines
the length of the context data, as in the following example, where the
data definition portion of the subprogram contains the following:

DEFINE DATA LOCAL USING ATYPARMS
LOCAL
 #CONTEXT-DATA1 (A30)
 #CONTEXT-DATA2 (A20)
1 #L50 (I4) CONST <50>
...
END-DEFINE

The subprogram could receive from the Natural Agent 50 bytes of
context data using the following call:

CALL ’ATYLRTN’ USING ’GETCTEXT’ ATYL_STRUCT #L50 #CONTEXT-DATA1

" The length of the context data in the call must match its length specification in
the ADD metadata defined for the Natural procedure call on the client side (see
"Metadata Considerations" on page 491).

GETUINFO – Retrieve user information from the Attunity Connect
Natural Agent. The user information is defined at the data source level
at the client side, and is passed to every procedure call in the data
source. Its use is optional, and is often used to implement user security
at the application (subprogram) level. The GETUINFO call has the
following format:

CALL ’ATYLRTN’ ’GETUINFO’ ATYL_STRUCT userid password len userinfo

The first parameter is the group-field ATYL_STRUCT, which is defined
in the LDA mentioned above. The second parameter is an eight-byte
field which receives the userid that was defined in the procedure call.
The third parameter is an eight-byte field, which receives the password

 488

Natural/CICS Transactions (OS/390 and z/OS Only)
that was defined in the procedure call, providing that SECMODE=0 or
SECMODE=1; if SECMODE=2, the password field is filled with blanks for
security reasons. Following the password field is a parameter definition
consisting of an optional length override field and the actual user
information field. The length override field is a four-byte signed binary
integer (I4 in Natural terminology), which is normally set to zero but
may be set to an override value. If the length override is set to zero, the
length of the user information is taken from its Natural data definition.
If the length override is set to a value greater than zero, that value
defines the length of the user information, as in the following example,
where the data definition portion of the subprogram contains the
following:

DEFINE DATA LOCAL USING ATYPARMS
LOCAL

 1 #USERID (A8)
 1 #PASSWORD
 1 #USER-INFO
 2 #USER-INFO-1 (A20)
 2 #USER-INFO-2 (A40)
 1 #L60 (I4) CONST <60>
...
END-DEFINE

The subprogram could receive from the Natural Agent 60 bytes of user
information using the following call:

CALL ’ATYLRTN’ USING ’GETUINFO’ ATYL_STRUCT #USERID
 #PASSWORD #L60 #USER-INFO-1

" The length of the user information in the call from the Natural subprogram must
not be smaller than its length specification as defined at the data source level
on the client side (see "Metadata Considerations" on page 491).

PUTPARMS – Return output parameters to the Attunity Connect
Natural Agent. The PUTPARMS call has the following format:

CALL ’ATYLRTN’ ’PUTPARMS’ ATYL_STRUCT
 len1 outparm1 len2 outparm2 len3 outparm3 ...

The first parameter is the group-field ATYL_STRUCT, which is defined
in the LDA. Following this field are a series of one or more parameter
definitions, where each definition consists of an optional length
override field and the actual input parameter field. The length override
field is a four-byte signed binary integer (I4 in Natural terminology),
which is normally set to zero but may be set to an override value. If the
length override is set to zero, the length of the input parameter is taken
from its Natural data definition. If the length override is set to a value

 489

Natural/CICS Transactions (OS/390 and z/OS Only)
greater than zero, that value defines the length of the input parameter.
See the GETPARMS call request above for an example.

PUTCTEXT – Return context data to the Attunity Connect Natural
Agent. The PUTCTEXT call has the following format:

CALL ’ATYLRTN’ ’PUTCTEXT’ ATYL_STRUCT len cdata

The first parameter is the group-field ATYL_STRUCT, which is defined
in the LDA mentioned above. Following this field is a parameter
definition consisting of an optional length override field and the actual
context data field. The length override field is a four-byte signed binary
integer (I4 in Natural terminology), which is normally set to zero but
may be set to an override value. If the length override is set to zero, the
length of the context data is taken from its Natural data definition. If
the length override is set to a value greater than zero, that value defines
the length of the context data. See the GETCTEXT call request above for
an example.

REPLY – Return code and optional error message to the
Attunity Connect Natural Agent. The REPLY call has the following
format:

CALL ’ATYLRTN’ ’REPLY’ ATYL_STRUCT

Prior to the call, the return-code and error-message are set, as in the
following example:

IF AS_RETURN_CODE = 0
 COMPRESS *PROGRAM ’EXECUTED SUCCESSFULLY’ INTO
 AS_ERROR_TEXT
END-IF
CALL ’ATYLRTN’ ’REPLY’ ATYL_STRUCT

In the above example, if the previous call to ATYLRTN was
unsuccessful, the return-code and error-message set by ATYLRTN are
not altered and are returned to the Attunity Connect Natural Agent
unchanged. Otherwise, a new success message is created and returned
together with the zero return-code.

" The fields AS_RETURN_CODE and AS_ERROR_TEXT are defined in the
group ATYL_STRUCT supplied in the ATYPARMS LDA.

The General Structure
of a Subprogram

The general structure of a subprogram written as a Natural Remote
Procedure Call is as follows:

1. Declaration of ATYPARMS LDA in data definition.
2. Declaration of input parameters, output parameters, length

override fields and other work fields.

 490

Natural/CICS Transactions (OS/390 and z/OS Only)
3. CALL ’ATYLRTN’ USING ’GETPARMS’ etc. to retrieve input
parameters from the Attunity Connect Natural Agent.

4. Optionally, CALL ’ATYLRTN’ USING ’GETCTEXT’ etc. to retrieve
context data from the Attunity Connect Natural Agent. On the first
procedure call the Natural subprogram receives the context data
initialized to binary zeros.

5. Processing section of subprogram.
6. CALL ’ATYLRTN’ USING ’PUTPARMS’ etc. to return output

parameters to the Attunity Connect Natural Agent, assuming the
subprogram logic leads to a successful outcome:
" This call is not required if the subprogram does not execute successfully;

that is, the return-code does not equal zero.

7. Optionally, CALL ’ATYLRTN’ USING ’PUTCTEXT’ etc. to return
context data to the Attunity Connect Natural Agent.

8. CALL ’ATYLRTN’ USING ’REPLY’ etc. to return a return-code and
optional error-message to the Attunity Connect Natural Agent.

Defining the Natural/CICS Transaction to Attunity Connect

The following sections provide information about the Attunity Connect
Natural/CICS procedure driver:
! Setting Up the Binding
! Metadata Considerations

You can execute the Natural/CICS transaction by calling it either
directly in a CALL statement or within a SELECT statement. For
example:

CALL NATPROC:TESTLSTN(’1234.123’,’STRINGA ’,123.123)

Select * from NATPROC:TESTLSTN(’1234.123’,’STRINGA ’,123.123)

Setting Up the Binding The Natural/CICS transaction is set using Attunity Studio, in the
Configuration perspective:

! To connect to Natural/CICS transaction:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the transaction in the Name field.
! Select Natural/CICS for the Type field.

 491

Natural/CICS Transactions (OS/390 and z/OS Only)
! Specify the connect string as follows:

target system – The VTAM applid of the CICS target system.
" You can determine this value by activating the CEMT transaction on the

target CICS system. On the bottom right corner of the screen appears the
legend APPLID=target_system.

VTAM netname – The VTAM netname of the specific connection being
used by the ATYI transaction (and MRO) to relay the program call
to the CICS target system.

For example, if you issue to CEMT the following command:

CEMT INQ CONN

you see on the display screen that the netname for the ATYS
connection is ATYCLIEN.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

exciTransid="string" – The CICS TRANSID. This value must be EXCI or
a copy of this transaction.

target system – The VTAM applid of the CICS target system.

VTAM netname – The VTAM netname of the specific connection being
used by the ATYI transaction (and MRO) to relay the program call to the
CICS target system.

Metadata
Considerations

You have to define Attunity Connect Data Dictionary (ADD) metadata
to describe each Natural/CICS transaction you want to execute. You
supply the following information via ADD:
! The program name to be run in the Natural/CICS transaction.

! The input parameters and output data.

Attunity Connect treats the input variables as parameters and the
output variables are treated as a rowset produced by the Natural/
CICS transaction.

The following information is specific to the ADD definition for a Natural/
CICS transaction.

 492

Natural/CICS Transactions (OS/390 and z/OS Only)
Specifying the
Program to Execute

The <procedure> Statement

Within a <procedure> statement you must include a <dbCommand>
statement to specify the program to run and the TRANSID.

Syntax

<dbCommand>PROGRAM=ATYLSTN;TRANSID=ATYI;
 SUBPROGRAM=natural_subprogram;
 LIBRARY=library_of_subprogram;
 CONTEXT=context_data_field;
</dbCommand>

" The program and transid parameters are optional. If they are not specified, the
defaults ATYLSTN and ATYI are used, as shown in the above syntax.

where:

PROGRAM (optional) – The main program of the Attunity Connect
Natural Agent. The default value is ATYLSTN.

TRANSID (optional) – The mirror transaction within CICS that receives
control via MRO, which transfers the Natural transaction from the
Attunity Connect environment to CICS. The default value is ATYI.

SUBPROGRAM – The Natural subprogram that is executed.

library (optional) – The library where the Natural subprogram reside.

CONTEXT – A user area that is used by the subprogram to read and save
the "state" between successive calls to the subprogram.

Specifying the Input
and Output Parameters

The <field> Statement

<field> statements define the output parameters.

Within a <field> statement you can include a <dbCommand>
statement, for use when accessing a transaction with a context.

" You do not need to specify a <dbCommand> statement for a transaction
without a context.

Syntax

<dbCommand>EOS_VALUE=value</dbCommand>

where:

EOS_VALUE is the value that signals the end of the transaction,
assuming that the transaction has a context. The value assigned can be
either a string or an integer value, that when encountered causes the
transaction to end.

 493

Natural/CICS Transactions (OS/390 and z/OS Only)
If you specify more than one EOS_VALUE, a logical OR condition is
implied.

" If EOS_VALUE is specified neither for a field nor a parameter (see below), the
transaction is assumed not to have a context and only one row is returned. If a
value is specified both for a field and a parameter, the first value encountered
causes the transaction to end.

The <parameters> Statement

The <parameters> statement includes <field> statements that define
the input parameters.

Within a <parameters> statement you can include a <dbCommand>
statement, for use when accessing a transaction with a context.

" You do not need to specify a <dbCommand> statement for a transaction
without a context.

Syntax

<dbCommand>EOS_VALUE=value;REAPPLY;
 OUTPUTOFFSET=offset</dbCommand>

where:

EOS_VALUE – The value that signals the end of the transaction,
assuming that the transaction has a context. The value assigned can be
either a string or an integer value, that when encountered causes the
transaction to end.

If you specify more than one EOS_VALUE, a logical OR condition is
implied.

" If EOS_VALUE is specified neither for a parameter nor a field (see above), the
transaction is assumed not to have a context and only one row is returned. If a
value is specified both for a parameter and a field, the first value encountered
causes the transaction to end.

REAPPLY – The original value supplied for the parameter is reapplied
when the transaction modifies the parameter value. This attribute is
only relevant when executing stream-type transactions.

OUTPUTOFFSET – The offset of the output parameter from the input
parameter. If OUTPUTOFFSET=0, the same field is used for both the
input and output parameters, with the value updated for the output. If
OUTPUTOFFSET is not specified, you cannot configure input
parameters to also be output parameters and all the input parameters
must physically precede the output fields in the COMMAREA itself.

 494

Natural/CICS Transactions (OS/390 and z/OS Only)
Example ADD Metadata

<?xml version=’1.0’ encoding=’US-EBCDIC’?>
<navobj>
 <procedure name=’testlstn’>
 <dbCommand>
 program=atylstn;transid=atyi;
 subprogram=testlstn;
 </dbCommand>
 <parameters>
 <field name=’p1’ datatype=’ada_numstr_s’ size=’15’ scale=’3’ />
 <field name=’p2’ datatype=’string’ size=’39’ />
 <field name=’p3’ datatype=’ada_decimal’ size=’17’ scale=’4’ />
 <field name=’p4’ datatype=’string’ size=’10’ />
 </parameters>
 <fields>
 <field name=’f1’ datatype=’ada_numstr_s’ size=’10’ scale=’3’/>
 <field name=’f2’ datatype=’string’ size=’45’ />
 <field name=’f3’ datatype=’ada_decimal’ size=’17’ scale=’4’ />
 </fields>
 </procedure>
</navobj>

" You must delimit strings with single quotes (’).

Updating Attunity Connect with CICS ADD Metadata

Import the ADD metadata XML file to Attunity Connect by running the
NAVCMD IMPORT utility. For example:

Run NAVROOT.USERLIB(NAVCMD) and enter ‘IMPORT NATPROC
ATTUNITY.SAMPLE.ADD.NATXML’ at the prompt.

where:

! NATPROC is the name of the Natural/CICS data source in the
binding configuration.

! ATTUNITY.SAMPLE.ADD.NATXML is the data set containing the
XML.

! NAVROOT is the high level qualifier where Attunity Connect is
installed.

 495

Natural/CICS Transactions (OS/390 and z/OS Only)
Maintaining the CICS Environment for the Attunity Connect Natural Agent

To provide maximum performance, a number of Natural server tasks
are maintained in the CICS region, waiting for work in threads
maintained by the Attunity Connect Natural Agent.

Aside from the first procedure call that a server task handles, all
subsequent procedure calls are handled immediately by the server
without requiring re-initialization of the Natural/CICS environment,
providing a significant performance advantage.

The system programmer can configure system parameters, including
non-activity limits, maximum number of threads (that is, server tasks),
so as to tailor the system to the installation's specific requirements.

" Transids, enqueue names, program names, TSQ prefixes, TDQ names, etc.
should be left unchanged unless this creates a conflict with already existing
names and id’s in the system.

The following system parameters can be tailored:

TTENQ Enqueue name for Attunity Connect Natural/CICS thread table.
Default value: ATYLTHTB

PTASK Transid responsible for purging a runaway server task. Default value:
ATYP

If changed, the corresponding CICS PCT entry must be modified
accordingly.

NTASK Transid activating the Natural server frontend, which in turn activates
the Natural server nucleus. Default value: ATYN

If changed, the corresponding CICS PCT entry must be modified
accordingly.

MTASK Transid activating the Attunity Connect message handler program.
Default value: ATYM

If changed, the corresponding CICS PCT entry must be modified
accordingly.

NFRONT Name of server frontend program. Default value: ATYFRONT

If changed, the actual program must also be renamed and the
corresponding PCT and PPT entries modified accordingly.

NBACK Name of server backend program. Default value: ATYBACK

 496

Natural/CICS Transactions (OS/390 and z/OS Only)
If changed, the actual program must also be renamed and the
corresponding PPT entry modified accordingly.

NATNUC Name of Natural/CICS nucleus, to which the server frontend does an
XCTL. This should be the name of the standard Natural/CICS nucleus
installed in the system. Default value: NC314RE

PDELAY The delay in seconds allowed for the Natural server to perform the
remote procedure call. Default value: 60

If the time set is exceeded, it is assumed that the Natural server is in a
runaway loop and it is purged from the system.

" In most environments PDELAY and LDELAY (see below) should be identical.

LDELAY The delay in seconds allowed for the Agent to wait for the Natural
server to perform the remote procedure call. Default value: 60

If the time set is exceeded, the Agent returns a non-zero response code
to the client indicating that the server has not responded.

" In most environments PDELAY (see above) and LDELAY should be identical.

PXINTQ The prefix used to build, together with the thread number, the name of
a temporary storage queue used to pass the input parameters to the
procedure call. Default value: ATYIN

Example – Assuming the default, the TSQ’s will be named ATYIN001,
ATYIN002, etc.

PXOUTQ The prefix used to build, together with the thread number, the name of
a temporary storage queue used to pass the output parameters from the
procedure call back to the Agent. Default value: ATYOU

Example – Assuming the default, the TSQ’s will be named ATYOU001,
ATYOU002, etc.

PXCLTQ The prefix used to build, together with the thread number, the name of
a temporary storage queue used to pass control data from the Agent to
the subprogram and back. Default value: ATYCL

Example – Assuming the default, the TSQ’s for the respective threads
will be named ATYCL001, ATYCL002, etc.

PXPTRQ The prefix used to build, together with the thread number, the name of
a request id (REQID) used to identify the wait of the task responsible for

 497

Natural/CICS Transactions (OS/390 and z/OS Only)
purging the Natural server should it enter a runaway loop. Default
value: ATYPT

Example – Assuming the default, the REQID’s will be named ATYPT001,
ATYPT002, etc.

PXLWRQ The prefix used to build, together with the thread number, the name of
a request id (REQID) used to identify the wait into which the Agent
enters while awaiting a reply from the Natural server. Default value:
ATYLW

Example – Assuming the default, the REQID’s will be named ATYLW001,
ATYLW002, etc.

PXNWRQ The prefix used to build, together with the thread number, the name of
a request id (REQID) used to identify the wait into which the Natural
server task enters after it has concluded a procedure call and waits for
its thread to be chosen for a subsequent procedure call. Default value:
ATYNW

Example – Assuming the default, the REQID’s will be named ATYNW001,
ATYNW002, etc.

MAXTH The maximum number of threads (and therefore the maximum number
of Natural server tasks available for work) that can be activated per
CICS address space.

This value should not exceed the number of sessions available for
specific (non-generic) EXCI connections to the CICS address space.
Default value: 10

MSG The destination for error messages written by the Attunity Connect
Natural/CICS Agent or its component modules. Permissible values are:

JOBLOG – Error messages are written as operator messages to the
CICS joblog.

TDQ (the default value) – Messages are written to the transient data
queue specified by the TDQID parameter.

BOTH – Messages are written to both JOBLOG and TDQ destinations.

TDQID The name of the transient data queue to which error messages are
written if the MSG parameter (see above) is specified as TDQ or BOTH.
Default value: ATYL

MAXNTM Maximum number of “no thread available” error messages that will be
written within the period of an hour. Default value: 20

 498

Natural/CICS Transactions (OS/390 and z/OS Only)
MAXMSG Maximum number of all error messages that will be written within the
period of an hour. Default value: 300

MXINAC Maximum inactivity in minutes permitted to a Natural server task
before it terminates and is purged from the system. Default value: 15

SECMODE Flag specifying which security strategy the user has opted to
implement for the Natural server task:

0 (No server-side security) – Natural Security is not installed. A library
parameter, if passed, will cause a logon to that library if it is not yet the
current library-id for the server task. All userid and password passed
parameters are optional and have no effect on the Agent per se; the
subprogram may interrogate them as well as additional user
information for the purpose of enforcing "homemade" security as it sees
fit.

1 (Minimal server-side security ("trusted mode")) – This is the default
value. Natural Security is installed. The Natural server task will be
initialized with a "trusted" userid and password (specified in the
configuration parameters) with which it will work throughout the life
of the server task. All libraries from which subprograms are to be
invoked must be authorized for use with this trusted user. A library
parameter, if passed, will cause a logon to that library if it is not yet the
current library-id for the server task. All userid and password passed
parameters are optional and have no effect on the Agent per se; the
subprogram may interrogate them as well as additional user
information for the purpose of enforcing "homemade" security as it sees
fit.

2 (Maximum server-side security) – Natural Security is installed. The
Natural server task will be initialized with a userid of limited
authorization. Each procedure call must supply its own
library/userid/password combination as part of the call. This will enable
a high level of server-side security but will incur considerable overhead
during the repeated authorization work being performed by Natural
Security. The Natural agent will try to minimize this overhead as much
as possible by attempting to dedicate a separate thread for each
library/userid/password combination, up to the maximum thread limit
defined in the configuration parameters. In addition, if no new threads
are available, then the Agent will attempt to locate an available thread
(server) currently logged onto the same userid, requiring only a change
to the current library. If no such threads are available, only then will
the Agent choose the oldest inactive thread and cause its associated
server to incur the full overhead of a library/userid/password re-logon.
Nonetheless, one should expect additional processing overhead using
SECMODE=2.

 499

Natural/CICS Transactions (OS/390 and z/OS Only)
" If AUTO=ON is specified, then SECMODE=2 will be flagged as a configuration
parameter error, since AUTO=ON does not provide a means to alter the userid
in the middle of the Natural session.

AUTO The value to which the Natural Security dynamic parameter AUTO
should be set.

ON (the default value) – Userid and password are not entered during
Natural logon; the userid is taken from the CICS External Security
Interface.

OFF – Userid and password are entered during Natural logon.

" Changes have to be made to the Natural assembler exit NCIUIDEX in order
that an asynchronous (non-terminal) Natural task will obtain the userid
externally. To avoid this problem, even users that normally implement Natural
Security with AUTO=ON should consider using AUTO=OFF for the
asynchronous Natural server tasks.

This parameter is specified only when SECMODE=2 (see above).

SENDER The value to which the Natural dynamic parameter SENDER should be
set for asynchronous Natural tasks. This should be the name of a
transient data queue. Default value: CSSL

OUTDEST The value to which the Natural dynamic parameter OUTDEST should
be set for asynchronous Natural tasks. This should be the name of a
transient data queue. Default value: CSSL

TBTCH Specifies whether the Natural server task issues the command SET
CONTROL 'T=BTCH' during its initialization, in order to operate inline
support mode for messages, etc. output to the SENDER and OUTDEST
destinations.

YES – When the Natural server task initializes, the command SET
CONTROL 'T=BTCH' is issued. This enables error messages and
messages issued by the WRITE and DISPLAY commands in called
subprograms to be output successfully to the SENDER or OUTDEST
destinations.

" The NATBTCH module must be installed in the Natural CICS nucleus when the
nucleus is link-edited. If the NATBTCH module is not present and
TBTCH=YES, an error will occur during server task initialization.

NO (the default value) – The command SET CONTROL 'T=BTCH' is not
be issued during Natural server task initialization. TBTCH should be
allowed to default to NO if the NATBTCH module is not present in the
link-edit of the Natural CICS nucleus. Natural error messages and
WRITE or DISPLAY messages output by subprograms are not written to

 500

Natural/CICS Transactions (OS/390 and z/OS Only)
the SENDER or OUTDEST destinations (that is, the messages will be
"lost" but the server task will continue to operate normally).

LOGON The startup library to which Natural should logon when the server task
is initiated. This library will be specified in the LOGON command
specified in the dynamic STACK parameter when Natural is started.
Default value: ATYLSTN

USERID The userid with which Natural should logon when the server task is
initiated. This userid is specified in the LOGON command specified in
the dynamic STACK parameter when Natural is started. Default value:
ATTY

This parameter is specified only when SECMODE=2 and AUTO=OFF (see
above).

PASSWD The password with which Natural should logon when the server task is
initiated. This password is specified in the LOGON command specified
in the dynamic STACK parameter when Natural is started. Default
value: ATTY

This parameter is specified only when SECMODE=2 and AUTO=OFF (see
above).

MONITR Name of Natural dispatcher program. This program receives control
when the Natural server task is initiated and is responsible for
dispatching each subsequent procedure call in its thread,
error-handling, interaction with the Agent, etc. Default value:
ATYNDISP

If changed from default value, the actual program must be renamed as
well.

ADDPARM A string of additional dynamic parameters for the Natural server task,
which may be optionally added to the dynamic parameters mentioned
above. Default value: (null string)

Example – ADDPARM=(MADIO=0,LT=99999,TD=2)

TSRECL The maximum length of a record that may be written to main
temporary storage. Default value: 32748

 501

NAV.SYN
DYNPARM A string of dynamic parameters for the Natural server task, which will
replace the dynamic parameters mentioned above. Default value: (null
string).

" Use this parameter with great care. You must make sure that the correct library
is logged onto upon initialization of the Natural server session and the correct
Natural Agent dispatcher program is activated. Normally this parameter is used
to specify a profile defined by SYSPARM or NTSYS, where the actual list of
dynamic parameters are defined.

Example – DYNPARM=(SYS=NATAGENT)

NAV.SYN

Attunity Connect processes the SQL submitted by a user based on the
backend database being accessed. In the following circumstances you
can control the way the SQL is processed by Attunity Connect:

! When the features supported by the version of the backend
database are different from the support provided by Attunity
Connect for that database.

! When the backend database is accessed using either the ODBC or
OLESQL Attunity Connect generic drivers. The set of SQL features
sent by default to the backend database is minimal – those that are
normally supported by all relational databases. This is because any
flavor of SQL can be supported by the backend database.

Attunity Connect provides a mechanism to handle these situations,
using a special file: NAV.SYN (the Attunity Connect SQL syntax file).

For details, see Using the Attunity Connect Syntax File (NAV.SYN).

NAV_UTIL
See "NAV_UTIL Utility" on page 527.

NAV_UTIL ADD_ADMIN
The NAV_UTIL ADD_ADMIN utility enables you to specify which users
can manage the machine where this command is run, from within
Attunity Studio.

Syntax

nav_util add_admin admin_username | *

 502

NAV_UTIL AUTOGEN
where:

admin_username – The name of a valid user who can administer the
current machine from within Attunity Studio.

* – All users can administer the current machine from within Attunity
Studio.

" The user specified can be changed from within Attunity Studio.

NAV_UTIL AUTOGEN
The NAV_UTIL AUTOGEN utility enables you to generate an adapter
definition for specific Attunity Connect application adapters (such as
the COM adapter).

Syntax

nav_util autogen adapter_name [-new] answer_file
[-def definition_name] [-file definition_file_name]

where:

adapter_name – The name for the adapter in the <adapter> statement
in the binding configuration.

-new answer_file – The XML file to which the specified definition
template is written. You can generate an XML template for an adapter
definition for an Attunity Connect application adapter. The template
contains empty fields and you can use it to create an adapter definition
to import to the Attunity Connect repository.

answer_file – The input file with the adapter definition.

-def definition_name – The name for the definition in the repository, if
this is different from the adapter name. The adapter definition is
automatically imported to the Attunity Connect repository.

-file definition_file_name – The XML file to which the adapter definition
is written. The definition is generated to an XML file. The adapter
definition can be edited and then imported to the repository (see
"NAV_UTIL IMPORT" on page 521).

 503

NAV_UTIL CHECK
NAV_UTIL CHECK
Nav_util includes utilities for monitoring the daemon and the
client/server system.

" The check described below can also be performed from Attunity Studio in the
Runtime perspective. For details, refer to "Runtime Perspective" on page 658

! The CHECK utility checks various facets of the client/server system,
depending on the parameters used:

check irpcd – Checks whether an Attunity Connect daemon is
running. For example from a UNIX machine you can check that the
daemon is active under OS/390 or z/OS on the production mainframe
(prod.acme.com) by running the following command:

nav_util check irpcd(prod.acme.com)

check network[(port)] – Lists the machines that have an active
daemon.
" You can list all machines or specific machines, based on a specified port

number.

To list the machines running a daemon on a specific port:

check irpcdstat – Checks the status of a daemon for all workspaces,
including active server processes (both those connected to a client
and those that are available) and the name and location of the log
file and the IRPCD configurations. Use this option to identify server
processes that need terminating.

HP (Compaq) NonStop, OpenVMS and Windows Platforms

nav_util check network(port)

OS/390 and z/OS Platforms

NAVROOT.USERLIB(NAVCMD)

Enter “CHECK NETWORK (port)” at the prompt.

OS/400 Platforms

call prg(navroot/navutil) parm (check
network(‘port’))

UNIX Platforms

nav_util check “network(port)”

 504

NAV_UTIL CHECK
" You can also check the status of a specific daemon workspace.

where:
daemon_location – The host name with an optional port number
– where the port number is specified after a colon, as follows:
machine[:port].
Workspace – The name of a workspace defined in the daemon
configuration.
username – A user name with permission to access the server.
password – The user’s password.

If you don’t specify a user name and password, anonymous login is
used.

check tcpip – Checks the basic TCP/IP configuration on the machine
(as far as Attunity Connect can check it).

check server – Checks whether a client can access a specific
workspace and checks the details of the workspace configuration.

HP (Compaq) NonStop, OpenVMS and Windows Platforms

nav_util check irpcdstat(daemon_location, workspace
[,username, password])

OS/390 and z/OS Platforms

NAVROOT.USERLIB(NAVCMD)

Enter “CHECK IRPCDSTAT(daemon_location, workspace
[,username, password])” at the prompt.

OS/400 Platforms

pgm(navutil) parm(check
irpcdstat(‘daemon_location’’workspace’
[‘username’ ‘password’])

UNIX Platforms

nav_util check “irpcdstat(daemon_location, workspace
[,username, password])”

HP (Compaq) NonStop, OpenVMS and Windows Platforms

nav_util check server(daemon_location, workspace
[,username, password])

 505

NAV_UTIL CHECK
where:
daemon_location – The host name with an optional port number
– where the port number is specified after a colon, as follows:
machine[:port].
workspace – The name of a workspace defined in the daemon
configuration.
username – A user name with permission to access the server.
password – The user’s password.

If you don’t specify a user name and password, anonymous login is
used.

check license – Checks the license details.
" You can also check the license details for a specific remote machine.

check datasource – Tests the connection to a specific data source,
defined in the default local binding configuration.

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(NAVCMD)

Enter “CHECK SERVER(daemon_location, workspace
[,username, password])” at the prompt.

OS/400 Platforms

pgm(navutil) parm(check server("daemon_location"
 "workspace" ["username" "password"])

UNIX Platforms

nav_util check "server(daemon_location, workspace
 [,username, password])"

HP (Compaq) NonStop, OpenVMS and Windows Platforms

nav_util check datasource(ds_name[,connect_info])

OS/390 and z/OS Platforms (under TSO)

NAVROOT.USERLIB(NAVCMD)

Enter “CHECK DATASOURCE(ds_name[,connect_info])” at the
prompt.

OS/400 Platforms

pgm(navutil) parm(check
datasource("ds_name"[,"connect_info"]))

UNIX Platforms

nav_util check "datasource(ds_name[,connect_info])"

 506

NAV_UTIL CODEPAGE
where:
ds_name – The name of the data source to test, as defined in the
binding configuration.
connect_info – Any specific connection information to test.

NAV_UTIL CODEPAGE
Nav_util delete is used to generate a binary file from a text file, to map
to and from a codepage not supported by Attunity Connect with a
codepage supported by Attunity Connect. Use the following syntax:

nav_util CODEPAGE text_file

where text_file is a text file that maps the required codepage to the
supported codepage.

NAV_UTIL DELETE
Nav_util delete is used to delete the following objects from the
repository:

! Binding
! User Profile
! Daemon
! Application Adapter Definition

To delete from the repository binding, user profile and daemon
configuration information, use the following syntax:

nav_util [options] delete obj_type obj_name

where:

options – See "Running Nav_Util" on page 528.

obj_type – The type of object to be deleted. You can specify any of the
following:

! adapter_def[inition] – Application adapter definition.
! adapters – The adapters specified in the binding information.
! binding – A particular set of binding information.
! daemon – Daemon general configuration settings.
! datasources – The data sources specified in a binding.
! env[ironment] – Environment properties for a particular

binding.
! remote_machines – Remote machines defined in the binding.

 507

NAV_UTIL DELETE
! user – A user profile definition.

obj_name – The name of the specific object (of the type specified in the
obj_type parameter) to be deleted. Use the following table to determine
the obj_name to supply, dependent on the value of obj_type:

Deleting Data Source Objects from the Repository

You can delete from the repository the information about the following
for a particular data source:

! Tables that rely on ADD metadata
! ADD metadata for a table generated by the local_copy utility
! Stored procedures that rely on ADD metadata (using the Procedure

driver)
! ADD metadata for a stored procedure generated by the local_copy

utility
! Views
! Synonyms

To delete this information from the repository, use the following syntax:

nav_util [options] delete obj_type ds_name obj_name

where:

options – See "Running Nav_Util" on page 528.

obj_type – The type of object to be deleted. You can specify any of the
following:

! Table – Deletes the information for the specified table.
! Local_table – Deletes a local copy of a table.

obj_type value Description of obj_name value

adapter_def[inition] The name of the application adapter
definition to be deleted.

binding, datasources,
remote_machines,
environment and
adapters

The name of the binding in which these
objects are defined.

daemon The daemon name.

user The user name that identifies the user profile.

 508

NAV_UTIL DELETE
! Procedure – Deletes an Attunity Connect procedure (which uses the
Procedure driver).

! Local_procedure – Deletes a local copy of a stored procedure.
! View – Deletes an Attunity Connect view.
! Synonym – Deletes an Attunity Connect synonym.

ds_name – The name of the data source, as specified in the binding
configuration, for the data source object that is deleted.

obj_name – The name of the specific object (of the type specified in the
obj_type parameter) to be deleted. Use the following table to determine
the obj_name to supply, dependent on the value of obj_type:

obj_type value Description of obj_name value

Table The name of the table to be deleted or * to delete
all the tables for the specified ds_name.

Local_table The name of a local copy of a table to be deleted
or * to delete all the local copy tables for the
specified ds_name.

Procedure The name of an Attunity Connect procedure for
the specified ds_name. The procedure is defined
using the Procedure driver.

Local_procedure The name of a local copy of a procedure to be
deleted or * to delete all the local copy
procedures for the specified ds_name.

View The name of the view to be deleted or * to delete
all the views for the specified ds_name.

Synonym The name of the synonym to be deleted or * to
delete all the synonyms for the specified
ds_name.

 509

NAV_UTIL EDIT
NAV_UTIL EDIT
The NAV_UTIL EDIT utility enables you to modify the contents of a
repository.

" You can edit the repository content in Attunity Studio either via the GUI or
directly in the XML via the relevant Source tab.

You can directly edit the following types of repository objects:

! All configuration information for a particular machine, including
all the elements listed below.

! User profile definitions
! The list of available bindings
! Information for a particular binding, which can include information

about the following:
! Data sources
! Remote Machine
! Environment settings
! Attunity Connect adapters

! Information about the available daemons
! Information about the following for a particular data source:

! Tables that rely on ADD metadata
! ADD metadata for a table generated by the local_copy utility
! Stored procedures that rely on ADD metadata (using the

Procedure driver)
! ADD metadata for a stored procedure generated by the

local_copy utility
! Views
! Synonyms

! Application adapter definitions

The object is exported to an XML file that is automatically displayed in
a text editor. When the text editor is closed, the XML file is imported
back to the repository.

" You cannot delete a repository entry by deleting it from the text editor via this
command. To delete a repository entry, use the nav_util delete command,
described on page 506.

The text editor used is the native text editor for the operating system.
You can change the editor in the miscellaneous environment settings,
either using Attunity Studio or by adding
<misc edit="path_and_name_of_editor"> directly to the binding
environment information.

 510

NAV_UTIL EDIT
Syntax

nav_util [options] EDIT obj_type [ds_name [-native]]
obj_name

where:

options – See above (page 528).

obj_type – The type of object to be edited. You can specify the following
types of objects:

! adapter_def[inition] – Application adapter definition.
! adapters – The adapters specified in the binding information.
! bindings – All available bindings and their environments.
! binding – A particular set of binding information.
! daemon – Daemon general configuration settings.
! daemons – Daemon general configuration settings of all

daemons.
! datasources – The data sources specified in a binding.
! remote_machines – Remote machines defined in the binding.
! env[ironment] – Environment properties for a particular

binding.
! table – Table definitions that rely on ADD metadata per data

source.
! local_procedure – ADD metadata for a stored procedure

generated by the local_copy utility.
! local_table – ADD metadata for a table generated by the

local_copy utility.
! machine – All configuration information for a particular

machine.
! procedure – Stored procedure definitions that rely on ADD

metadata (using the Procedure driver).
! synonym – Synonyms definitions per data source.
! user – A user profile definition.
! users – All user profile definitions.

ds_name – The name of data source for the object to be edited, as
specified in the binding configuration, when the obj_type is any of:
table, local_table, view, procedure, local_procedure, and synonym.

HP (Compaq) NonStop Platforms

Use the following syntax:
navedit obj_type [ds_name [-native]] obj_name

 511

NAV_UTIL EDIT
-native – Extracts metadata from the native data source. This option is
relevant only for viewing the definition of a local table or procedure
(when the obj_type value is local_table or local_procedure).

If the data source is an ADD data source, the metadata is extracted from
the repository and from information specific to the driver for that data
source, which is usually retrieved from the data source at runtime. For
example, the ISN value in Adabas or RFA column in RMS.

For details about setting up this feature in Attunity Studio, refer to
"Extended Native Data Source Metadata" on page 379.

obj_name – The name of the specific object (of the type specified in the
obj_type parameter) that is edited. Use the following table to ascertain
the obj_name to supply, according on the value of obj_type, or use a * for
all of the objects of the specified type:

obj_type value Description of obj_name value

adapter_def[inition] The name of the application adapter definition to
be edited.

adapters The name of the binding configuration.

binding The name of the binding. If not provided, the
default binding (NAV) is used.

bindings No value necessary.

datasources The name of the binding configuration.

daemon The daemon name.

daemons No value necessary.

env[ironment] The name of the binding configuration for this
working environment.

local_procedure The name of a local copy of a procedure to be edited
or * to edit all the local copy procedures for the
specified ds_name.

local_table The name of a local copy of a table to be edited or
* to edit all the local copy tables for the specified
ds_name.

machine No value necessary.

 512

NAV_UTIL EXECUTE
Supplying a value for obj_name that does not exist in the repository,
will also create a template, based on the default object (such as NAV for
binding or IRPCD for daemon).

NAV_UTIL EXECUTE
Use the NAV_UTIL EXECUTE utility to test data connections and SQL in
an interactive environment (the NavSQL environment).

" To test connections to application adapters, use the NAV_UTIL XML utility. For
details, see "NAV_UTIL XML" on page 535.

An example of when to use the EXECUTE utility is to check the available
data types supported by the data source. For example, if a table in the
data source requires a float, the SQL must specify a float and not a
string.

To invoke the NavSQL environment, use the following command:

nav_util execute [-Ppassword] [-Wworkspace] ds_name
[filename]

procedure The name of the procedure to be edited or * to edit
all the procedures for the specified ds_name.

remote_machines The name of the binding configuration.

synonym The name of the synonym to be edited or * to edit
all the synonyms for the specified ds_name.

table The name of the table to be edited or * to edit all
the tables for the specified ds_name.

user The user name that identifies the user profile.

view The name of the view to be edited or * to edit all
the views for the specified ds_name.

obj_type value Description of obj_name value

OS/390 and z/OS Platforms

Run NAVROOT.USERLIB(NAVSQL) instead of the EXECUTE utility
where NAVROOT is the high level qualifier where Attunity Connect
is installed.

 513

NAV_UTIL EXECUTE
where:

password – The master password that was specified for the user profile.
If the password is not supplied, you are prompted for it.

workspace – The name of the binding that is used as the basis for
information. If the binding is not supplied, the default Attunity Connect
binding is used.

ds_name – The name of the data source, as specified in the binding
configuration. If you don't supply this parameter, you are prompted for
it.

filename – The name of a file, which contains SQL statements. The SQL
statements in the file are run immediately. The file is a text file (with
any extension). Multiple SQL statements in the file must be separated
by semi-colons (;).

" You can also specify a file from within the NavSQL environment, as in the
following:
NavSQL> @C:\sql\slq-query.sql;

For information about using the NavSQL environment, see the
following section.

Using NAV_UTIL
Execute

Within the NavSQL environment you can do the following:

! Execute SQL statements.
! Request Help and information about a data source.
! Change the name of the default data source.

Enter the command tdp with the new name that you want as the
default data source. This name must have been defined in the
binding configuration.

! Exit the NavSQL environment.

Enter quit or exit.

 514

NAV_UTIL EXECUTE
Each command entered in the NavSQL environment can span a
number of lines. End the command with a semi-colon.

Executing SQL You can write and execute SQL in the NavSQL environment as follows:

! On-the-fly

Write an SQL statement and end it with a semi-colon. Press Enter
to execute the statement.
" If the SQL contains data from more than one data source, use a colon (:)

to identify the data source (that is, datasource_name:Table_name).

! From a file

Enter the full name of a file that contains SQL, prefixed by @. Press
Enter to execute the SQL contained in the file. For example:

NavSQL> @C:\sql\sql-query.sql;

will execute the SQL contained in the file sql-query.sql.

Run the utility
Enter the data
source name

Results of the
help command

Enter the help command
Second command line
(the lines are numbered)

Enter the exit command
to quit

Run the utility
Enter the data
source name

Results of the
help command

Enter the help command
Second command line
(the lines are numbered)

Enter the exit command
to quit

OS/390 and z/OS Platforms

Use single quotes (’) around the filename. For example,
@’NAVROOT.TMP.SQL1’.

 515

NAV_UTIL EXECUTE
You can access the NavSQL environment and run a file
immediately by entering the following command:

nav_util execute data_source file

where data_source is the name of the data source as defined in the
binding and file is the name of the SQL file.

If you want to run all the queries in the file without the overhead of
displaying query information on the screen for each query, enter
the following command:

nav_util execute data_source -quiet file

In this case, only queries that fail cause information to be displayed
to the screen during the run. A message is displayed after all the
queries have been run, stating the number of queries that
succeeded and the number that failed.

! From within a transaction

Enter the command begin-transaction (optionally with either
read-only or write permission) to start a transaction where you can
commit a number of SQL statements together. Use commit to
update the data sources with any changes or rollback if you decide
that you do not want to accept the changes.

Facilities Available in
the NavSQL
Environment

From within the NavSQL environment, use the help command to list
all the available NavSQL environment commands.

The following transaction-based commands are available for use within
the NavSQL environment:

! Begin-transaction
! Commit
! Rollback

The following command can be used to change the default data source
from within the NavSQL environment:
! tdp ds_name or tdp-default ds_name

The following NavSQL environment commands can be used to extract
information related to the data source:

describe [ds-name:]table-name [full] [index] – Provides table information.
If full is specified, additional column information is provided. If index
is specified, where available a visual representation of the record
structure is displayed (this structure can be made available by running
the NAV_UTIL EXPORT utility).

" desc is a short form of the describe command.

 516

NAV_UTIL EXECUTE
describe @proc_name – To provide a description of a stored procedure
and/or procedures that are included in an Attunity Connect procedure
(the type is Application Connection (Procedure) or Natural/CICS in the
binding configuration).

" desc is a short form of the describe command.

list catalogs [mask] – Lists details about all the catalogs, or a subset of
the catalogs when a mask is supplied.

" list cata or list catas are short forms of the list catalogs command.

list columns [table-mask] [column-mask] – Lists details about the columns
of the data source. You can list details about specific columns of the
data source and about columns in specific tables belonging to the data
source. You must also specify if the data source management system is
case sensitive.

list procedures [mask] – Lists details of all the Attunity Connect
procedures, or a subset of the procedures when a mask is supplied.

list procedure_col [proc-mask] [column-mask] – Lists details about the
columns referenced by the Attunity Connect procedures. You can list
details about specific columns and about columns in specific
procedures. You must also specify if the data source management
system is case sensitive.

list special-col [mask] – Lists details about all the columns with special
characteristics (for example key fields), for the data source or a specific
table belonging to the data source when a mask is supplied.

list statistics [mask] – Lists statistics about all the tables, or a subset of
the tables when a mask is supplied.

list synonyms – Lists details about all the synonyms.

list tables [mask] – Lists details about all the tables, identified by the
type of table: views, synonyms and system tables. A subset of the tables
is displayed when a mask is supplied.

" list tab or list tabs are short forms of the list tables command.

list tables @* – Provides a listing of all procedures included in an
Attunity Connect procedure (type is Application Connection
(Procedure) in the binding configuration).

" list tab or list tabs are short forms of the list tables command.

list type-info [dt-id] – Lists details about all the data types available, or a
specific data type when a number (the dt-id parameter) is supplied.

 517

NAV_UTIL EXPORT
list views – Lists details about all the views.

native_describe [ds-name:]table-name [full] [index] – Runs the describe
command of the data source. If full is specified, additional column
information is provided.

query[_describe] query – Provides query information, including the
number of fields in the query with the field descriptions and the number
of parameters expected by the query.

NAV_UTIL EXPORT
The NAV_UTIL EXPORT utility enables you to export the contents of a
repository to an XML file.

" You can export the repository content in Attunity Studio at any level, by
right-clicking the level and choosing Export XML definitions.

You can export the following types of objects from the repository to an
XML file:

! All configuration information for a particular machine, including
all the elements listed below.

! User profile definitions
! The list of available bindings
! Information for a particular binding, which can include information

about the following:
! Data sources
! Remote Machine
! Environment settings
! Attunity Connect adapters

! Information about the available daemons
! Information about the following for a particular data source:

! Tables that rely on ADD metadata
! ADD metadata for a table generated by the local_copy utility
! Stored procedures that rely on ADD metadata (using the

Procedure driver)
! ADD metadata for a stored procedure generated by the

local_copy utility.
! Views

 518

NAV_UTIL EXPORT
! Synonyms

! Application adapter definitions

In addition, you can use the NAV_UTIL EXPORT utility to export
metadata from a data source where the metadata is readable by
Attunity Connect (such as Oracle or Sybase metadata). The metadata
is converted to XML, which is editable. When running NAV_UTIL
EXPORT, use the -native option, as described below.) After editing,
import the metadata to a local repository for the data source.

For details about setting up this feature in Attunity Studio, refer to
"Extended Native Data Source Metadata" on page 379.

Syntax

nav_util [options] EXPORT obj_type
[ds_name [-native]] obj_name xml_file|con:

where:

options – See above (page 528).

obj_type – The type of object to be exported. You can specify the
following types of objects:

! adapter_def[inition] – Application adapter definition.
! adapters – The adapters specified in the binding information.

! all – All configuration information for a data source1.
! bindings – All available bindings and their environments.
! binding – A particular set of binding information.
! daemon – Daemon general configuration settings.
! daemons – Daemon general configuration settings of all

daemons.
! datasources – The data sources specified in a binding.
! remote_machines – Remote machines defined in the binding.
! env[ironment] – Environment properties for a particular

binding.
! table – Table definitions per data source.
! local_procedure – ADD metadata for a data source stored

procedure generated by the local_copy utility.
! local_table – ADD metadata for a table generated by the

local_copy utility.
! machine – All configuration information for a particular

machine.

1. The data source can be SYS.

 519

NAV_UTIL EXPORT
! procedure – Stored procedure definitions that rely on ADD
metadata (using the Procedure driver).

! synonym – Synonyms definitions per data source.
! user – A user profile definition.
! users – All user profile definitions.
! view – An Attunity Connect view on a data source.

ds_name – The name of data source for the object to be exported, as
specified in the binding configuration, when the obj_type is any of:
table, local_table, view, procedure, local_procedure, and synonym.

-native – Extracts metadata from the native data source where the
metadata is readable by Attunity Connect (such as Oracle or Sybase
metadata). The metadata is converted to XML which is editable. Use the
-native option to view the native metadata. This option is relevant only
for exporting a table or stored procedure (when the obj_type parameter
is table or procedure).

For details about setting up this feature in Attunity Studio, refer to
"Extended Native Data Source Metadata" on page 379.

If the data source is an ADD data source, the metadata is extracted from
the repository and from information specific to the driver for that data
source, which is usually retrieved from the data source at runtime. For
example, the ISN value in Adabas or RFA column in RMS.

obj_name – The name of the specific object (of the type specified in the
obj_type parameter) that is exported. Use the following table to
ascertain the obj_name to supply, dependent on the value of obj_type, or
use a * for all of the objects of the specified type:

obj_type value Description of obj_name value

adapter_def[inition] The name of the application adapter definition to
be exported.

adapters The name of the binding configuration.

all All configuration information for a data source.

binding The name of the binding. If not provided, the
default binding (NAV) is used.

bindings No value necessary.

datasources The name of the binding configuration.

daemon The daemon name.

 520

NAV_UTIL EXPORT
xml_file – The XML file to which the specified object is exported (output).
If a file name is not specified, the output is displayed on the terminal.

daemons No value necessary.

env[ironment] The name of the binding configuration for this
working environment.

local_procedure The name of a local copy of a procedure to be
exported or * to export all the local copy
procedures for the specified ds_name.

local_table The name of a local copy of a table to be exported
or * to export all the local copy tables for the
specified ds_name.

machine No value necessary.

procedure The name of the procedure to be exported or * to
export all the procedures for the specified
ds_name.

remote_machines The name of the binding configuration.

synonym The name of the synonym to be exported or * to
export all the synonyms for the specified ds_name.

table The name of the table to be exported or * to export
all the tables for the specified ds_name.

user The user name that identifies the user profile.

view The name of the view to be exported or * to export
all the views for the specified ds_name.

Windows Platforms

con: – To send the output to the console instead of to an XML file.

obj_type value Description of obj_name value

 521

NAV_UTIL GEN_ARRAY_TABLES
NAV_UTIL GEN_ARRAY_TABLES

The GEN_ARRAY_TABLES utility creates virtual tables for Adabas2,
CISAM, DBMS, DISAM, Enscribe, RMS, and VSAM arrays from existing
metadata.

Syntax

NAV_UTIL GEN_ARRAY_TABLES ds_name table

where:

ds_name – The data source name, as specified in the binding
configuration.

table – The name of the table in the repository that is defined with an
array. Use wildcards if you want to generate virtual tables for more
than one table.

NAV_UTIL IMPORT
The NAV_UTIL IMPORT utility enables you to import the contents of a
valid XML file (formatted correctly for Attunity Connect) to the
repository.

" You can import the repository content in Attunity Studio at any level, by
right-clicking the level and choosing Import XML definitions.

You can import the following types of objects to the repository from an
XML file:

! User profile definitions
! Binding information
! Environment settings (per workspace)
! Daemon configuration information
! Table definitions that rely on ADD metadata (per data source)
! View definitions (per data source)
! Stored procedures that rely on ADD metadata (using the Procedure

driver)
! Synonym definitions (per data source)
! Adapter definitions
! Metadata generated by the local_copy utility

2. The ADABAS database can be accessed using ADD or Predict.

 522

NAV_UTIL INFO
Syntax

nav_util [options] IMPORT ds_name xml_file|con:

where:

options – See above (page 528).

ds_name – The name of the data source for the object to be imported, as
specified in the binding configuration, when the object is any of: table,
local_table, view, procedure, local_procedure, and synonym.

" The value of ds_name is used and not the value of the data source attribute in
the XML file. The data source value is generated when using NAV_UTIL
EXPORT. Thus, for example, if you export a table definition and then want to
import the definition to another data source, you do not need to change the
data source attribute value in the XML file before imported the file.

When importing the following types of objects, you must specify SYS as
the ds_name entry:

! Binding information
! Daemon configuration information
! User profiles
! Working environment configuration
! Adapter definitions

xml_file – The input XML file.

NAV_UTIL INFO
You can return the name of the local machine.

Syntax

nav_util INFO

NAV_UTIL LOCAL_COPY
The LOCAL_COPY utility extracts the data definition of a table or stored
procedure from the data source catalogs and saves it to the repository.
This utility enables you to improve query performance by creating a
copy (“snapshot”) of the data source metadata, which is used instead of
the data source metadata.

Windows Platforms

con: – To read the input from the keyboard.

 523

NAV_UTIL PASSWORD
" The copy must be on the same machine as the data.

For details about setting up this feature in Attunity Studio, refer to
"LOCAL_COPY Metadata (Metadata Caching)" on page 443.

Syntax

NAV_UTIL LOCAL_COPY ds_name src_table

where:

ds_name – The data source name, as specified in the binding
configuration.

src_table – The source table name (wildcards are allowed).

NAV_UTIL PASSWORD
You can define a master password.

Syntax

NAV_UTIL PASSWORD [-uusername] new_password

If you have an existing password, you are prompted to specify it before
defining the new master password.

NAV_UTIL REGISTER
You need to register the copy of Attunity Connect before you can access
data sources on this machine. To use Attunity Connect you must have
a Product Authorization Key (PAK) file, called license.pak. A PAK is
normally supplied by the Attunity Connect vendor. It contains details
such as the product expiration date (if any), the maximum number of
concurrent sessions allowed, which drivers you are authorized to use,
and other information. The PAK is supplied to you in electronic form,
and you must register it before you can use the product.

" If you upgraded a previous version of Attunity Connect, a new license is
automatically registered.

For details, refer to the post-installation part of the installation guide
for the platform on which you installed Attunity Connect.

NAV_UTIL TEST
For use only when instructed by Attunity Support.

 524

NAV_UTIL UPD_DS
NAV_UTIL UPD_DS
To update the default binding configuration, use the UPD_DS option.
This enables you to update the binding only with changes that involve
specifying the connection information.

Syntax

NAV_UTIL [options] UPD_DS ds_name ds_type
connect_string

where:

options – See above (page 528).

ds_name – The name of the data source to be added to the binding
configuration.

ds_type – The name of the driver that is used when accessing the data
source.

connect_string – The connect string to be used to access the data source.

NAV_UTIL UPD_SEC
To update the default user profile, use the UPD_SEC option. This
enables you to update the user name and password for both a specific
data source or machine in a user profile.

Syntax

NAV_UTIL [options] UPD_SEC ds_name | -machine
machine[:port] [-uusername] [-ppassword]

" Use this option if you need to update a user profile on a non-Windows platform.

where:

options – See above (page 528).

ds_name – The name of the data source, as specified in the binding
configuration, that the user profile is relates to.

machine[:port] – The name and, optionally, the port of the data source
that the user profile is relates to.

username – The user name to access the data source or machine.

password – The password to access the data source or machine.

 525

NAV_UTIL UPDATE
NAV_UTIL UPDATE
The UPDATE utility collects information about tables, indexes, and
optionally column cardinalities, for use by the Attunity Connect Query
Optimizer. Each time the utility is run, the resulting statistics
overwrite previous statistics.

This utility can be used for all data sources (both those that require
ADD metadata and relational data sources). For relational data sources,
an entry is created in the Attunity Connect repository for the data
source. An example of when statistics would be used for a relational
driver is with SQL/MP, to generate index statistics in addition to the
column statistics generated by SQL/MP.

" You can update the statistics of data sources in Attunity Studio.

" Running the update utility with the reset option deletes all statistics on the
specified table.

To update statistics, use the following syntax:

nav_util update[_statistics] ds_name table_name
[EXACT | rows row_num] [+All | [column-options]
[index-options]]

To remove all existing statistics in the metadata, use the following
syntax:

nav_util update[_statistics] ds_name table_name
reset

where:

ds_name – The name of the data source, as specified in the binding
configuration.

" The data source must be local. For a remote data source, run the utility on the
remote machine.

OS/390 and z/OS Platforms

Run the following command:

NAVROOT.USERLIB(NAVCMD)
Enter update[_statistics] ds_name table_name
[EXACT | rows row_num] [+All | [column-options]
[index-options]]” at the prompt.

OS/400 Platforms

Run the following command:
call pgm(navutil) parm(update ds_name table_name)

 526

NAV_UTIL UPDATE
table_name – The name of the table. You can specify the wildcards as
part of the table name:

! * and ? under Windows
! ‘*’ and ‘?’ under UNIX (note that the wildcard symbols are delimited

by single quotes)
! * and % under OpenVMS and OS/390 or z/OS

" If you use a wildcard as part of the table name, only the default -All parameter
is available (the column-options and index-options parameters are invalid).

EXACT – The exact statistical information is returned. Note that this
option does not work with large tables.

rows row_num – The number of rows in the table. This value is used to
shorten the time to produce the statistics, assuming that the value
specified here is the correct value, or close to the correct value. It is
recommended to specify a value for rows. The number of unique values
per index is also returned.

" When the number of rows in the table is not provided, the number of rows used
is determined as the maximum value between the value specified in the
<tuning dsmMaxBufferSize> parameter of the environment settings and the
value set in the nRows attribute (specified as part of the metadata for the data
source).

+All – Information about the table, indexes, partial indexes and columns
is included in the output. The default is that only information about the
table and indexes is included in the output and not information for
partial indexes and columns.

column-options – The following column options can be specified:

+fcol_name1 +fcol_name2 … – Returns information only about the
specified table columns.

+f* – Returns information about all the table columns. (Under UNIX
specify +f'*'.)

index-options – The following index options can be specified:

+i1 +i2 … – Returns information only about the specified indexes and
partial indexes.

+i* – Returns information about all the table indexes. (Under UNIX
specify +i'*'.)
" If you want information about all the indexes and only some of the partial

indexes, you can run the utility twice: once with the -All option and once
with the +i1, +i2,... option for the required partial indexes.

 527

NAV_UTIL Utility
Example

! nav_util update disam nation

Estimates the number of rows in the NATION table of the data
source. The result is based on the number of nRows specified as part
of the metadata for the data source and the amount of available
memory as specified by the dsmMaxBufferSize parameter of the
environment settings.

! nav_util update disam nation rows 100

Estimates the number of rows in the NATION table of the data
source. The result is based on the number of rows specified (100). If
the value specified here is the correct value, or close to the correct
value, the time to calculate the statistics is shortened.

! nav_util update disam nation EXACT

Exact statistics for the NATION table of the data source are
returned.

NAV_UTIL Utility
A collection of Attunity Connect utilities. The utilities include
troubleshooting utilities and metadata utilities. All of the utilities run
from NAV_UTIL (or NAVCMD on IBM OS/390 and z/OS platforms).

Nav_Util Options

Nav_Util enables you to do the following:

! Edit an object in the repository via XML (page 509).
! Export information from the repository to an XML file (page 535).
! Import information from an XML file into the repository (page 521).
! Delete an object in the repository (page 506).
! Manage Attunity Connect ADD metadata (page 517, page 522 and

page 525).
! View repository objects (page 532).
! Monitor the client/server system (page 503).
! Troubleshoot SQL (page 512) and XML (page 535).
! Register Attunity Connect (page 523).
! Determine which version of Attunity Connect the system is

currently running (page 532).
! Add users with administrative rights to manage the current

machine from within Attunity Studio (page 501).

 528

NAV_UTIL Utility
In addition, there is a Java version of Nav_Util, to check the
environment when using a Java thin client (see "Running Nav_Util on
a Java Machine" on page 531).

Other Nav_Util options, such as Nav_Util Protogen and Nav_Util
Codepage are described in Attunity Connect Developer SDK.

Running Nav_Util

Use the following format to run Nav_Util:

nav_util [options] utility_name [utility_params]

where:

options – General options that dictate the way the utility will run, such
as the machine where the utility will run:

-lhost[:port] – Executes the utility on the specified machine. If port
is not specified, the Attunity Connect default port, 2551, is used.

-ppassword – The master password specified for the user profile
with the name specified in the -u parameter (or the default NAV
user profile if the -u option is not specified). If a master password
has been set, use of Nav_util requires this password.

-uname – The name of a user profile to be used other than the
default (NAV).

-bbinding_name – A binding setting other than the default (NAV)
binding configuration.

-nowait – Eliminates the "Press any key to continue …" prompt. This
is useful when batching multiple commands in a script.
" This option is valid only for Windows platforms. (On other platforms this

option is set by default.)

-command – Runs the utility from a shell environment. This option
cannot be specified together with the -l option.

OS/390 and z/OS Platforms

Run NAVROOT.USERLIB(NAVCMD) and enter “[options]
utility_name [utility_params]” at the prompt.

NAVROOT is the high level qualifier where Attunity Connect is
installed.

OS/400 Platforms

Run the following command line:
call pgm(navutil) parm(’options’ utility_name
utility_params)

 529

NAV_UTIL Utility
-db – Runs the utility on an Attunity Connect virtual database.

utility_name – The name of the utility you want to run.

utility_params – Utility-specific parameters. If you do not supply the
utility parameters, you are prompted for them.

Running Nav_Util on a Remote Machine from a Local Machine

To execute Nav_Util on a remote machine from the local (non-OS/390 or
z/OS) machine, use the following format:

nav_util -lhost[:port][-uname [-ppassword]]
[-nowait] utility_name [utility_params]

This option runs Nav_Util on the remote machine and displays results
and messages on the local (client) machine.

" The daemon must be running on the remote machine.

" Files generated by the utility command reside on the remote machine.

Windows Platforms

Activate these utilities through the Attunity Connect Environment
Prompt menu item in the Attunity Connect menu
(Start|Programs|Attunity|Attunity Connect Environment
Prompt).

" Using the Attunity Connect Environment Prompt to run NAV_UTIL ensures that
the environment settings for Attunity Connect are correct.

UNIX and OpenVMS Platforms

Activation of these utilities is based on environment symbols defined by
the login file that resides in the BIN directory under the directory where
Attunity Connect is installed. You can always replace the environment
symbol with the appropriate entry.

OpenVMS – Activate these utilities directly from DCL.

UNIX – Activate these utilities from the shell.

HP (Compaq) NonStop Platforms

The TMF transaction utility must be active if Attunity Connect is not
set up to work with 2PC (the transaction environment property
convertAllToDistributed is set to true).

From an ODBC program, use SQLDriverConnect instead of
SQLConnect.

 530

NAV_UTIL Utility
Not all Nav_Util options are supported. For example, Nav_Util edit is not
supported.

You are prompted for a server name and password to access the remote
machine if they are not specified.

utility_name – The name of the utility you want to run.

utility_params – Utility-specific parameters.

Running Nav_Util from a Shell Environment

You can run Nav_Util from a shell environment. To start the local shell,
run Nav_Util with the -command parameter:

nav_util -command [-nowait]

If you specify a utility before the -command parameter, this utility is
run prior to starting the shell environment. For example, to execute the
network utility before starting the shell, run:

nav_util check network -command

nowait – Eliminates the "Press any key to continue …" prompt. This is
useful when batching multiple commands in a script.

From within the shell environment you can run any of the Nav_Util
utilities either on-the-fly or from a file.

! On-the-fly

Enter the command (without the Nav_Util at the beginning). Press
Enter to execute the command.

! From a file

Enter the full name of a file that contains Nav_Util commands,
prefixed by @. The file is a text file (with any extension). Multiple
commands in the file must be separated by semi-colons (;).

Press Enter to execute the commands contained in the file. For
example, to execute the commands contained in the file navutil.txt,
enter the following:

Local> @C:\Program Files\Attunity\Connect
 \tmp\navutil.txt

You can access the shell environment and run a file immediately by
entering the following command:

OS/390 and z/OS Platforms

Use single quotes (’) around the file name. For example,
@’NAVROOT.TMP.NAVUTIL1’.

 531

NAV_UTIL Utility
nav_util [-options] -command @navutil_file

where:

option – The general options that dictate the way the utility runs
(for details, see page 528).

navutil_file – The name of the file containing the Nav_Util
commands.

Connecting to a
Remote Machine

You can execute Nav_Util on a remote machine from within the shell by
using the -l host command. For example, to run the info command from
the remote machine srv_nt.acme.com:

Local> -l srv_nt.acme.com[,name[,password]] info

" You are prompted for a server name and password to access the remote
machine if they are not specified.

You can change the shell environment from a local machine to a remote
machine by using the following command:

Local> connect srv_nt.acme.com[,name[,password]]

" You are prompted for a server name and password to access the remote
machine if they are not specified.

The environment prompt changes from Local> to the remote machine
(such as srv_nt.acme.com>). This remote machine is now considered as
the local machine. To return to the local environment, enter the
following command:

srv_nt.acme.com> disconnect

Quitting the Shell
Environment

Quit the shell by typing either quit or exit at the prompt and pressing
Enter.

Running Nav_Util on a Java Machine

To execute Nav_Util on a Java machine, use the following syntax:

java Navutil utility_name [utility_params]

where java is the command to run a java class (for example, java under
UNIX or jview under OS/390, z/OS and Windows). Note that the format
is case sensitive (Navutil and not navutil).

Use this option to check that you can use Attunity Connect in the Java
environment you are using. The following options are available using
the Java version of Nav_util:

execute – To check access to data, see "NAV_UTIL EXECUTE" on page
512.

 532

NAV_UTIL VERSION
check – To check the client/server interaction. For details, see
"NAV_UTIL CHECK" on page 503.

NAV_UTIL VERSION
The NAV_UTIL VERSION utility enables you to check which version of
Attunity Connect is running on the machine.To display the version of
the Attunity Connect installation, use the following command line:

nav_util version [-history]

NAV_UTIL VIEW
The NAV_UTIL VIEW utility enables you to view the contents of a
repository.

" You can view repository contents using Attunity Studio either in the GUI or
directly in the XML representation via the relevant Source tab.

With this utility you can see the definitions of the following types of
repository objects:

! All configuration information for a particular machine, including
all the elements listed below.

! User profile definitions
! The list of available bindings
! Information for a particular binding, which can include information

about the following:
! Data sources
! Remote machines
! Environment settings
! Attunity Connect adapters

! Information about the available daemons
! Information about the following for a particular data source:

! Tables that rely on ADD metadata
! ADD metadata for a table generated by the local_copy utility

UNIX Platforms

The history flag prints details of the version such as the build and
installation dates and lists previous versions of Attunity Connect that
were installed on the machine.

HP (Compaq) NonStop Platforms

The view option is not supported.

 533

NAV_UTIL VIEW
! Stored procedures that rely on ADD metadata (using the
Procedure driver)

! ADD metadata for a data source stored procedure generated by
the local_copy utility.

! Views
! Synonyms

! Application adapter definitions

Syntax

nav_util [options] VIEW obj_type [ds_name [-native]]
obj_name

where:

options – See above (page 528).

obj_type – The type of object whose definition is displayed. You can
specify the following types of objects:

! adapter_[def]inition – Application adapter definition.
! adapters – The adapters specified in the binding information.
! binding – A particular set of binding information.
! bindings – All available bindings and their environments.
! datasources – The data sources specified in a binding.
! daemon – Daemon general configuration settings.
! daemons – Daemon general configuration settings of all

daemons.
! env[ironment] – Environment properties for a particular

binding.
! local_procedure – ADD metadata for a stored procedure

generated by the local_copy utility.
! local_table – ADD metadata for a table generated by the

local_copy utility.
! machine – All configuration information for a particular

machine.
! procedure – Stored procedure definitions that rely on ADD

metadata (using the Procedure driver).
! remote_machines – Remote machines defined in the binding.
! synonym – Synonyms definitions per data source.
! table – Table definitions per data source.
! user – A user profile definition.
! view – An Attunity Connect view on a data source.

 534

NAV_UTIL VIEW
ds_name – The name of data source, as specified in the binding
configuration, for the object whose definition is displayed, when the
obj_type is any of: table, local_table, view, procedure, local_procedure,
and synonym.

-native – Extracts metadata from the native data source. This option is
relevant only for viewing the definition of a table or stored procedure
(when the obj_type value is table or procedure). For details about
setting up this feature in Attunity Studio, refer to "Extended Native
Data Source Metadata" on page 379.

obj_name – The name of the specific object (of the type specified in the
obj_type parameter) that is displayed. Use the following table to
ascertain the obj_name to supply, dependent on the value of obj_type, or
use a * for all of the objects of the specified type:

obj_type value Description of obj_name value

adapter_def[inition] The name of the application adapter definition to
be viewed.

adapters The name of the binding configuration.

binding The name of the binding. If not provided, the
default binding (NAV) is used.

bindings No value necessary.

datasources The name of the binding configuration.

daemon The daemon name.

daemons No value necessary.

env[ironment] The name of the binding configuration for this
working environment.

local_procedure The name of a local copy of a procedure to be
viewed or * to view all the local copy procedures for
the specified ds_name.

local_table The name of a local copy of a table to be viewed or
* to view all the local copy tables for the specified
ds_name.

machine No value necessary.

procedure The name of the procedure to be viewed or * to
view all the procedures for the specified ds_name.

 535

NAV_UTIL XML
NAV_UTIL XML
The NAV_UTIL XML utility sends an XML request directly to Attunity
Connect for processing, much like NAV_UTIL EXECUTE sends an SQL
query directly to Attunity Connect.

NAV_UTIL XML is particularly suited to troubleshooting, by enabling
system administrators and DBAs to check the Attunity Connect XML
dispatcher’s handling of queries specified in XML documents.

Syntax

nav_util xml fin.xml|con: fout.xml|con:

where:

fin.xml – The file name with the input XML.

fout.xml – The file name of the output XML. If a file name is not
specified, the output is displayed on the terminal.

remote_machines The name of the binding configuration.

synonym The name of the synonym to be viewed or * to view
all the synonyms for the specified ds_name.

table The name of the table to be viewed or * to view all
the tables for the specified ds_name.

user The user name that identifies the user profile.

view The name of the view to be viewed or * to view all
the views for the specified ds_name.

obj_type value Description of obj_name value

Windows Platforms
con: – To read the input from the keyboard.

Windows Platforms
con: – To send the output to the console instead of to an XML file.

 536

NAV_UTIL XML
Example

Attunity Connect processes XML requests (including queries) specified
only in documents formatted in the syntax specific to Attunity Connect.
The general structure of this syntax is as follows:

<header>
 <request-step1>…</request-step1>
 ...
 <request-stepn>…</request-stepn>
</header>

For more detail about XML syntax specific to Attunity Connect, see
"ACX Request and Response Documents" on page 106.

The following input file is formatted according to the requirements of
the Attunity Connect XML implementation and specifies the SQL query
“select * from navdemo:nation”:

<?xml version="1.0"?>
<acx>
 <connect adapter="query" />
 <execute>
 <query id="1">
 select * from navdemo:nation
 </query>
 </execute>
 <disconnect/>
</acx>

Running the nav_util XML utility with the above file as input generates
the following output file:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <recordset id=’1’>
 <record N_NATIONKEY=’0’ N_NAME=’ALGERIA’ N_REGIONKEY=’0’
 N_COMMENT=’New Distributor ’/>
 <record N_NATIONKEY=’1’ N_NAME=’ARGENTINA’ N_REGIONKEY=’1’
 N_COMMENT=’Far Away ’/>
 <record N_NATIONKEY=’2’ N_NAME=’BRAZIL’ N_REGIONKEY=’1’
 N_COMMENT=’Nearby ’/>
 ...
 </recordset>
 </executeResponse>
</acx>

 537

NAVDEMO
NAVDEMO
Attunity Connect includes demo data on every platform where it is
installed, called NAVDEMO.

Customer – Details about customers who order parts.

Supplier – Details about suppliers of parts.

Partsupp – Details about parts supplied.

TPart – Details about parts that can be ordered.

Torder – Details about orders.

Lineitem – Details about a specific part in an order.

Nation – Details about the country where customers or suppliers live.

Region – Details about the region where customers or suppliers live.

" If you want to see how Attunity Connect joins data from multiple databases
across different platforms, using NAVDEMO on all the platforms, you set up the
remote data sources in the client binding configuration with aliases for the
remote NAVDEMO data sources. In Attunity Studio Configuration perspective,
when you add a data source shortcut, and select the remote data source, you
specify the alias in the Alias in binding field.

 538

NAVDEMO
The Demo Database

All installations of Attunity Connect includes a demo database. You can
use this database for training, benchmarking and demonstrations. This
database has the following structure:

The columns and data types of each of these tables are listed below. The
annotations for primary keys and foreign references are for clarification
only and do not specify any implementation requirements such as
integrity constraints.

TPART Table

ORDERKEY

SHIPDATE

COM M ITDATE

RECEIPTD ATE

ORDERDATE

TIM EKEY

ORDERKEYPARTKEY

N ATION KEY

SU PPKEY

PARTKEY

SUPPKEY

NATIONKEY

CUSTKEY

NATIONKEY

REGIONKEY

REGIONKEY

PARTKEY

SUPPKEY

CUSTKEY

TPART(P_)

SUPPLIER(S_)

PARTSUPP(PS_)

CUSTOM ER(C _)

NATION(N _)

LINEITEM (L_)

REGION(R_)

ORDER(O_)

TIM E(T_)

Legend:
• The parentheses following each table nam e contain the prefix of the colum n nam es of that table.
• Arrows point in the direction of the one-to-m any relationships betw een tables.
• Dashed lines represent optional tables and relationships.

ORDERKEY

SHIPDATE

COM M ITDATE

RECEIPTD ATE

ORDERDATE

TIM EKEY

ORDERKEYPARTKEY

N ATION KEY

SU PPKEY

PARTKEY

SUPPKEY

NATIONKEY

CUSTKEY

NATIONKEY

REGIONKEY

REGIONKEY

PARTKEY

SUPPKEY

CUSTKEY

TPART(P_)

SUPPLIER(S_)

PARTSUPP(PS_)

CUSTOM ER(C _)

NATION(N _)

LINEITEM (L_)

REGION(R_)

ORDER(O_)

TIM E(T_)

Legend:
• The parentheses following each table nam e contain the prefix of the colum n nam es of that table.
• Arrows point in the direction of the one-to-m any relationships betw een tables.
• Dashed lines represent optional tables and relationships.

Column Name Data Type

P_PARTKEY integer

P_NAME variable text, size 55

P_MFGR fixed text, size 25

P_BRAND fixed text, size 10

P_TYPE variable text, size 25

P_SIZE integer

P_CONTAINER fixed text, size 10

P_RETAILPRICE decimal

 539

NAVDEMO
 SUPPLIER Table

PARTSUPPP Table

P_COMMENT variable text, size 23

Primary Key: P_PARTKEY

Column Name Data Type

Column Name Data Type Comments

S_SUPPKEY integer

S_NAME fixed text, size 25

S_ADDRESS variable text, size 40

S_NATIONKEY integer Foreign reference to
N_NATIONKEY

S_PHONE fixed text, size 15

S_ACCTBAL decimal

S_COMMENT variable text, size 101

Primary Key: S_SUPPKEY

Column Name Data Type Comments

PS_PARTKEY integer Foreign reference to
P_PARTKEY

PS_SUPPKEY integer Foreign reference to
S_SUPPKEY

PS_AVAILQTY integer

PS_SUPPLYCOST decimal

P_COMMENT variable text, size 199

Compound Primary Key: PS_PARTKEY, PS_SUPPKEY

 540

NAVDEMO
CUSTOMER Table

TORDER Table

Column Name Data Type Comments

C_CUSTKEY integer

C_NAME variable text, size 25

C_ADDRESS variable text, size 40

C_NATIONKEY integer Foreign reference to
N_NATIONKEY

C_PHONE fixed text, size 15

C_ACCTBAL decimal

C_MKTSEGMENT fixed text, size 10

C_COMMENT variable text, size 117

Primary Key: C_CUSTKEY

Column Name Data Type Comments

O_ORDERKEY integer

O_CUSTKEY integer Foreign reference to
C_CUSTKEY

O_ORDERSTATUS fixed text, size 1

O_TOTALPRICE decimal

O_ORDERDATE date

O_ORDERPRIORITY variable text, size 15

O_CLERK variable text, size 15

O_SHIPPRIORITY integer

O_COMMENT variable text, size 79

Primary Key: O_ORDERKEY

 541

NAVDEMO
LINEITEM Table
Column Name Data Type Comments

L_ORDERKEY integer Foreign reference to
O_ORDERKEY

L_PARTKEY integer Foreign reference to
P_PARTKEY

L_SUPPKEY integer Foreign reference to
S_SUPPKEY

L_LINENUMBER integer

L_QUANTITY integer

L_EXTENDEDPRICE decimal

L_DISCOUNT decimal

L_TAX decimal

L_RETURNFLAG fixed text, size 1

L_LINESTATUS fixed text, size 1

L_SHIPDATE date

L_COMMITDATE date

L_RECEIPTDATE date

L_SHIPINSTRUCT variable text, size 25

L_SHIPMODE variable text, size 10

L_COMMENT variable text, size 44

Compound Primary Key: L_ORDERKEY, L_LINENUMBER

 542

Navmap File (HP (Compaq) NonStop Only)
NATION Table

REGION Table

Navmap File (HP (Compaq) NonStop Only)
Since HP (Compaq) NonStop naming conventions restrict names to
eight characters and limits the character set that can be used, you can
create a mapping file that enables you to map names to logical names.

Create a mapping file called NAVMAP in the subvolume where
Attunity Connect is installed. In the NAVMAP file you define a section
for each data source on the HP (Compaq) NonStop machine (defined in
the binding configuration) for which you want a mapping. Within each
section you specify the mapping you want for each name, as it is
identified by Attunity Connect.

Enter the following syntax in the NAVMAP file for each SQL/MP table
name:

table_alias = \machine_name.$volume_name.subvolume_name.filename

Enter the following syntax in the NAVMAP file for each Enscribe file
name or Attunity Connect procedure name:

table_alias = filename

Column Name Data Type Comments

N_NATIONKEY integer 25 nations are populated

N_NAME fixed text, size 25

N_REGIONKEY integer Foreign reference to
R_REGIONKEY

N_COMMENT variable text, size 152

Primary Key: N_NATIONKEY

Column Name Data Type Comments

R_REGIONKEY integer 5 regions are populated

R_NAME variable text, size 25

R_COMMENT variable text, size 152

Primary Key: R_REGIONKEY

 543

NAVROOT
Example

[SQLMPDB1]
employee_details = \mach1.$D3018.sqlmp.emp
customer_details = \mach1.$D3018.sqlmp.customer
...

[ENSCRIBE1]
employee_details = employee
...

[PROC1]
MATH_SIMPLE = msimple
...

NAVROOT
The root directory where Attunity Connect is installed. An environment
variable named NAVROOT points to this directory.

Network Communications
See "Daemon" on page 213, "Encrypting Network Communications" on
page 672.

 544

ODBC
ODBC

ODBC API Conformance

The following table lists the ODBC 2.5 APIs that are implemented by
Attunity Connect on a Windows platform.

Non-Windows Platforms
The following APIs are not implemented by the ODBC Driver manager
(except for SQLGetFunctions).

ODBC Function Conformance Level

SQLAllocConnect Core
SQLAllocEnv Core
COBOLSQLAllocEnv See "Support for Non-C Applications on

Platforms Other than NT" on page 551.
SQLAllocStmt Core
SQLBindCol Core
SQLBindParameter Level 2
SQLCancel Core
SQLColAttributes Core
SQLColumns Level 1
SQLConnect Core
SQLDataSources Level 2
SQLDescribeCol Core
SQLDisconnect Core
SQLDriverConnect Level 1
SQLDrivers Level 2 (implemented only in ODBC Driver

Manager)
SQLError Core
SQLExecDirect Core
SQLExecute Core
SQLExtendedFetch Level 2
SQLFetch Core
SQLForeignKeys Level 2
SQLFreeConnect Core
SQLFreeEnv Core
SQLFreeStmt Core

 545

ODBC
Minimum
Requirements of an
ODBC Provider

The ODBC provider must support all of the core SQL ODBC data types
and expose the following ODBC APIs:

SQLGetConnectOption Level 1
SQLGetCursorName Core
SQLGetData Level 1
SQLGetFunctions Level 1 (implemented only in ODBC Driver

Manager)
SQLGetInfo Level 1
SQLGetStmtOption Level 1
SQLGetTypeInfo Level 1
SQLMoreResults Level 2
SQLNumParams Level 2
SQLNumResultCols Core
SQLParamData Level 1
SQLPrepare Core
SQLPrimaryKeys Level 2
SQLProcedureColumns Level 2
SQLProcedures Level 2
SQLPutData Level 1
SQLRowCount Core
SQLSetConnectOption Level 1
SQLSetCursorName Core
SQLSetParam Core
SQLSetPos Level 2
SQLSetStmtOption Level 1 (partial)
SQLSpecialColumns Level 1
SQLStatistics Level 1
SQLTables Level 1
SQLTransact Core

ODBC Function Conformance Level

ODBC Function Comment

SQLAllocConnect
SQLAllocEnv
SQLAllocStmt

 546

ODBC
SQLBindCol
SQLBindParameter
SQLColumns
SQLConnect
SQLDescribeCol
SQLDisconnect
SQLConnect
SQLError
SQLExecDirect
SQLExecute
SQLExtendedFetch Recommended if used by the backend data

source.
SQLFetch
SQLForeignKeys Recommended if used by the backend data

source.
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetData

SQLGetFunctionsa

SQLGetInfo
SQLGetTypeInfo
SQLNumParams Recommended if used by the backend data

source.
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys Recommended if used by the backend data

source.
SQLProcedureColumns Recommended if used by the backend data

source.
SQLProcedures Recommended if used by the backend data

source.
SQLPutData

ODBC Function Comment

 547

ODBC
Asynchronous
Execution

Attunity Connect supports asynchronous execution enabling a query to
be cancelled during execution. If more than one query is active on the
same server, these queries might also be cancelled along with the query
for which the cancel was issued.

SQLRowCountb

SQLSetConnectOptionc

SQLSetStmtOptiond

SQLStatistics
SQLTables
SQLTransact Recommended if used by the backend data

source.

a. On a Windows platform – There is no custom implementation for this function. Attunity
Connect uses the ODBC Administrator implementation, which checks for the presence of
an API in a driver DLL header. The ODBC driver supplies stubs that return SQL_ERROR
for all non-implemented APIs, so SQLGetFunctions returns all APIs as supported.
On non-Windows platforms – There is a custom implementation for this function.

b. Unavailable for SELECT statements (returns pcrow = -1). For batch update queries,
pcrow=0 indicates that there was no data to update/delete and pcrow=n indicates that n
rows were affected.

c. Attunity Connect supports the following options:
SQL_ACCESS_MODE, SQL_AUTOCOMMIT, SQL_TXN_ISOLATION (the sup-
ported vparams of this option is SQL_TXN_READ_COMMITTED),
SQL_CURRENT_QUALIFIER (available only on a DSN in single data source mode).

d. Attunity Connect supports the following options:
SQL_BIND_TYPE
SQL_MAX_ROWS – effective only in SELECT statements.
SQL_CONCURRENCY – the supported vparams of this option are:
SQL_CONCUR_READ_ONLY: executes the query in read only mode.
SQL_CONCUR_LOCK: executes the query in pessimistic lock mode.
SQL_CONCUR_VALUES: executes the query in optimistic lock mode
SQL_CONCUR_ROWVER: (unsupported) changed to SQL_CONCUR_VALUES
SQL_CURSOR_TYPE – the supported vparams of this option are:
SQL_CURSOR_FORWARD_ONLY
SQL_CURSOR_STATIC
SQL_CURSOR_KEYSET_DRIVEN: changed to SQL_CURSOR_STATIC
SQL_CURSOR_DYNAMIC: changed to SQL_CURSOR_STATIC
SQL_ROWSET_SIZE
SQL_ASYNC_ENABLE – this option is supported only on NT platforms.

ODBC Function Comment

 548

ODBC
General Information

Conformance
Information

SQL Syntax
Information

ODBC Data Types

Attunity Connect supports the following SQL data types:

! SQL_SMALLINT
! SQL_TINYINT
! SQL_INTEGER

! SQL_DOUBLE1

! SQL_REAL1

! SQL_NUMERIC

! SQL_LONGVARBINARY (treated as a BLOB)
! SQL_VARCHAR

! SQL_LONGVARCHAR (treated as a BLOB)
! SQL_CHAR

! SQL_DATE2

Information Type Returns
ODBCVER 0x0250
SQL__NAME On Windows: "ODNAV32.DLL"

Non-Windows: "ODNAVSHR"
SQL_DBMS_NAME "Attunity Connect "

Information Type Returns
SQL_ODBC_API_CONFORMANCE 0X0250

SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSC_NOT_COMPLIANT

SQL_ODBC_SQL_CONFORMANCE SQL_OSC_CORE

Information Type Returns
SQL_MAX_ID_NAME_LEN 63
SQL_IDENTIFIER_QUOTE_CHAR "
SQL_QUALIFIER_NAME_SEPARATOR :
SQL_SPECIAL_CHARACTERS #$
SQL_IDENTIFIER_CASE SQL_IC_MIXED (non-sensitive)

1. Since the double and real data types have limited accuracy, arithmetic operations
involving two doubles or two reals may be incorrect.

2. This type is reported as "Not Supported" to the ODBC Driver Manager. However,
in existing data sources columns of this type are processed properly.

 549

ODBC
! SQL_TIME2

! SQL_TIMESTAMP
! SQL_BINARY

Attunity Connect enables you to retrieve or modify
SQL_LONGVARCHAR and SQL_LONGVARBINARY fields, with certain
restrictions. The restrictions are due primarily to the support for BLOBs
available in the underlying data sources, and may vary from one data
source to another. For specific details about the various data sources,
see the specific driver (see "Data Drivers" on page 251 for a list of
available s). For example, data sources that support BLOBs may or may
not support random positioning within a stream (as with the Seek
method), and may or may not allow operations on partial "pieces" of a
BLOB.

The following table shows Attunity Connect’s suggested mapping
between ODBC data types and C and COBOL data types:

ODBC Data Type C Data Types COBOL Data Type Bytes
SQL-CHAR SQL-C-CHAR PIC X(nnn),

PIC 9(nnn)
nnn

SQL-NUMERIC
(full word, no decimal point)

SQL-C-LONG PIC S9(09)
COMP

4

SQL-NUMERIC
(with decimal point)

SQL-C-DOUBLE COMP-2 8

SQL-INTEGER SQL-C-LONG PIC S9(09)
COMP

4

SQL-SMALLINT SQL-C-SHORT PIC S9(04)
COMP

2

SQL-REAL SQL-C-FLOAT COMP-1 4
SQL-DOUBLE SQL-C-DOUBLE COMP-2 8
SQL-DATE
(YYYY-MM-DD)

SQL-C-DATE PIC S9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP

6

SQL-DATE SQL-C-CHAR PIC X(10) 10
SQL-TIME SQL-C-TIME PIC 9(04)COMP

PIC 9(04)COMP
PIC 9(04)COMP

6

SQL-TIME
(HH:MM:SS)

SQL-C-CHAR PIC X(08) 8

 550

ODBC
ODBC Schema Rowsets

Attunity Connect supports the following ODBC schema rowsets:

! SQLCatalogs
! SQLColumns
! SQLForeignKeys
! SQLGetTypeInfo
! SQLPrimaryKeys
! SQLProcedures
! SQLProcedureColumns
! SQLStatistics
! SQLTables

SQL-TIMESTAMP SQL-C-TIMESTAMP PIC S9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP
PIC 9(04)COMP

16

SQL-TIMESTAMP
(YYYY-MM-D HH:MM:S)

SQL-C-CHAR PIC X(23) 23

SQL-VARCHAR SQL-C-CHAR PIC X(nnn) nnn
SQL-LONGVARCHAR SQL-C-CHAR PIC X(nnn) nnn
SQL-BINARY SQL-C-BINARY PIC X(nnn)

PIC 9(nnn)
nnn

SQL-VARBINARY N/A n/a n/a
SQL-LONGVARBINARY N/A n/a n/a
SQL-TINYINT SQL-C-SHORT PIC S9(04) COMP 2

ODBC Data Type C Data Types COBOL Data Type Bytes

 551

ODBC
Attunity Connect-Specific SQLGetInfo fInfoType

Attunity Connect supports the following additional fInfoType:

Attunity Connect-Specific SQLColAttributes fOption

Attunity Connect supports the following additional fOption:

Support for Non-C Applications on Platforms Other than NT

Attunity Connect implements the COBOLSQLAllocEnv function, which
can be used in place of the SQLAllocEnv API. By setting Attunity
Connect to use as input or output strings that are space-padded and not
null-terminated, the COBOLSQLAllocEnv function enables applications
based on languages other than C to work with ODBC.

COBOLSQLAllocEnv affects the way the following ODBC APIs handle
strings:

! SQLBrowseConnect
! SQLColAttributes
! SQLConnect
! SQLDataSources
! SQLDescribeCol
! SQLDriverConnect
! SQLDrivers
! SQLError

fInfoType Data Type Description

1000 SQL_INFO__START Returns the default data
source type. For example, if
the default data source is
an ORACLE data source,
SQLGetInfo(fIinfoType =
1000) returns the string
"ORACLE".

fOption Data Type Description

1002 LONG Returns TRUE if the field is a BLOB, otherwise
false.

HP (Compaq) NonStop Platforms
When using COBOL, you can only use HP (Compaq) NonStop
NMCOBOL.

 552

ODBC Connect String
! SQLGetConnectOption
! SQLGetCursorName
! SQLGetInfo
! SQLNativeSql
! SQLSetConnectOption

ODBC Connect String
Connecting to Attunity Connect through ODBC requires that you set up
a DSN. On Windows platforms, this DSN is created using the ODBC Data
Source Administrator.

On non-Windows platforms, the DSN must be a name of a data source
defined in the Attunity Connect binding configuration.

After a DSN is defined, there are two ways to connect to
Attunity Connect through ODBC:

! Passing to the application the name of the DSN and (if required) a
username and password.

! Using the SQLConnect method and passing a connect string.

To work with Attunity Connect as the ODBC provider, supply one of the
following in the connect string:

Driver=Attunity Connect Driver

or

DSN=name_of_DSN

where name_of_DSN is the name of a data source defined in the binding
information.

For a description of the additional parameters, refer to "Connect String
Parameters" on page 554.

Defining a DSN

! To define a DSN on Windows platforms:

1. Access the Microsoft ODBC Data Source Administrator from the
Control Panel (for example, via Windows 2000 it is accessed via
Start|Settings|Control Panel|Administrative Tools|Data Sources
(ODBC)).

2. Choose the type of DSN you want to define (a User, System or File
DSN).

 553

ODBC Connect String
3. Click Add.... The Create New Data Source window is displayed.
4. Select Attunity Connect Driver from the list and click Next or

Finish (depending on whether you are defining a File DSN or User
or System DSN).

5. The following window is displayed:

6. Specify a name for the DSN and, optionally, a description.
7. Click Next. The following window is displayed:

8. Specify the binding configuration and user profile to be used with
the DSN.

 554

ODBC Connect String
9. Click Next. The following window is displayed:

10. Specify the properties for the DSN.
11. Click Finish.

" Other properties can be specified by editing the DSN as a text file.

Connect String Parameters

The connect string parameters can be one or more of the following:

Binding=name|XML_format – Specifies the data source connection
information.

name – The name of the binding settings in the local repository.
This provides access to all data sources defined in this binding
configuration. For details, see "<datasource> Statement" on page
131.

XML format – The binding settings in Attunity Connect XML format.
" This version of the parameter defines specific data sources either locally

or on a remote machine and eliminates the need to define local binding
settings in the repository.

" Only the data sources specified for the binding are accessed. If you want
to access the data sources in all the binding settings on a remote
machine, use the BindURL parameter (see below).

 The settings include the following:

name – The name of a data source. For details, see
"<datasource> Statement" on page 131.

type – The driver used to access the data source if it resides on
the client machine, or the value REMOTE if the data resides on

 555

ODBC Connect String
a remote machine. If the value is REMOTE, the binding on the
remote machine is updated with the values of name, connect,
and Datasource and Config properties. For details, see
"<datasource> Statement" on page 131.

connect – If the type value is a driver, this value is the
connection information to the data source. If the type value is
REMOTE, this value is the address of the remote machine where
the data source resides and the workspace on that machine (if
the default workspace is not used).

Datasource properties – Additional data source properties. For
details, see "Additional <datasource> Attributes" on page 132.

 properties – Properties specific to the data source. For details,
see "Driver Configuration Properties" on page 308.

BindURL=[attconnect://][username:password@]host[:port][/workspace][&...][|...]
– Specifies a server that Attunity Connect connects to and whose data
sources, defined in the binding settings on this server, are available.
This parameter eliminates the need to define a local binding with
entries for data sources on a server.

" If you want to access only a subset of the data sources on the server, use the
Binding parameter (see above).

attconnect:// – An optional prefix to make the URL unique when the
context is ambiguous.

username:password@ – An optional user ID/password pair for
accessing the Attunity Connect server.

host – The TCP/IP host where the Attunity Connect daemon (IRPCD)
resides. Both numeric form and symbolic form are accepted.

port – An optional Attunity Connect daemon (IRPCD) port number.
This item is required when the daemon does not use the Sun RPC
portmapper facility.

workspace – An optional Attunity Connect workspace to use. If
omitted, the default workspace ("Navigator") is used.

&… – Multiple BindURLs may be specified, using an ampersand (&)
as separator. Spaces between the BindURLs are not allowed. If one
of the machines listed is not accessible, the connect string fails.

|… – Multiple BindURLs may be specified, using an OR symbol (|)
as separator. Spaces between the BindURLs are not allowed. The
connect string succeeds as long as one of the machines listed is
accessible.

 556

ODBC Connect String
Note the following:

! A data source name may appear multiple times (for example, in the
local and remote bindings). Attunity Connect resolves this
ambiguity by using the first definition of any DSN and disregarding
any subsequent definitions. Thus, if a DSN called SALES appears in
the local binding and via the BindURL parameter, the local
definition is used.

! When using BindURL, Attunity Connect binds upon initialization
to all of the DSNs defined for the binding – regardless of which DSNs
are actually used. (Note that this may result in decreased
performance.)

! For each server specified in the BindURL connect string item,
Attunity Connect automatically adds a remote machine
(dynamically in memory) called BindURLn with n=1,2,…,
according to the order of the elements in the BindURL value.

For multiple BindURLs, use the following syntax to specify a
remote Attunity Connect query processor to use:

BindURLn=[attconnect://]…. where n is the number of the
BindURL specifying the remote machine whose query processor
you want to use.

Examples
! The following string shows an Attunity Connect server running

on nt.acme.com using the ‘Prod’ workspace and logging on as
‘minny’ (password ‘mouse’).

BindURL=minny:mouse@nt.acme.com/prod
! The following string shows an Attunity Connect server running

on nt.acme.com using the default workspace (Navigator), using
the port 8888 and an anonymous login.

BindURL=nt.acme.com:8888

Database – The name of an Attunity Connect virtual database that this
connection accesses. (The virtual database presents a limited view to
the user of the available data such that only selected tables from either
one or more data sources are available, as if from a single data source.)

" This property is equivalent to the Virtual Database option in the definition of a
DSN (see "Defining a DSN" on page 552).

DefTdpName=data source – The name of the single data source you want
to access as the default using this connection. Tables specified in SQL
statements are assumed to be from this data source. If this parameter
is not specified, SYS is the default; for tables from any other data source,
you must prefix each table name with the name of the data source,
using the format data source:tablename.

 557

ODBC Connect String
Attunity Connect opens the connection in single data source mode
(unless explicitly overridden by setting OneTdpMode=0, see below).

" This property is equivalent to the Default Data Source option in the definition
of a DSN (see "Defining a DSN" on page 552).

DSNPasswords=data_source|machine_alias=username/password[&data_sourc
e|machine_alias=username/password[&…]] – User profile information
(username and password) granting access to a data source or remote
machine via this connection. As an alternative to storing usernames
and passwords in the Attunity Connect user profile, this parameter
allows you to dynamically supply one or more pairs of username and
password values, with each pair assigned to a particular data source or
remote machine.

where:

data_source – A data source name defined in the binding
configuration (see "<datasource> Statement" on page 131).

machine_alias – A machine alias defined in the binding
configuration (see "<remoteMachine> Statement" on page 135).

username/password – a pair of user ID and password values needed
in order to access the indicated data source.

Env-prop=value[,Env-prop=value[,Env-prop=value]...] – Environment values
that override the values in the binding environment on the client.

where:

Env-prop – The name of the environment property. For details of
these parameters see "Binding Configuration" on page 129.

Example

The following string sets the value of the noHashJoin parameter to
true, disabling the hash join mechanism during query optimization.

<optimizer noHashJoin="true"/>

OneTdpMode=1|0 – Specifies whether you are working in single (1) or
multiple (0) data source mode. You must explicitly set a value for
OneTdpMode as well as setting a value for DefTdpName (see above), for
Attunity Connect to work in single data source mode. Otherwise, the
connection is opened to allow access to multiple data sources.

" This property is equivalent to the Single option in the definition of a DSN (see
"Defining a DSN" on page 552).

Passthru=1|0 – Specifies whether all SQL statements that do not return
rowsets during this connection will pass directly to the native RDBMS
data source parameter, without any parsing normally performed by the

 558

ODBC Connect String
Attunity Connect Query Processor. Specifying 1 enables passthru mode
and causes Attunity Connect to open the connection in single data
source mode. This parameter can be used only if the backend data
source is an SQL-based . SQL executed in passthru mode behave the
same as individual passthru queries specified with the "TEXT={{…}}"
syntax; however, there is no way to override passthru mode for a
particular query. Use passthru mode to issue queries that perform
special processing not supported in Attunity Connect, such as alter
table and drop index.

" This property is equivalent to the Passthru option in the definition of a DSN (see
"Defining a DSN" on page 552).

" Attunity does not recommend using this option, since it impacts on every
DDL SQL statement, even if only some statements were intended.

Also refer to "For all SQL During a Session" on page 593.

PWD=password – Specifies the password required in order to access the
user profile. For details, see "User Profiles" on page 793.

QpTdpName=server machine – Specifies the remote machine where query
processing will take place. The name of this remote machine is defined
in the binding configuration.

SecFile=filespec – The name of an Attunity Connect user profile other
than the default (NAV).

" The SecFile entry is supported for backwards compatibility only. As of
Attunity Connect version 3.0, the UID parameter (described below) is used
instead of SecFile.

UID=userID – Specifies the name of a user profile in the repository. If the
user profile is not specified, the default user profile (NAV) is used.

 559

ODBC Driver
ODBC Driver
The Attunity Connect ODBC driver is a generic driver to data providers
that have an SQL processing capability and expose the ODBC API.

The following sections provide information about the Attunity Connect
ODBC driver:

! Setting Up the Binding
! Mapping ODBC Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels

Username and password are passed to the provider when calling
SQLConnect(). See "User Profiles" on page 793 for more information.

" When running a Microsoft Jet driver with the Attunity Connect ODBC driver, to
access BLOBs stored in an MS Access database, use Attunity Studio to set
<odbc fixAccessBug="true"> in the environment properties.

When running a Microsoft Jet driver with the Attunity Connect ODBC driver, to
access an MSAccess database, the application might unexpectedly lock. In
this case, use Attunity Studio to set <queryProcessor noThreads="true"> in the
environment properties (the application will run slower than it does if this
parameter is not set).

Setting Up the Binding

! To connect to an ODBC data provider:

ODBC data on a
Windows Platform

The ODBC data source on a Windows platform is set using Attunity
Studio, in the Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select ODBC for the Type field.
! Specify the connect string as follows:

ODBC Connect String – The user, System or File DSN, which has
previously been defined using the Microsoft ODBC Driver Manager.
For a User or System DSN, specify the name of the DSN. For a File
DSN, specify the following

filedsn=dsn

 560

ODBC Driver
where dsn is the name of the File DSN.

If you are connecting to the data source through the driver for that
data source, precede the DSN by the name of the driver as it appears
in the Registry, followed by a semi-colon (;).
" Make sure that you specify the name exactly as it appears in the Registry

(since the Registry is case sensitive).

ODBC data on a
non-Windows Platform

Define a file with the following format:

[name]
TYPE=ODBC
SHAREABLE-NAME=ODBC_details

where:

name – A unique identifier for the ODBC driver. This value is used as
the type attribute for a data source defined in the <datasource> section
of the binding when you identify a data source to be accessed by this
custom ODBC . Therefore, the name of an ODBC driver must be unique.

ODBC_details – The full path and name of the ODBC driver on the
non-Windows platform.

Use the NAV_UTIL ADDON to register the ODBC definition to Attunity
Connect:

nav_util addon define_file

where define_file is the input text file containing the ODBC
specification. Unless you specify a full path, NAV_UTIL searches for the
file in the current working directory.

Specify a binding entry similar to the following:

<datasource name="PERSONNEL" type="ODBC_Driver"
 connect="ODBC_connect"
 syntaxName="ODBC" />

OS/390 and z/OS Platforms

Run NAVROOT.USERLIB(NAVCMD) and enter "ADDON
define_file" at the prompt (where NAVROOT is the high level
qualifier specified during installation of Attunity Connect)

OS/400 Platforms

Run the following command:
call pgm(nav_util) parm(addon ’define_file’)

 561

ODBC Driver
where ODBC_Driver is the section name specified in the addon file and
ODBC_connect is the connect string for the ODBC driver.

In the ODBC connect string specify a connect string, where the connect
string is the connection information required by the ODBC driver on the
non-Windows platform.

" From applications that link to the ODBC driver manager provided by Intersolv,
define an entry in the odbc.ini file of intersolv (for example, /opt/odbc/odbc.ini)
as follows:

[TDP-NAME]
Driver = $navroot/lib/libodnavshr.o

where TDP-NAME is the name of the data source as defined in the binding and
navroot is the directory where Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExtendedFetch="true|false" – Specifies whether extended fetch is
used by Attunity Connect, regardless of whether extended fetch is
supported by the backend data source.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source,
Attunity Connect defaults to the next highest level.

odbcConnect="string" – The ODBC connect string.

 562

ODBC Driver
Mapping ODBC Data Types

The following table shows how Attunity Connect maps the ODBC data
types to OLE DB data types.

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to ODBC data types:

ODBC OLE DB

SQL_BINARY DBTYPE_BYTES

SQL_CHAR DBTYPE_STR

SQL_DOUBLE DBTYPE_R8

SQL_INTEGER DBTYPE_I4

SQL_NUMERIC DBTYPE_STR

SQL_REAL DBTYPE_R4

SQL_SMALLINT DBTYPE_I2

SQL_TIMESTAMP DBTYPE_DBTIMESTAMP

CREATE TABLE ODBC

Char[(m<256)] SQL_CHAR[(m)]

Char[(m>256)] SQL_VARCHAR[(m)]

Date SQL_TIMESTAMP

Double SQL_DOUBLE

Float SQL_DOUBLE

Image SQL_LONGVARBINARY

Image(m) SQL_VARBINARY(M)

Integer SQL_INTEGER

Numeric SQL_NUMERIC

Numeric(p,s) SQL_DOUBLE

 563

ODBC Driver
Stored Procedures

The Attunity Connect ODBC driver supports stored procedures.

You can use a SELECT statement only for a procedure having only a
single SELECT statement.

To retrieve output parameters, multiple resultsets, and the return code
from a stored procedure, use the "? = CALL" syntax, described on page
728.

Transaction Support

The Attunity Connect ODBC driver supports one-phase commit if
distributed transactions are supported in the backend data source. It
can participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Isolation Levels

The Attunity Connect ODBC driver supports the following isolation
levels:

! Uncommitted read
! Committed read
! Repeatable read
! Serializable

If the backend data source does not support an isolation level, the driver
supports the isolation levels that are supported by the backend data
source.

Numeric(p[,s]) SQL_DECIMAL

Smallint SQL_SMALLINT

Text SQL_LONGVARCHAR

Tinyint SQL_TINYINT

Varchar(m) SQL_VARCHAR(m)

CREATE TABLE ODBC

 564

Offline Design Mode
" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

Offline Design Mode
Offline design mode enables you to define the resources to
Attunity Connect within Attunity Studio, without having to connect to
the actual server machine where these definitions will be implemented.
Thus, for example, you can set up a machine even if the actual server
machine is down, or set up a number of definitions for different
machines on the same design machine.

Once the resources have been defined on the design machine, you
implement the definitions by dragging-and-dropping each definition to
the specific server machine where you want the definition
implemented.

! To define a design machine:

1. Right-click Machines in the Configuration explorer.
2. Select Add Offline Design Machine from the popup menu.
3. Enter a name for the design machine.
4. Click Finish.

You can define all available resources on this machine. You can also set
up metadata using a metadata import utility. Every resource is
available on the design machine, irrelevant of the actual platform
where the resource needs to exist. Thus, for example, both HP NonStop
data sources and OS/390 data sources are available, even though on
completion, you can drag-and-drop the NonStop definitions (such as an
Enscribe data source) to an HP NonStop machine.

" You can export the definitions made on an offline design machine by
right-clicking the definition and choosing Export XML definitions from the
popup menu.

OLE DB
OLE DB is Microsoft's low-level interface to data across the organization
including relational and non-relational databases, email and file
systems. OLE DB is an open specification designed to build on the
success of ODBC by providing an open standard for accessing all kinds
of data.

ADO is an application level interface to OLE DB.

 565

OLE DB
OLE DB Methods

Attunity Connect supports the following OLE DB interfaces and
methods:

Interface Methods

IAccessor AddRefAccessor
CreateAccessor
GetBindings
ReleaseAccessor

IChapteredRowset AddRefChapter
ReleaseChapter

IColumnsInfo GetColumnInfo
MapColumnIDs

ICommand Execute
GetDBSession

ICommandPrepare Prepare
Unprepare

ICommandProperties GetProperties
SetProperties

ICommandText GetCommandText
SetCommandText

ICommandWithParameters GetParameterInfo
MapParameterNames
SetParameterInfo

IConvertType CanConvert
IDBCreateCommand CreateCommand
IDBCreateSession CreateSession
IDBInfo GetLiteralInfo
IDBInitialize Initialize

Unitialize
IDBProperties GetProperties

GetPropertyInfo
SetProperties

IDBSchemaRowset GetRowset
GetSchemas

 566

OLE DB
IErrorLookupa GetErrorDescription
GetHelpInfo
ReleaseErrors

IGetDataSource GetDataSource
ILockBytes (OLE) Flush

ReadAt
SetSize
Stat
WriteAt

IMultipleResults GetResult
IOpenRowset OpenRowset
IPersist (OLE) GetClassID
IRowset AddRefRows

GetData
GetNextRows
ReleaseRows
RestartPosition

IRowsetChange DeleteRows
InsertRow
SetData

IRowsetIdentity IsSameRow
IRowsetInfo GetProperties

GetReferencedRowset
GetSpecification

IRowsetLocate Compare
GetRowsAt
GetRowsByBookmark
Hash

IRowsetUpdate GetOriginalData
GetPendingRows
GetRowStatus
Undo
Update

ISequentialStream Read
Write

ISessionProperties GetProperties
SetProperties

Interface Methods

 567

OLE DB
OLE DB Data Types

Attunity Connect exposes the following OLE DB data types through
IColumnsInfo::GetColumnInfo:
! DBTYPE_I1
! DBTYPE_UI1
! DBTYPE_I2
! DBTYPE_I4
! DBTYPE_R4
! DBTYPE_R8
! DBTYPE_STR
! DBTYPE_BYTE
! DBTYPE_NUMERIC
! DBTYPE_DBDATE
! DBTYPE_DBTIME
! DBTYPE_DBTIMESTAMP

The Attunity Connect s for specific data providers map the data
source-specific data types to the above data types.

Attunity Connect supports SQL data types through the CREATE TABLE
statement and supports the data type conversion rules and tables
documented in the OLE DB Programmer's Reference.

Attunity Connect enables you to retrieve or modify TEXT and IMAGE
fields, with certain restrictions. The restrictions are due primarily to
the support for BLOBs available in the underlying data sources, and
may vary from one data source to another. For example, data sources

IStream (OLE) Read
Seek
SetSize
Stat
Write

ISupportErrorInfo InterfaceSupportsErrorInfo
ITransaction Abort

Commit
GetTransactionInfo

ITransactionJoin JoinTransaction
ITransactionLocal StartTransaction

a. IErrorLookup uses IErrorInfo.

Interface Methods

 568

OLE DB
that support BLOBs may or may not support random positioning within
a stream (as with the Seek method), and may or may not allow
operations on partial "pieces" of a BLOB.

The following restrictions of the Attunity Connect implementation of
TEXT and IMAGE fields apply to the OLE DB interface:

! IStream::CopyTo and IStream:Clone are not supported.
! For data providers that support IStream::Seek functionality, the

STREAM_SEEK_END parameter value is not supported.
! Transacted BLOBs are not supported.

OLE DB Properties

This section lists the OLE DB properties supported in Attunity Connect.
These properties belong to one of the following categories:

! The DBPROPSET_DBINIT initialization properties.
! The DBPROPSET_DATASOURCE data source properties.
! The DBPROPSET_DATASOURCEINFO data source information

properties.
! The DBPROPSET_SESSION session properties.
! The DBPROPSET_ROWSET rowset properties.
! Attunity Connect-specific properties.

Initialization Properties The DBPROPSET_DBINIT property set contains the properties listed
below. Providers can define additional initialization properties.

Property Name Permission Attunity Connect
Default

DBPROP_AUTH_PASSWORD Read/Write
DBPROP_AUTH_USERID Read/Write
DBPROP_INIT_DATASOURCE Read/Write "SYS"

DBPROP_INIT_MODE Read/Write 999
DBPROP_INIT_TIMEOUT Read/Write 0
DBPROP_INIT_HWND Read/Write 0
DBPROP_INIT_PROVIDERSTRING Read/Write ""

DBPROP_INIT_PROMPT Read/Write DBPROMPT_
 NOPROMPT

DBPROP_INIT_OLEDBSERVICES Read/Write 0xffffffff

ISGPROP_PASSTHROUGH_MODEa Read/Write ""

 569

OLE DB
Data Source Properties The DBPROPSET_DATASOURCE property set contains the following
property:

Data Source
Information Properties

The DBPROPSET_DATASOURCEINFO property set contains the
properties listed below. Providers can define additional data source
information properties. These properties are read-only.

DBPROP_INIT_CATALOG Read/Write ""

a. Attunity Connect-specific property for passthru queries.

Property Name Permission Attunity Connect
Default

Property Name Permission Attunity Connect
Default

DBPROP_CURRENTCATALOG Read/Write ""

Property Name Perm. Attunity Connect Default
DBPROP_ACTIVESESSIONS Read 0 (no limit)
DBPROP_ASYNCTXNABORT Read FALSE

DBPROP_ASYNCTXNCOMMIT Read FALSE

DBPROP_BYREFACCESSORS Read FALSE

DBPROP_CATALOGLOCATION Read DBPROPVAL_CL_START

DBPROP_CATALOGTERM Read "DATABASE"

DBPROP_CATALOGUSAGE Read DBPROPVAL_CU_
 DML_STATEMENTS
DBPROPVAL_CU_TABLE_
 DEFINITION
DBPROPVAL_CU_INDEX_
 DEFINITION

DBPROP_COLUMNDEFINTION Read DBPROPVAL_CD_NOTNULL

DBPROP_CONCATNULLBEHAVIOR Read DBPROPVAL_CB_NULL

DBPROP_DATASOURCENAME Read "OLEQP"

DBPROP_DATASOURCEREADONLY Read FALSE

DBPROP_DBMSNAME Read "AttunityConnect"

DBPROP_DBMSVER Read "04.10.0000"

DBPROP_DSOTHREADMODEL Read DBPROPVAL_RT_APTMTTHREAD
 or
DBPROPVAL_RT_FREETHREAD

DBPROP_GROUPBY Read DBPROPVAL_GB_
 EQUALS_SELECT

 570

OLE DB
DBPROP_HETEROGENEOUSTABLES Read DBPROPVAL_HT_
 DIFFERENT_CATALOGS

DBPROP_IDENTIFIERCASE Read DBPROPVAL_IC_UPPER

DBPROP_MAXINDEXSIZE Read 215
DBPROP_MAXOPENCHAPTERS Read 1
DBPROP_MAXROWSIZE Read 32000
DBPROP_MAXROWSIZEINCLUDESBLOB Read FALSE

DBPROP_MAXTABLESINSELECT Read 10
DBPROP_MULTIPLEPARAMSETS Read FALSE

DBPROP_MULTIPLERESULTS Read DPPROPVAL_MR_SUPPORTED

DBPROP_MULTIPLESTORAGEOBJECTS Read TRUE

DBPROP_MULTITABLEUPDATE Read FALSE

DBPROP_OLEOBJECTS Read DPPROPVAL_OO_BLOB

DBPROP_ORDERBYCOLUMNSINSELECT Read FALSE

DBPROP_OUTPUTPARAMETERAVAILABILITY Read DBPROPVAL_OA
 _NOTSUPPORTED

DBPROP_PERSISTENTIDTYPE Read DBPROPVAL_PT_NAME

DBPROP_PREPAREABORTBEHAVIOR Read DBPROPVAL_CB_RESERVE

DBPROP_PREPARECOMMITBEHAVIOR Read DBPROPVAL_CB_RESERVE

DBPROP_PROCEDURETERM Read "STORED PROCEDURE"

DBPROP_PROVIDERFILENAME Read "NAV32.DLL"

DBPROP_PROVIDEROLEDBVER Read "2.0"

DBPROP_PROVIDERVER Read "04.10.0000"

DBPROP_QUOTEDIDENTIFIERCASE Read DBPROPVAL_IC_SENSITIVE

DBPROP_ROWSETCONVERSIONONCOMMAND Read TRUE

DBPROP_SCHEMATERM Read "OWNER"

DBPROP_SCHEMAUSAGE Read 0
DBPROP_SQLSUPPORT Read DBPROPVAL_SQL_ANSI92_ENTRY

DBVPROPVAL_SQL_ODBC
 _MINIMUM
DBPROPVAL_SQL_ODBC
 _MINIMUM

DBPROP_STRUCTUREDSTORAGE Read DBPROPVAL_SS_ISTREAM
DBPROPVAL_SS
 _ISEQUENTIALSTREAM

Property Name Perm. Attunity Connect Default

 571

OLE DB
Session Properties The DBPROPSET_SESSION property set contains the following
property:

Rowset Properties The DBPROPSET_ROWSET property set contains the properties listed
below. Providers can define additional rowset properties.

DBPROP_SUBQUERIES Read DBPROPVAL_SQ
 _CORRELATEDSUBQUERIES
DBPROPVAL_SQ_COMPARISON
DBPROPVAL_SQ_EXISTS
DBPROPVAL_SQ_IN
DBPROPVAL_SQ_QUANTIFIED

DBPROP_SUPPORTEDTXNDDL Read DBPROPVAL_TC_ALL

DBPROP_
SUPPORTEDTXNISOLEVELS

Read DBPROPVAL_TI
 _READCOMMITTED

DBPROP_SUPPORTEDTXNISORETAIN Read DBPROPVAL_TR_DONTCARE

DBPROP_TABLETERM Read "TABLE"

ISGPROP_DEFTDP_TYPEa Read ""

a. Attunity Connect-specific property for the type of the default data source.

Property Name Perm. Attunity Connect Default

Property Name Permission Attunity Connect
Default

DBPROP_SESS_
 AUTOCOMMITISOLEVELS

Read DBPROPVAL_TI_
 READCOMMITTED

Property Name Permission Attunity Connect
Default

DBPROP_ABORTPRESERVE Read FALSE

DBPROP_
BLOCKINGSTORAGEOBJECTS

Read FALSE

DBPROP_BOOKMARKS Read/Write FALSE

DBPROP_BOOKMARKSKIPPED Read FALSE

DBPROP_BOOKMARKTYPE Read DBPROPVAL_
BMK_NUMERIC

DBPROP_CANFETCHBACKWARDS Read/Write FALSE

DBPROP_CANHOLDROWS Read TRUE

DBPROP_CANSCROLLBACKWARDS Read/Write FALSE

DBPROP_CHANGEINSERTEDROWS Read TRUE

DBPROP_COLUMNRESTRICT Read TRUE

 572

OLE DB
DBPROP_COMMANDTIMEOUT Read/Write 0
DBPROP_COMMITPRESERVE Read FALSE

DBPROP_DEFERRED Read FALSE

DBPROP_DELAYSTORAGEOBJECTS Read/Write FALSE

DBPROP_IMMOBILEROWS Read TRUE

DBPROP_LITERALBOOKMARKS Read/Write FALSE

DBPROP_LITERALIDENTITY Read TRUE

DBPROP_MAXOPENROWS Read 100
DBPROP_MAXPENDINGROWS Read 100
DBPROP_MAXROWS Read 0
DBPROP_MEMORYUSAGE Read 0
DBPROP_ORDEREDBOOKMARKS Read/Write FALSE

DBPROP_OTHERINSERT Read FALSE

DBPROP_OTHERUPDATEDELETE Read FALSE

DBPROP_OWNINSERT Read TRUE

DBPROP_OWNUPDATEDELETE Read TRUE

DBPROP_QUICKRESTART Read TRUE

DBPROP_REENTRANTEVENTS Read FALSE

DBPROP_REMOVEDELETED Read TRUE

DBPROP_REPORTMULTIPLECHANGES Read FALSE

DBPROP_RETURNPENDINGINSERTS Read TRUE

DBPROP_ROWRESTRICT Read FALSE

DBPROP_ROWTHREADMODEL Read DBPROPVAL_RT_
 APMTMTTHREAD

DBPROP_STRONGIDENTITY Read TRUE

DBPROP_TRANSACTEDOBJECT Read FALSE

DBPROP_UPDATABILITY Read/Write 0
DBPROP_ IAccessor Read TRUE

DBPROP_IChapteredRowset Read/Write TRUE

DBPROP_IColumnsInfo Read TRUE

DBPROP_IColumnsRowset Read FALSE

DBPROP_IConvertType Read TRUE

DBPROP_IROwset Read TRUE

Property Name Permission Attunity Connect
Default

 573

OLE DB
Attunity
Connect-specific
Properties

Attunity Connect contains the following specific properties:

OLE DB Schema Rowsets

Attunity Connect supports the following predefined schema rowsets:

! DB_SCHEMA_CATALOGS (Each data provider consumed by an
Attunity Connect system is a different "catalog".)

! DB_SCHEMA_COLUMNS
! DB_SCHEMA_FOREIGN_KEYS
! DB_SCHEMA_INDEXES
! DB_SCHEMA_PRIMARY_KEYS
! DB_SCHEMA_PROCEDURES
! DB_SCHEMA_PROCEDURE_COLUMNS
! DB_SCHEMA_PROVIDER_TYPES
! DB_SCHEMA_STATISTICS
! DB_SCHEMA_TABLES

DBPROP_IRowsetChange Read/Write FALSE

DBPROP_IRowsetIdentity Read/Write FALSE

DBPROP_IRowsetInfo Read TRUE

DBPROP_IRowsetLocate Read/Write FALSE

DBPROP_IRowsetResynch Read FALSE

DBPROP_IRowsetUpdate Read/Write FALSE

DBPROP_ISupportErrorInfo Read/Write TRUE

DBPROP_ISequentialStream Read/Write FALSE

DBPROP_LOCKMODE Read/Write DBPROPVAL_LM
 _NONE

ISGPROP_PASSTHROUGH_MODE Read/Write ""

Property Name Permission Attunity Connect
Default

Property Name Permission Attunity Connect
Default

ISGPROP_DEFTDP_TYPEa

a. The ISGPROP_DEFTDP_TYPE returns the default data source type. For exam-
ple, if the default data source is an ORACLE data source,
ISGPROP_DEFTDP_TYPE returns the string "ORACLE".

Read

ISGPROP_PASSTHROUGH_MODEB

b. The ISGPROP_PASSTHROUGH_MODE property sets the Attunity Connect
Query Processor to passthru mode. Refer to "Passthru SQL" on page 590.

Read/Write NULL string

 574

OLEDB-FS Driver
Also See: "ADO" on page 80.

OLEDB-FS Driver
The OLEDB-FS driver is a generic driver to data providers that do not
have SQL processing capabilities but expose OLE DB Index interfaces.

" The driver has been tested with JOLT, a Microsoft OLE DB interface over JET.

The following sections provide additional information about the
Attunity Connect OLEDB-FS driver:

! Setting Up the Binding
! Data Provider Requirements
! Data Source Properties
! Mapping OLE DB Data Types
! Transaction Support
! Isolation Levels

" The current version of this driver does not support OLE objects. It also does
not support the Variant data type for columns.

Attunity Connect passes any required username and password to the
provider when the application calls IDBInitialize::Initialize(). See
"User Profiles" on page 793 for more information.

Setting Up the Binding

! To connect to an OLE DB data provider that exposes OLE DB Index
interfaces:

The OLE DB data provider is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select OLEDB-FS for the Type field.
! Specify the OLEDB-FS connect string as follows:

either:

OLEDB Provider – The the name of the provider as it appears in
the registry (this value is case sensitive).

Oledb Data Source Name – The name of the data source.

 575

OLEDB-FS Driver
Catalog Name (optional) – The name of the catalog.

or:

Data Link File – The full path and name of the UDL file.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

catalogeName="string" – The name of the catalog.

datasourceName="string" – Specifies the name of the data source.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

 providerName="string" – (OLEDB Provider in the connect String)
Specifies the name of the provider as it appears in the registry (this
value is case sensitive).

udlFilename – (Data Link File in the connect String) The full path and
name of the UDL file.

 576

OLEDB-FS Driver
Data Provider Requirements

Since the OLEDB-FS driver is generic, it can connect to a number of
different data providers that expose OLE DB interfaces. The current
version of the, however, has specific requirements that every such data
provider must meet:

! For tables to be updatable, the provider must expose bookmarks.
! The provider must expose the following OLE DB interfaces:

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and Rowset
objects)

IOpenRowset OpenRowset

IDBCreateSession CreateSession

IRowsetChange DeleteRows, SetData, InsertRow

IRowsetLocate GetRowsByBookmark

IRowsetUpdate Update (optional)

IDBInitialize Initialize, Uninitialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

ILockBytes (OLE)a Flush, ReadAt, SetSize, Stat, WriteAt

IRowsetIndexb SetRange

IErrorInfoc GetDescription, GetSource

IErrorRecords GetErrorInfo

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE)a Read, Seek, SetSize, Stat, Write

ITransactionLocal
(optional)

StartTransaction, Commit, Abort

 577

OLEDB-FS Driver
Data Source Properties

The OLE DB data source is assumed to support the following properties:

Initialization Properties

! DBPROP_INIT_DATASOURCE

! DBPROP_AUTH_USERID (if user-id has been supplied in the user
profile)

! DCPROP_AUTH_PASSWORD (if user-id and password have been
supplied in the user profile)

Rowset Properties

! DBPROP_IRowsetChange = TRUE

! DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

! DBPROP_OWNUPDATEDELETE = TRUE

! DBPROP_OWNINSERT = TRUE

! DBPROP_OTHERUPDATEDELETE = TRUE

! DBPROP_CANSCROLLBACKWARDS = TRUE

! DBPROP_IRowsetLocate = TRUE

! DBPROP_OTHERINSERT = FALSE

Mapping OLE DB Data Types

The following table shows how Attunity Connect maps the SQL data
types to OLE DB data types.

ISupportErrorInfo InterfaceSupportsErrorInfo

ITableDefinition CreateTable, DropTable

IDBProperties SetProperties

a. Required only if Blobs are used in the OLE DB provider.
b. Required only if indexes are used in the OLE DB provider.
c. You can use IErrorLookup with the GetErrorDescription method as well.

Interface Methods

SQL Data Type OLE DB Data Type

SQL_BINARY DBTYPE_BYTES

SQL_CHAR DBTYPE_STR

 578

OLEDB-FS Driver
Transaction Support

The Attunity Connect OLEDB-FS driver supports one-phase commit if
distributed transactions are supported in the backend data source. It
can participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Isolation Levels

The Attunity Connect OLEDB-FS driver supports the following isolation
levels:

! Uncommitted read
! Committed read
! Repeatable read
! Serializable

If the backend data source does not support an isolation level, the driver
supports the isolation levels that are supported by the backend data
source.

SQL_DATE DBTYP_DBDATE

SQL_DOUBLE DBTYPE_R8

SQL_INTEGER DBTYPE_I4

SQL_INTEGER DBTYPE_UI4

SQL_REAL DBTYPE_R4

SQL_SMALLINT DBTYPE_I2

SQL_SMALLINT DBTYPE_UI2

SQL_TIME DBTYPE_DBTIME

SQL_TIMESTAMP DBTTYPE_DBTIMESTAMP

SQL_TINYINT DBTYPE_I1

SQL_TINYINY DBTYPE_UI1

SQL_VARCHAR DBTYPE_STR

SQL Data Type OLE DB Data Type

 579

OLEDB-SQL Driver
" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

OLEDB-SQL Driver
The OLEDB-SQL driver is a generic driver to data providers that have
an SQL processing capability and expose OLE DB interfaces.

" This driver has been tested with Microsoft Kagera (MSDASQL), enabling an
OLE DB interface over the Microsoft SQL Server data provider.

The following sections provide information about the Attunity Connect
OLEDB-SQL driver:

! Setting Up the Binding
! Data Provider Requirements
! Mapping OLE DB Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels

" Attunity Connect passes username and password to the provider when calling
IDBInitialize::Initialize(). For more information, see "User Profiles" on page
793.

When working with a BRAZOS (with MS Access) database, the OLEDB-SQL
driver does not support tables or stored procedures, which have duplicate
column names.

Setting Up the Binding

! To connect to an OLE DB data provider that has an SQL processing
capability:

The OLEDB-SQL data provider is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select OLEDB-SQL for the Type field.
! Specify the OLEDB-SQL connect string as follows:

OLEDB Provider – The the name of the provider as it appears in the
registry (this value is case sensitive).

 580

OLEDB-SQL Driver
OLEDB DSN – The name of the data source.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

providerName="string" – (OLEDB Provider in the connect string)
Specifies the name of the provider as it appears in the registry (this
value is case sensitive).

datasourceName="string" – (OLEDB DSN in the connect string) Specifies
the name of the data source.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

Data Provider Requirements

The Attunity Connect OLEDB-SQL is a generic driver that can connect
to data providers that expose OLE DB interfaces. The current version of
the, however, has specific requirements that every such data provider
must meet:

! The provider must be registered with the OLE clsid.
! The provider must have an SQL processing capability exposed via

the ICommand interface.
! Batch Update commands (Update … Where …) in standard ANSI

’92 SQL must be supported.
! For tables to be updatable, at least one unique index with

non-nullable key fields must be reported by the provider.

 581

OLEDB-SQL Driver
! The provider must expose the following OLE DB interfaces:

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

ICommand Execute

ICommandPrepare Prepare

ICommandProperties SetProperties

ICommandText SetCommandText

ICommandWithParameters GetParameterInfo

IDBCreateCommand CreateCommand

IDBCreateSession CreateSession

IDBInitialize Initialize

IDBSchemaRowset GetRowset (tables, columns,
indexes; optionally also
procedures, procedure parameters)

IErrorInfoa

a. You can use IErrorLookup with the GetErrorDescription method as well.

GetDescription, GetSource

IErrorRecords GetErrorInfo

ILockBytes (OLE)b

b. Required only if Blobs are used in the OLE DB provider.

Flush, ReadAt, SetSize, Stat,
WriteAt

IRowset GetData, GetNextRows,
ReleaseRows, RestartPosition

IStream (OLE)b Read, Seek, SetSize, Stat, Write

ISupportErrorInfo InterfaceSupportsErrorInfo

ITransactionLocal (optional) StartTransaction, Commit, Abort

 582

OLEDB-SQL Driver
Mapping OLE DB Data Types

The following table shows how Attunity Connect maps OLE DB data
types to SQL data types.

" The OLEDB-SQL driver does not support the Variant data type for columns.

Stored Procedures

The Attunity Connect OLEDB-SQL driver supports stored procedures.

To retrieve output parameters, multiple resultsets, and the return code
from the stored procedure, use the "? = CALL" syntax, described on page
728.

OLE DB Data Type SQL Data Type

DBTTYPE_DBTIMESTAMP SQL_TIMESTAMP

DBTYP_DBDATE SQL_DATE

DBTYPE_BYTES SQL_BINARY

DBTYPE_DBTIME SQL_TIME

DBTYPE_I1 SQL_TINYINT

DBTYPE_I2 SQL_SMALLINT

DBTYPE_I4 SQL_INTEGER

DBTYPE_R4 SQL_REAL

DBTYPE_R8 SQL_DOUBLE

DBTYPE_STR SQL_CHAR

DBTYPE_STR SQL_VARCHAR

DBTYPE_UI1 SQL_TINYINT

DBTYPE_UI2 SQL_SMALLINT

DBTYPE_UI4 SQL_INTEGER

 583

One-Phase Commit
Transaction Support

The Attunity Connect OLEDB-SQL driver supports one-phase commit if
distributed transactions are supported in the backend data source. It
can participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Isolation Levels

The Attunity Connect OLEDB-SQL driver supports the following
isolation levels:

! Uncommitted read
! Committed read
! Repeatable read
! Serializable

If the backend data source does not support an isolation level, the driver
supports the isolation levels that are supported by the backend data
source.

" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

One-Phase Commit
See "Transaction Management" on page 771.

 584

Oracle Driver
Oracle Driver
The following sections provide information about the Attunity Connect
Oracle and Oracle8 drivers:

! Setting Up the Binding
! Mapping Oracle Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

Setting Up the Binding

! To connect to Oracle data:

The Oracle data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.

" When the Data Source Type field (see below) is Oracle8, the maximum
length of the name is 16 characters.

! For the Type field, select the entry according to the version of the
Oracle database:
! For an Oracle 7.x database, select Oracle for the data source

Type field.

OpenVMS Platforms
To link Attunity Connect with the Oracle 7.x database, run the
following commands from a privileged and Oracle-enabled account, if
this was not done when Attunity Connect was installed:

1. $ @SYS$MANAGER:NAV_SHUT

2. Run the login procedure NAV_LOGIN using its full pathname.
3. $ @NAVROOT:[BIN]NAV_ORA_BUILD

4. $ @SYS$STARTUP:NAV_START

UNIX Platforms
If you encounter problems connecting to the Oracle database, rebuild
the driver with links to Oracle libraries. To link to Oracle libraries, run
the ora_build script from navroot/bin. Make sure that the user account
that executes this script has write permission to navroot/lib.

 585

Oracle Driver
! For an Oracle 8.x and higher database, select Oracle8 for the
Data Source Type field.

! Specify the connect string as follows:

Oracle Connect String (for Oracle driver) or SQL*NET connect string
(for Oracle8 driver) – The Oracle connection string. Refer to the
Oracle documentation for the specific connect string.
" To access Informix on 64 bit operating systems (HP-UX 11 and higher,

AIX 4.4 and higher and Sun Solaris 2.8 and higher) the data source 32 bit
client must be used.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

oracleConnect – (Oracle Connect String or SQL*NET connect string in
the connect string) The Oracle connection string. Refer to the Oracle
documentation for the specific connect string.

" To access Informix on 64 bit operating systems (HP-UX 11 and higher, AIX 4.4
and higher and Sun Solaris 2.8 and higher) the data source 32 bit client must
be used.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

Oracle version 8 and higher:

newDecimal="true|false" – Specifies whether the decimal data type is
treated as a decimal or double data type. The default value is false,
which is valid for users of Oracle 8.0. Users of Oracle 8i and higher
should change the value to true.

 586

Oracle Driver
Syntax Settings To access Oracle tables and columns using case sensitive names, in the
Advanced tab when editing the Oracle data source in Attunity Studio,
in the Syntax name field, specify the following:

For Oracle version 7: ORACLE

For Oracle version 8 and higher: ORACLE8

When specifying case sensitive table and column names in SQL queries
over Oracle data, use quotes (") to delimit the name. Make sure that the
case sensitivity of the names within the quotes is exact. When
specifying a table owner name in a query, the case of the owner name
must match that defined in the binding settings.

Checking Oracle
Environment Variables

Check that Oracle environment variables such as ORACLE_HOME and
ORACLE_SID are correctly defined and readable by Attunity Connect. If
necessary, define the variables in the startup script defined for the
workspace in the daemon configuration, such as nav_server.script, or in
the site_nav_login file – see Attunity Connect Installation Guide.

Mapping Oracle Data Types

The following table shows how Attunity Connect maps Oracle data
types to OLE DB and ODBC data types.

UNIX Platforms
When working with the Oracle8 , add the following line to the shared
library environment variable:

$ORACLE_HOME/rdbms/lib and $ORACLE_HOME/lib directories

where $ORACLE_HOME is the directory where Oracle is installed.

Make sure that the Oracle shared library directories come after
$NAVROOT/lib in the UNIX shared library environment variable.

Oracle OLE DB ODBC

Char (m<256) DBTYPE_STR SQL_CHAR

Char (m>255) DBTYPE_STR SQL_LONGVARCHARa

Date DBTYPE_DATE SQL_TIMESTAMP

Float DBTYPE_R8 SQL_DOUBLE

Long DBTYPE_BYTES SQL_LONGVARCHAR

Long Raw DBTYPE_BYTES SQL_LONGVARBINARY

 587

Oracle Driver
The following data types are supported only for Oracle 8.x databases
using the Oracle8 :

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Oracle data types:

Number(9<p<31) DBTYPE_NUMERIC SQL_NUMERIC(P)

Number(p,s) DBTYPE_NUMERIC SQL_NUMERIC(P,S)

Number(p<=4) DBTYPE_I2 SQL_SMALLINT

Number(p<=9) DBTYPE_I4 SQL_INTEGER

Number(p>31) DBTYPE_R8 SQL_DOUBLE

Varchar2 (m<256) DBTYPE_STR SQL_VARCHAR

Varchar2 (m>255) DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647.If the <odbc longVarcharLenAsBlob> parameter is set
to true in the Attunity Connect environment settings, then precision of m.

Oracle OLE DB ODBC

BFILE DBTYPE_BYTES SQL_LONGVARBINARY

BLOB DBTYPE_BYTES SQL_LONGVARBINARY

CFILE DBTYPE_STR SQL_LONGVARCHAR

CLOB DBTYPE_STR SQL_LONGVARCHAR

Oracle OLE DB ODBC

CREATE TABLE Oracle

Binary Raw

Char[(m)] Char[(m)]

Date Date

Double Float

Float Float

 588

Oracle Driver
Stored Procedures

The Attunity Connect Oracle driver supports Oracle stored procedures.

To retrieve output parameters and the return code from the stored
procedure, use the "? = CALL" syntax, described on page 728.

Transaction Support

The Attunity Connect Oracle8 driver supports two-phase commit and
can fully participate in a distributed transaction when the transaction
environment property convertAllToDistributed is set to true.

You use Oracle8 with its two-phase commit capability through an XA
connection.The daemon server mode must be configured to
Single-client mode (see "Server Mode" on page 680).

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

Image Long Raw

Image(m) Raw(m)

Integer Number (10)

Numeric Float

Numeric(p[,s]) Numeric(p,s)

Smallint Number (5)

Text Long

Time Date

Timestamp Date

Tinyint Number (3)

Varchar(m) Varchar2(m)

CREATE TABLE Oracle

 589

Oracle Driver
Isolation Levels and Locking

The Attunity Connect Oracle driver supports the following isolation
levels:

! Committed read
! Serializable

If a read-only transaction is issued, the isolation level is ignored.

" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction. If a read-only
transaction is issued, the isolation level is ignored.

Oracle 7 and up supports record level locking. Updates in Oracle are
performed with no wait flag – if one of the records is locked, the update
operation fails.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

 590

Passthru SQL
Passthru SQL
SQL UPDATE, INSERT, DELETE, DDL statements and SELECT
statements can be passed directly to a relational data source, instead of
being processed by the Attunity Connect query processor.

A data retrieval query can include joins where the data from one or
more of the data sources is processed directly by the data source instead
of the Attunity Connect Query Processor. This is particularly useful
when dealing with a data source whose commands are not in standard
SQL and whose data you want to join with data from other data sources.

For statements that do not return rowsets, Attunity Connect provides
the following ways of passing SQL directly to the data source:

! For a specific SQL statement from within the application (see
below).

! For all SQL during a session from within the application (see page
593).

All SQL statements (both statements that do not return rowsets and
statements that do return rowsets) can be passed as part of the SQL
itself. This is particularly useful when dealing with a non-SQL data
source, whose data you want to join with other SQL data (see page 595).

" Passthru queries are not supported for complex objects, such as BLOBs.

For a Specific SQL Statement

You can bypass the Attunity Connect Query Processor for SQL
statements that do not return rowsets for specific queries using ADO,
RDO and DAO.

Via ADO To enable passthru SQL for a specific statement, use the Command
object and pass it the Operating_Mode parameter. All SQL during this
connection will bypass the Attunity Connect Query Processor. To reset
the connection to channel the SQL through the Attunity Connect Query
Processor, reset the Operating_Mode parameter to NULL.

Example

The following example code shows an ADO connection to an Oracle
database. Using the Command object, individual lines of SQL can be

HP (Compaq) NonStop Platforms

When specifying a passthru query to a HP (Compaq) NonStop SQL/MP
database, if the query is not within a transaction, you must append the
words “BROWSE ACCESS” at the end of the query.

 591

Passthru SQL
passed directly to the database. You specify the connection with the
Operating_Mode parameter set to Passthru. All SQL, until the
Operating_Mode parameter is reset to NULL, subsequently bypasses
the Attunity Connect Query Processor.

Public cmd As Object
Public cmd1 As Object
Public conn As Object
Public conn1 As Object

Private Sub Bypass_Qpex2()

Dim rs As New ADODB.Recordset
Dim conn As New ADODB.Connection
Dim conn1 As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim cmd1 As New ADODB.Command

’---------------------------------------
’ An example of using a Passthru Command
’---------------------------------------
conn1.ConnectionString = "Provider=AttunityConnect"
conn1.Open
conn1.DefaultDatabase = "Oracle"
cmd1.ActiveConnection = conn1
cmd1.Properties("Operating_Mode") = "Passthru"
cmd1.CommandText = "ALTER TABLE mytbal ADD new_column INTEGER"
cmd1.Execute

’--
’ Resetting the Passthru mode for the command
’--
cmd1.Properties("Operating_Mode") = ""

Set cmd1 = Nothing
conn1.Close
Exit Sub

End Sub

Via RDO and DAO You can pass SQL directly to the data source using either RDO or DAO.
With DAO, use the ODBCDirect workspace to pass a query directly to the
data source.

Use the SQLGetConnectOption and SQLSetConnectOption APIs and a
long constant set to 1000. Pass a value of 1 as the last parameter of
these APIs if you want to pass the SQL directly to the data source.

 592

Passthru SQL
When you open the connection to the data source, use the hDbc
property, which returns a Long value containing the ODBC connection
handle created by the ODBC driver manager corresponding to the
specified Connection object.

Example

The following example code highlights the statements that enable
passthru queries and that execute two SQL statements in passthru
mode (creation and deletion of a table). The code does not show other
statements and functions (such as the connection function) that would
also be required).

Declare Function SQLGetConnectOption Lib "odbc32.dll" (ByVal hstmt&,
ByVal fOption%, pvParam As Any) As Integer
Declare Function SQLSetConnectOption Lib "odbc32.dll" (ByVal hstmt&,
ByVal fOption%, pvParam As Any) As Integer
Const SQL_STMT_MODE_ As Long = 1000

Public sCreateSQL As String
Public sDropSQL As String
Public rdoCn As New rdoConnection

Public Sub PassThrough(hDbc As Long)
 Dim rc As Integer
 Dim UsePassThrough As Long

’ --
’ Set Passthru mode
’ --
UsePassThrough = 1
rc = SQLSetConnectOption(hDbc, SQL_STMT_MODE_, ByVal UsePassThrough)
rc = SQLGetConnectOption(hDbc, SQL_STMT_MODE_, UsePassThrough)

’ --
’ Execute Passthru queries
’ --
sCreateSQL = "create table tat(c number(8))"
sDropSQL = "drop table tat"
rdoCn.Execute sCreateSQL
rdoCn.Execute sDropSQL

’ --
’ Reset the Passthru mode
’ --
UsePassThrough = 0
rc = SQLSetConnectOption(hDbc, SQL_STMT_MODE_, ByVal
 UsePassThrough)

 593

Passthru SQL
rc = SQLGetConnectOption(hDbc, SQL_STMT_MODE_, UsePassThrough)
End Sub

For all SQL During a Session

You can bypass the Attunity Connect Query Processor for SQL
statements that do not return rowsets when using ADO, RDO and DAO,
ODBC, or JDBC APIs. The method involved for RDO and DAO is the same
method required if you want to pass a specific SQL statement directly
to the data source, as described below, in "For a Specific SQL
Statement" on page 590. For JDBC, you specify the Passthru parameter
in the connection string (the JDBC connect string is described in the
documentation supplied with the Attunity Connect thin client kit).

" Attunity does not recommend using this option, since it impacts on every
DDL SQL statement, even if only some statements were intended.

Via ADO/OLE DB Use the Connection object and pass it the Operating_Mode parameter
set to Passthru in order to enable passthru SQL. All SQL during this
connection will bypass the Attunity Connect Query processor.

Example

The following example code shows an ADO connection to an Oracle
database. The connection is specified with the Operating_Mode
parameter set to Passthru.

Public cmd As Object
Public cmd1 As Object
Public conn As Object
Public conn1 As Object

Private Sub Bypass_Qpex1()

Dim rs As New ADODB.Recordset
Dim conn As New ADODB.Connection
Dim conn1 As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim cmd1 As New ADODB.Command

’--
’ An example of using a Passthru Connection
’--
conn.ConnectionString = "Provider=AttunityConect;
Operating_Mode=Passthru"
conn.Open
conn.DefaultDatabase = "Oracle"
cmd.ActiveConnection = conn

 594

Passthru SQL
cmd.CommandText = "ALTER TABLE mytbal ADD new_column INTEGER"
cmd.Execute
Set cmd = Nothing
conn.Close

Via ODBC Pass connection information to the SQLDriverConnect method, which
includes the passthru parameter.

Windows Platforms – Via the Microsoft ODBC Data Source
Administrator, create or edit a DSN with the Passthru option set:

" You must first specify a default data source name.

Every query during the session is passed directly to the data source.

Non-Windows Platforms – Include the Passthru parameter in the
SQLDriverConnect method as part of the connect string information:

Passthru=1 (if utilizing passthru queries, otherwise 0)

For full details of the connect string parameters, see "Connect String
Parameters" on page 87 for ADO and "Connect String Parameters" on
page 554 for ODBC.).

Example

ConnectString = "DRIVER=Attunity Connect Driver;
DefTdpName=ORACLE;Binding=nav;Passthru=1;"

 595

Passthru SQL
Passthru Queries as Part of an SQL Statement

Both retrieval statements and non-returning rowset statements (such
as DDL) can be passed directly to the data source as part of the SQL
syntax.

To bypass the Attunity Connect Query Processor, include the query
that you want to send directly to the data source in double braces
({{query}}), prefixed with the keyword TEXT=. Prefix all table names
with the data source name specified in the binding configuration.

For retrieval queries, the passthru syntax is part of the FROM clause of
a SELECT statement.

Examples

! A non-returning result:
oracle:TEXT={{CREATE TABLE employee (emp_num
number(5) NOT NULL, emp_name varchar2(32))}}

! As part of a SELECT statement:

SELECT * FROM disam:nation,
disam1:TEXT={{SELECT * FROM customer
 WHERE c_nationkey = ?
 AND c_custkey = ?}} (7,100)

where disam and disam1 are data sources defined in the binding
configuration. The query to the disam1 database is passed directly
to the database, bypassing the Attunity Connect Query Processor.
Note the use of parameters in the example. You can also specify
parameters in a non-returning rowset query (see "Passthru Query
Statements (bypassing Attunity Connect Query Processing)" on
page 753 for the syntax).

" Standard ANSI ‘92 SQL has been extended so that expressions involving
columns of tables that appeared previously in the FROM list are used (from the
nation table in the above example).

Also see: "Passthru Query Statements (bypassing Attunity Connect Query Processing)" on
page 753

HP (Compaq) NonStop Platforms

When specifying a passthru query to a HP (Compaq) NonStop SQL/MP
database, if the query is not within a transaction, you must append the
words “BROWSE ACCESS” at the end of the query.

 596

Pathway Adapter (HP (Compaq) NonStop Only)
Pathway Adapter (HP (Compaq) NonStop Only)
The Pathway environment is used to manage online transaction
processing applications. You can execute a program via a Pathway with
Attunity Connect using the Attunity Connect Pathway adapter. The
adapter supports TMF transactions, enabling a connection between
Enscribe, SQL/MP and Pathway in a single transaction.

" If a TMF transaction is started before a Pathway server is activated, all
changes made by that server are also part of the TMF transaction.

The following sections provide information about the Attunity Connect
Pathways adapter:

! Setting Up the Binding
! The Adapter Definition for a Pathway
! Support for TMF Transactions

Setting Up the Binding

! To connect to Pathways:

The Pathways adapter is set using the Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.
! Specify a name for the adapter in the Name field.
! Select Pathways for the Type field.

Driver Configuration After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

pathmonProcess (Optional) – The Pathway monitor process name. This
is a system process which manages all Pathway objects including
SERVER objects which requester program activate. If the name is not
specified here, it must to be specified for each interaction in the adapter
definition, as described below.

transaction (Optional) – When activating a Pathway interaction a TMF
transaction is started: either explicitly by the user in the ACX XML
request document, or implicitly by the server using the autocommit
feature. When transaction is set to false, a TMF transaction is not
started, even if the user explicitly specifies a startTransaction
statement in the ACX XML request document. This is useful when
accessing Pathway servers that start their own TMF transaction.

 597

Pathway Adapter (HP (Compaq) NonStop Only)
The Adapter Definition for a Pathway

After setting the binding, write an adapter definition for the Pathway
adapter, which describes, for each required interaction, the program
that should be run via the Pathway.

" The Pathway adapter utilizes the Pathway PATHSEND interface, enabling the
Pathway environment to handle non-screen COBOL clients.

If a COBOL copybook is available, you can use it as the basis for the
adapter definition. Use the Metadata Import perspective in Attunity
Studio to create the adapter definition (see "COBOL Copybook Import
for Application Adapter Definitions" on page 181).

In the Attunity Studio Metadata perspective right-click the adapter
and choose Edit definition from the popup menu. Use the Source tab to
write or modify the adapter definition.

The <interactionSpec> statement specifies the name of the pathway
monitor process and the interaction serverClass.

<interaction name="findEmployee"
 description="" mode="sync-send-receive"
 input="findEmployeeInput" output="findEmployeeResponse">
 <interactionSpec pathmonProcess="$KDPW"
 serverClass="EMPLOYEE-SERVER"/>
</interaction>

where:

pathmonProcess (Optional) – The Pathway monitor process name. This
is a system process which manages all Pathway objects including
SERVER objects which requester program activate. If the name is not
specified here, it must be specified in the binding configuration (via the
pathmonProcess parameter), as described above.

" Attunity Connect is “PATHSEND process”. Pathway provides two ways to
activate servers:

Screen COBOL “SEND” command and PATHSEND interfaced available to
non-screen-COBOL clients.

serverClass – The serverClass specifies a single server class, which
provides several services (such as insert, read and delete services).

" The interaction serverClass value is often the destination for the pathway
SEND command.

 598

Pathway Adapter (HP (Compaq) NonStop Only)
The <record> statements for both the input and output must not be
aligned. Thus, an example record definition for a Pathway adapter will
be similar to the following:

<record name="read_request" noAlignment="true">
 <field ... />
 ...
</record>
<record name="read_reply" noAlignment="true">
 <field ... />
 ...
</record>

where:

noAlignment – A boolean value used to determine whether buffers are
aligned or not.

" noAlignment essential for Pathway as HP (Compaq) NonStop COBOL does
not expect aligned structures. By default all buffers constructed are aligned.

Structure initializations prior to the SEND command are often values
that can be used for the “default” attribute in a field statement.

" For full details about the definition syntax, refer to "Application Adapter
Definition" on page 93.

Support for TMF Transactions

An ACX request can explicitly specify transaction tokens
(transactionStart, transactionCommit, transactionRollback) that cause
a TMF transaction to be started, committed or aborted. All Pathway
servers activated after a transaction is started run under that TMF
transaction. This allows the user full control over the transaction
boundary. By using persistent connections you can also have the TMF
transaction span more than one ACX request.

" The ACX request can be generated from any supported frontend application:
JCA, COM, AIC or an XML file using the ACX protocol.

If no transaction tokens are provided in the ACX request, the ACX
dispatcher assumes you are working in autocommit mode. In this case,
the dispatcher calls the adapter to start a transaction before the first
interaction is run and commits the transaction after the last interaction
is run. Thus, each ACX request is a single TMF transaction; whether it
is a single interaction request or a batch request with several
interactions in it.

If you do not want a TMF transaction to be started by Attunity Connect
(for example, with Pathway servers that control the transactions

 599

Perspectives
themselves (start and commit a transaction), turn off transaction
support in the adapter configuration.

TMF transactions are coordinated across the server so that you can use
the same server to run a Pathway server as well as access SQL/MP and
Enscribe audited files directly from Attunity Connect, all within the
same TMF transaction.

The dispatcher will rollback a TMF transaction if the Pathway server
returns SERVERCLASS_SEND with a non-zero status.

" An error condition that should cause a rollback of the TMF transaction should
be handled by the Pathway server returning the actual error.

Perspectives
Perspectives contain specific information focusing on specific tasks or
aspects of Attunity Connect. The following perspectives exist within
Attunity Studio:

! The Configuration perspective – Enables configuring access to
Attunity Connect machines and to data and applications on those
machines. For more details see "Configuration Perspective" on page
206.

! The Metadata perspective – Enables configuring metadata describing
an application adapter definition or a data source. For more details
see "Metadata Perspective" on page 453.

! The Metadata Import perspective – Enables importing metadata for
adapters and data sources. For more details see "Metadata Import
Perspective" on page 448.

! The Runtime perspective – Enables monitoring daemon activity on
any Attunity Connect machine. For more details see "Runtime
Perspective" on page 658.

A perspective consists of an explorer window used to list items that can
be maintained in the perspective and editors to maintain the items.

" To open a perspective, click the Open a Perspective button and select a
perspective from the list, or via the Window | Open Perspective menu.

Prestarted Servers
A server process that is started when the daemon starts. Prestarted
servers are immediately available for use by new client processes,
saving initialization time. Instead of starting a new server process each
time one is requested by a client, the client receives a process from a

 600

Preferences
pool of available processes. When the client finishes processing, this
server process either dies or, if reusable servers have been set, is
returned to the pool of available servers.

Also see: "Connection Pooling" on page 212.

Preferences
See "Attunity Studio Preferences" on page 105.

Procedure Driver (Application Connector)
An Attunity Connect procedure (application connector) is a
user-written function, which returns a rowset. Attunity Connect treats
the returned rowset in the same way that it treats data from any data
source, using the relational model: The Attunity Connect procedure can
be used in SQL and a resulting rowset can be joined with other rowsets
from other data sources or Attunity Connect procedures.

The Attunity Connect procedure must be part of a shareable image (a
DLL on Windows systems). Attunity Connect cannot call the procedure
if it is part of a static library or an executable. The procedure must
return an output value, since the Attunity Connect procedure driver
requires a resultset to be returned.

Attunity Connect implements the functionality for accessing
Attunity Connect procedures in a driver called the Procedure driver.
The Procedure driver provides an application with access to the logic
implemented in an existing procedure.

Windows Platforms

Attunity Connect procedures must be cdecl functions and not WINAPI
functions.

HP (Compaq) NonStop Platforms

HP (Compaq) NonStop does not support the use of DLLs. To use
Attunity Connect stored procedures on HP (Compaq) NonStop
platforms, see "HP (Compaq) NonStop Platforms and Attunity Connect
Procedures" on page 609.

OS/390 and z/OS Platforms

To use Attunity Connect procedures, see "OS/390 and z/OS and
Attunity Connect Procedures" on page 610.

 601

Procedure Driver (Application Connector)
The Procedure driver does not support arrays. If the procedure returns
an array, you must use the legacyPlug adapter.

" The Procedure driver enables an SQL frontend to call a program, as opposed
to the Legacy Plug adapter, which enables executing a program via JCA, XML
or on a Microsoft Windows platform from a COM-based application. For details
of the LegacyPlug adapter, refer to "Legacy Plug Adapter" on page 441.

You describe the Attunity Connect procedure input parameters and
output rowset to Attunity Connect using Attunity Connect metadata
(ADD).

The rules for handling Attunity Connect procedure arguments are as
follows:

! Attunity Connect procedures must conform to the style of argument
passing used by non-prototyped functions in the C programming
language.

! The Attunity Connect procedure must be an external entry point in
the shareable image. On certain platforms you may need to supply
special keywords at compile and/or link time in order to correctly
define the Attunity Connect procedure.

! Pass arguments larger than the long data type by reference and not
by value. The Procedure driver passes all arguments (parameters
and fields) as data type long.

The following sections provide information about the Attunity Connect
procedure driver:

! Setting Up the Binding
! Metadata Considerations
! Executing a Procedure

Setting Up the Binding

The procedure driver is set using the Attunity Studio, in the
Configuration perspective:

! To connect to a procedure:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the procedure in the Name field.
! Select Procedure (Application Connector) for the Type field.

 602

Procedure Driver (Application Connector)
Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

commitTransaction="string" – Commits the work done under the global
or local transaction.

connect="string" – The connection information needed to connect to the
data source.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

disconnect="string" – Disconnects the transaction from the Attunity
Connect server.

rollbackTransaction="string" – Rolls back the work done under the
(global) transaction.

startTransaction="string" – Starts a transaction against the Attunity
Connect server.

triggerShareable"="string" – Specifies the trigger for the shareable
image (a DLL on Windows systems).

Metadata Considerations

Attunity Connect metadata (ADD) describes the procedure.

! To define the procedure in Attunity Studio:

1. Right-click the procedure in the Configuration perspective explorer
tree and choose Edit Metadata from the popup menu.

The Metadata perspective opens displaying the procedure.
2. Right-click Procedures node under the procedure and choose New

Procedure. The New procedures window opens.
3. Enter the procedure name that the driver will search for in the

given DLL.
4. Enter the path and/or name for the DLL or click Browse to find the

DLL.

The information specified is handled differently by the different
supported platforms, as follows:
! On Windows platforms this value specifies the physical

filename with neither the dll extension nor the directory
portion of the pathname (it should be in a directory in the PATH
environment variable, or in %NAVROOT%\bin).

 603

Procedure Driver (Application Connector)
! On OpenVMS platforms, if you define a logical, include the full
path and filename. If the system finds the logical, the logical is
used. If the logical is not found, the system looks for
sys$share:<filename>.exe, or in NAVROOT:[bin].

! On UNIX platforms, this attribute can specify an environment
variable. Attunity Connect converts the environment variable
name to uppercase before the system performs the lookup. If
the system does not find the environment variable, it looks for
$NAVROOT/lib/<filename>.<extension>, where <filename> is
replaced by the unconverted value of the filename attribute and
<extension> is the shared library extension for the particular
UNIX platform.

! On HP (Compaq) NonStop and OS/390 or z/OS platforms, this
attribute specifies a symbol that is used by
nav_register_function to statically link the Attunity Connect
procedure with the Attunity Connect library.

5. Select the source language of the DLL.
6. Click Finish. The procedure appears in the Metadata explorer tree

and the procedure editor opens.

Defining Return Values Return values for the procedure or specified in the General tab:

! To specify return values:

1. Click Add. The New Field window opens.
2. Enter the return value name and click OK.
3. The default return value data type is string. Edit this value by

clicking the Data Type and selecting a data type.

 604

Procedure Driver (Application Connector)
The following default return value properties are displayed for each
argument:

MECHANISM – The method by which this argument is passed/received
by the procedure. Valid values are VALUE, DESCRIPTOR, and
REFERENCE.

For outer-level (non-nested) arguments, structure arguments (for the
structure itself, and not structure members), and variant arguments,
the default value is REFERENCE. The default for all other columns is
VALUE. A DESCRIPTOR can only be a static descriptor containing
strings.

" This entry is not case sensitive

ORDER – The ORDER for a return value is zero (0).

Additional return value properties can be manually added by clicking
the Value for a property, and clicking the ellipses button.

Each the return value properties are defined with the following format:

property=value;property=value;…

The following additional properties are available:

BASE_ALIGNMENT (optional) – The value for nested structures/variant
fields. Valid values are SYSTEM (the default) or an integer greater than
0. This value is not case sensitive.

Specifying an integer as the value for BASE_ALIGMENT sets the initial
offset, in increments of bytes, of the alignment of every structure and
variant (until reset). For example, setting BASE_ALIGNMENT to 2
aligns structures and variants on a word boundary.

MEMBER_ALIGNMENT – The value (until reset) for structure/variant
fields. Valid entries are SYSTEM, YES, and NO. This value is not case
sensitive. The default is the value at the table attribute level.

Setting MEMBER_ALIGNMENT to YES specifies that the start of every
structure member and variant member (until reset) is aligned on a
boundary equivalent to the atomic size of that member. For example, a
word is aligned on a word boundary.

AS/400 Platforms
Any parameter that is an argument to the function (that is, contains a
dbCommand statement with a non-zero ORDER) cannot have a
MECHANISM of VALUE. This arises from the fact that the natural size
of an integer on the AS/400 stack is smaller than a pointer.

 605

Procedure Driver (Application Connector)
Defining Input and
Output Arguments

Input and output arguments for the procedure or specified in the
Arguments tab:

! To specify arguments:

1. Click Add. The New Field window opens.
2. Enter the argument name and click OK.
3. Click the Type field and set the type of the argument (input, output

or input/output).
" If a argument is defined as Input/Output, an additional argument is created

in order to set the parameter’s input properties.

4. The default argument data type is string. Edit this value by clicking
the Data Type area and selecting a data type.

5. Use the Up and Down buttons to set the order of the arguments.

The following default argument properties are displayed for each
argument:

MECHANISM – The method by which this argument is passed/received
by the procedure. Valid values are VALUE, DESCRIPTOR, and
REFERENCE.

For outer-level (non-nested) arguments, structure arguments (for the
structure itself, and not structure members), and variant arguments,
the default value is REFERENCE. The default for all other columns is

 606

Procedure Driver (Application Connector)
VALUE. A DESCRIPTOR can only be a static descriptor containing
strings.

" This entry is not case sensitive

ORDER – The procedure’s argument number. The order can be changed
using the Up and Down buttons.

Additional argument properties can be manually added by clicking the
Value for a property, and clicking the ellipses button.

Each the argument properties are defined with the following format:

property=value;property=value;…

The following additional properties are available:

BASE_ALIGNMENT (optional) – The initial value for the current
argument and all subsequent nested structure/variant arguments.
Valid values are SYSTEM (the default) or an integer greater than 0. This
value is not case sensitive.

Specifying an integer as the value for BASE_ALIGMENT sets the initial
offset, in increments of bytes, of the alignment of every structure and
variant (until reset). For example: setting BASE_ALIGNMENT to 2
aligns structures and variants on a word boundary.

MEMBER_ALIGNMENT – The initial value for the current argument and
all subsequent structure/variant arguments. Valid entries are SYSTEM,
YES, and NO. This value is not case sensitive. The default is the value
at the table attribute level.

Setting MEMBER_ALIGNMENT to YES specifies that the start of every
structure member and variant member from this point on (until reset)
is aligned on a boundary equivalent to the atomic size of that member.
For example, a word is aligned on a word boundary.

LEVEL (optional) – The number of levels of indirection of the field
pointer. This argument applies only to fields passed/received by
REFERENCE. The argument value must be greater than 0 and defaults
to 1 if not specified.

AS/400 Platforms
Any parameter that is an argument to the function (that is, contains a
dbCommand statement with a non-zero ORDER) cannot have a
MECHANISM of VALUE. This arises from the fact that the natural size
of an integer on the AS/400 stack is smaller than a pointer.

 607

Procedure Driver (Application Connector)
Setting this token to 1 indicates that the address of the column is
passed to the procedure. Setting the token to 2 indicates that you are
using a pointer to another pointer.

NULL (optional, for input arguments) – This is used only for arguments
passed by REFERENCE or DESCRIPTOR. This arguments value specifies
what to pass to the procedure when the Attunity Connect buffer
contains a null value for a nullable parameter. Valid entries differ
depending on how the parameter is passed:

! For parameters passed by REFERENCE, the valid entries are any
integer from 0 through the value of the LEVEL parameter, where 0
passes a pointer to the data type’s null-value and n passes a pointer
that when referenced (n – 1) times is NULL. This defaults to the
value of the LEVEL parameter for REFERENCE parameters.

! For parameters passed by DESCRIPTOR, the valid entries are 0 and
1, where 0 passes a pointer to the descriptor to the data type’s
null-value and 1 passes a NULL pointer. This defaults to 1 for
DESCRIPTOR parameters.

For example, assuming foo = NULL, a parameter with LEVEL=2 and
NULL=1 would pass &foo, while a parameter with LEVEL=2 and
NULL=2 would pass &&foo.

EOS_VALUE (optional, for output arguments) – The value that marks
the end of stream. By default, the stream ends after each fetch. If there
are any EOS_VALUE arguments, then all must match their respective
field values to end the stream. This entry is case sensitive.

Executing a Procedure

You can execute a 3GL procedure by calling it within an SQL query:

Call MyProc:MATH_SIMPLE(12,33)

where MyProc is treated as a data source name and MATH_SIMPLE is
the name of a function defined in MyProc.

You can also use the Attunity Connect procedure in a select statement,
even performing joins between the results returned by the Attunity
Connect procedure and other tables. The following example shows the
Attunity Connect procedure used in a select statement:

Select * from MyProc:MATH_SIMPLE(12,33)

 608

Procedure Driver (Application Connector)
Attunity Connect treats the input variables of the procedure as
parameters and the output variables are treated as a rowset produced
by this procedure.

Windows Platforms and Attunity Connect Procedures

ADO Considerations

When you call an Attunity Connect procedure in ADO, you must include
parentheses after the name of the Attunity Connect procedure.

For example, the following sample is used to execute an
Attunity Connect stored procedure named MyProcedure which does not
include parameters:

cmd.Text = "MyProcedure()"
cmd.Type = adCmdStoredProc
rs = cmd.Execute

To specify an Attunity Connect procedure that does include parameters,
specify within the parentheses a question mark for each parameter and
manually supply the parameters to Attunity Connect.

Example

You can specify an Attunity Connect procedure with two parameters as
follows:

' Set parameters
Dim con As ADODB.Connection
Dim com As ADODB.Command
Dim prm As ADODB.Parameter
...
Set prm = com.CreateParameter("Julian", adVarChar,
adParamInput, 15, "Empty")
Set prm = com.CreateParameter("White", adVarChar,
adParamInput, 10, "Empty")
...
' execute procedure with parameters
cmd.Text = "MyProcedure(?,?)"
cmd.Type = adCmdStoredProc
rs = cmd.Execute

 609

Procedure Driver (Application Connector)
HP (Compaq) NonStop Platforms and Attunity Connect Procedures

HP (Compaq) NonStop platforms don't provide support for DLLs. To use
Attunity Connect stored procedures on a HP (Compaq) NonStop
platform, you must statically link the Attunity Connect procedures
with an Attunity Connect library. Use the following Attunity Connect
function to register the procedures:

long nav_register_function(STRING fnc_name, STRING fnc_class,
FNC_PT fnc_pt)

where:

STRING fnc_name – The name of the function to be registered.

STRING fnc_class – The name of the group you want the function to be
in (this is equivalent to the DLL module name). The name specified for
this parameter is the same name specified in the filename attribute in
the ADD metadata definition XML file.

FNC_PT fnc_pt – A pointer to the user function.
To register the symbols, call this function within the main() function of
the procedure, as in the following example:

#include "utlmain.h"
main(int argc, char *argv[])
{
/* calls to nav_register_function() with all the new
procedures */
return(nav_util_main(argc, argv));
}

If the function names are longer than 8 characters, use a file called
NAVMAP, in the volume where Attunity Connect is installed to map the
names to names of 8 characters or less. For details, see "Navmap File
(HP (Compaq) NonStop Only)" on page 542.

The installation of Attunity Connect includes several files that you can
use to become familiar with Attunity Connect procedures:

mathc – A file containing sample procedures. This file includes main()
as in the above example.

prcsmxml – ADD metadata XML files for the math procedures.

utlmainh – An h file that should be included in the main program.

 610

Procedures
Procedures
See "Attunity Connect Procedure" on page 103.

bldproc – A procedure that links the libnava library with the math
module. This file generates a new mathmain file that is used instead of
the navutil call. That is, 'run mathmain execute MyProc' is used to call
Attunity Connect with the MyProc data source (the Attunity Connect
stored procedure definition in the binding configuration).

" When working in client/server mode, change the bldproc procedure to
reproduce navutil, instead of mathmain.

" When using COBOL for the Attunity Connect procedure, you can only use HP
(Compaq) NonStop NMCOBOL.

OS/390 and z/OS and Attunity Connect Procedures

To use the sample Attunity Connect procedure files, perform the
following steps:

1. Copy the PRCSMXML member in NAVROOT.SAMPLES to a DSN (of
PS type) and compile it using the NAVUTIL IMPORT utility.
" NAVROOT is the high level qualifier where Attunity Connect is installed.

2. Submit BLDPROC (in NAVROOT.USERLIB). This compiles the
MATHC C program in the NAVROOT.SAMPLES library and creates a
load module called MATHMAIN in NAVROOT.LOAD.
" If DB2 or ADABAS are not installed on the machine, change the relevant

lines in the BLDPROC JCL (the JCL includes comments specifying what
changes to make).

 611

Query Adapter
Query Adapter
The query application adapter enables accessing all of the
Attunity Connect data source drivers to execute SQL statements via
JCA, XML or COM.

If you have predefined SQL, use the database adapter. For details, refer
to "Database Adapter" on page 252.

The query adapter can be used in an application without any definition
in a binding configuration. However, if you want to specify a default
data source to use with the adapter (so that the data source does not
have to be included in SQL statements), you can define another adapter
in a binding configuration, of type "query".

The following sections provide information about the Attunity Connect
Query adapter:

! Setting Up the Binding
! Query Adapter Interactions

Setting Up the Binding

You can use the query adapter without defining an adapter in a binding
configuration. However, you can define one or more adapters of type
query, so that each adapter has specific properties.

! To connect to the Query adapter:

The Query adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the adapter resides.
! Right-click Adapters and choose New adapter.
! Specify a name for the adapter in the Name field.
! Select Query adapter for the Type field.

After setting the binding, edit the adapter (right-click the adapter and
choose Edit adapter): select the Properties tab and specify the following
properties:

connectString="string" – For backward compatibility only. The
connect string used to access the data source.

defaultDatasource="string" – The name of a data source in the
binding configuration.

multipleResult="true|false" – Multiple results are returned. This
attribute applies to callProcedure interactions (see, "The

 612

Query Adapter
callProcedure Interaction" on page 622), where the call procedure
includes multiple SQL statements (either batched one after the
other or in a loop, such as a while loop).

Example 1

The following XML request uses the query adapter to access the nation
table, which is part of the navdemo Attunity Connect demo database,
supplied as part of the Attunity Connect installation.

" The query returns a recordset that is formatted in the Attunity Connect default
format.

<?xml version="1.0"?>
<acx>
 <connect adapter="query" />
 <execute>
 <query>
 select * from navdemo:nation
 </query>
 </execute>
 <disconnect/>
</acx>

Note that the table name is qualified by the data source (navdemo).

The output is formatted in the Attunity Connect default format:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <recordset id=’1’>
 <record N_NATIONKEY=’0’ N_NAME=’ALGERIA ’
 N_REGIONKEY=’0’
 N_COMMENT=’New Distributor ’/>
 <record N_NATIONKEY=’1’ N_NAME=’ARGENTINA ’
 N_REGIONKEY=’1’
 N_COMMENT=’Far Away ’/>
 <record N_NATIONKEY=’2’ N_NAME=’BRAZIL ’
 N_REGIONKEY=’1’
 N_COMMENT=’Nearby ’/>
 ...
 </recordset>
 </executeResponse>
</acx>

 613

Query Adapter
Example 2

An adapter is defined with a default data source. Thus, the data source
does not need specifying in the SQL statement in the XML document.

<adapter name="demo" type="query"
 connect="defaulttdp=navdemo" />

The adapter “demo” can be used to access the nation table using the
following XML:

<?xml version="1.0"?>
<acx>
 <connect adapter="demo" />
 <execute>
 <query>
 select * from nation
 </query>
 </execute>
 <disconnect/>
</acx>

The same results are produced as shown above.

Also see: "Database Adapter" on page 252.

Query Adapter Interactions

Attunity Connect provides the following interactions that can be
executed with the execute verb on data sources and Attunity Connect
stored procedures defined in the binding configuration:

! query (below)
! update (page 620)
! ddl (page 620)
! callProcedure (page 622)
! getSchema (page 624)

The query Interaction The query interaction specifies an SQL query that the ACX execute verb
executes. The query interaction is defined as follows:

<execute>
 <query id="query_id"
 sql="sql_query"
 outputFormat="attributes|elements|msado"
 outputRoot="output_root"
 binaryencoding="base64|hex"

 614

Query Adapter
 metadata="boolean"
 maxRecords="number"
 nullString="string"
 passThrough="true|false" />
</execute>

Or:

<execute>
 <query id="query_id"
 outputFormat="attributes|elements|msado"
 outputRoot="output_root"
 binaryencoding="base64|hex"
 metadata="boolean"
 maxRecords="number"
 nullString="string"
 passThrough="true|false">
 SQL query
 </query>
</execute>

where:

" All the following attributes are optional.

id (string) – A string uniquely identifying this query.

sql (string) – The sql query that you want executing.

outputFormat – Specifies how the results of the query are formatted.

attributes – For details, see page 615.

elements – For details, see page 616.

msado – Specifies Microsoft’s ADO XML recordset persistence
format.

outputRoot – Specifies the root element name and the record element
name for records returned by the query, using the format
<root>\<record>.

binaryEncoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.

hex – Sets hexidecimal encoding.

metadata (boolean) – Specifies whether the query returns metadata for
the retrieved recordset.

 615

Query Adapter
maxRecords – Specifies the maximum number of records returned by
the query.

nullString – Specifies the string returned in place of a null value. If not
specified, the column is skipped.

passThrough – Specifies whether the query is passed directly to the
backend database for processing or processed by the Attunity Connect
query processor.

Result Recordset
Formats

ACX defines the XML formats for recordsets returned by a query
interaction executed with the ACX execute verb. In the outputFormat of
the query interaction (page 613), you can specify one of the following
recordset formats:

! attributes
! elements

The attributes XML
Recordset Format

The attributes recordset format is the default output format for query
steps. It has the following structure:

<records>
 <record column1="value1" ... columnN="valueN" />
 ...
</records>

If the value of a column is NULL, the corresponding attribute is omitted.

For hierarchical recordsets, the chapter column is formatted as a child
element to the row (and does not appear as an attribute).

For example, if columnX is a chapter, the format for columnX and its
data is as follows:

<record column1="value1" ... columnN="valueN">
 <columnX>
 <rowchild child_column1="value1"
 ...
 child_columnN="valueN"/>
 ...
 </columnX>
</record>

Recordsets containing BLOB columns format them as child elements
with encoded binary text content. For example, the format for a BLOB
column (called columnX) is as follows:

<record column1="value1" ... columnN="valueN">
 <columnX encoding="base64|hex">

 616

Query Adapter
 ... encoded_binary_data ...
 </columnX>
</record>

The encoding of the binary data may be either base64 encoding or hex
encoding (two hexadecimal digits per data byte).

Recordsets containing CLOB columns format them as child elements
with CDATA content.

The elements XML Recordset Format

The elements recordset format has the following structure:

<records>
 <record>
 <column1>value1</column1>
 ...
 <columnN>valueN</columnN>
 </record>
 ...
</records>

If the value of a column is NULL, the corresponding child element is
omitted.

This format takes more space than the attributes format but it lends
itself more easily to representing hierarchical data. For example, the
format for a chapter (called columnX) is as follows:

<record>
 <column1>value1</column1>
 ...
 <columnX>
 <record>...child_row ...</record>
 ...child_rows...
 </columnX>
 ...
 <columnN>value1</columnN>
</record>

Recordsets containing BLOB columns format them as child elements
with encoded binary text content. For example, the format for a BLOB
column (called columnX) is as follows:

<record>
 <column1>value1</column1>
 ...
 <columnXencoding="base64|hex">

 617

Query Adapter
 ...encoded_binary_data...
 </columnX>
 ...
 <columnN>valueN</columnN>
</record>

The encoding of the binary data may be either base64 encoding or hex
encoding (two hexadecimal digits per byte).

Similarly, CLOB columns are formatted as child elements with CDATA
content.

Examples of ACX Queries and Results

! An ACX query interaction that returns a recordset formatted in the
Attunity Connect default format:

<?xml version="1.0"?>
<acx>
 <connect adapter="query" />
 <execute>
 <query id="1"
 sql="select * from navdemo:nation" />
 </execute>
 <disconnect/>
</acx>

The output is formatted in the Attunity Connect default format:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <recordset id=’1’>
 <record N_NATIONKEY=’0’ N_NAME=’ALGERIA’ N_REGIONKEY=’0’
 N_COMMENT=’New Distributor’/>
 <record N_NATIONKEY=’1’ N_NAME=’ARGENTINA’ N_REGIONKEY=’1’
 N_COMMENT=’Far Away’/>
 ...
 </recordset>
 </executeResponse>
</acx>

! An ACX query interaction that returns a recordset including
metadata.

<?xml version="1.0"?>
<acx>
 <connect adapter="query" />
 <execute>

 618

Query Adapter
 <query id="1" metadata="1"
 sql="select * from navdemo:nation" />
 </execute>
 <disconnect/>
</acx>

This output includes metadata:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <recordset id=’1’>
 <metadata>
 <element name=’record’ type=’record’>
 <attribute name=’N_NATIONKEY’ type=’int’ maxLength=’4’
 nullable=’false’ ordinal=’1’/>
 <attribute name=’N_NAME’ type=’string’ maxLength=’25’
 nullable=’false’ ordinal=’2’/>
 ...
 </element>
 </metadata>
 <record N_NATIONKEY=’0’ N_NAME=’ALGERIA’ N_REGIONKEY=’0’
 N_COMMENT=’New Distributor’/>
 <record N_NATIONKEY=’1’ N_NAME=’ARGENTINA’ N_REGIONKEY=’1’
 N_COMMENT=’Far Away’/>
 ...
 </recordset>
 </executeResponse>
</acx>

! An ACX query interaction that returns a recordset formatted in the
Attunity Connect "elements" format.

<?xml version="1.0"?>
<acx>
 <connect adapter="query" />
 <execute>
 <query id="1" outputFormat="elements">
 sql="select * from navdemo:nation" />
 </execute>
 <disconnect/>
</acx>

 619

Query Adapter
The output recordset is formatted in the Attunity Connect
"elements" recordset format:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <recordset id=’1’>
 <record>
 <N_NATIONKEY>0</N_NATIONKEY>
 <N_NAME>ALGERIA </N_NAME>
 <N_REGIONKEY>0</N_REGIONKEY>
 <N_COMMENT>New Distributor
 </N_COMMENT>
 </record>
 <record>
 <N_NATIONKEY>1</N_NATIONKEY>
 <N_NAME>ARGENTINA</N_NAME>
 <N_REGIONKEY>1</N_REGIONKEY>
 <N_COMMENT>Far Away</N_COMMENT>
 </record>
 ...
 </recordset>
 </executeResponse>
</acx>

! An ACX query that executes a hierarchical query and returns a
recordset formatted in the Attunity Connect default format.

<?xml version="1.0"?>
<acx type="request" id="5169729">
 <connect adapter="query" persistent="false" />
 <execute>
 <query outputFormat="attributes">
 select r.r_name as "Region",
 {select n.n_name as "Name"
 from navdemo:nation n
 where n.n_regionkey = r.r_regionkey}
 as "Nations" from navdemo:region r
 </query>
 </execute>
 <disconnect/>
</acx>

The following output recordset is returned:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<acx>
 <connectResponse></connectResponse>

 620

Query Adapter
 <executeResponse>
 <recordset>
 <record Region=’AFRICA’>
 <Nations>
 <record Name=’ALGERIA’/>
 ...
 </Nations>
 </record>
 <record Region=’AMERICA’>
 <Nations>
 ...
 </Nations>
 </record>
 </recordset>
 </executeResponse>
</acx>

The update Interaction The update interaction specifies an SQL batch update statement that
the ACX execute verb executes (such as INSERT or UPDATE). The
update interaction is defined as follows:

<execute>
 <update id="query_id" sql="SQL_batch_update_query"
 passThrough="true|false" />
</execute>

Or:

<execute>
 <update id="query_id" passThrough="true|false">
 SQL_batch_update_query
 </update>
</execute>

where:

id (string) – Optional. A string uniquely identifying this query.

sql (string) – The SQL batch update query that you want executing.

passThrough – Optional. Specifies whether the query is passed directly
to the backend database for processing or processed by the Attunity
Connect query processor.

The ddl Interaction The dll interaction specifies a ddl query that the ACX execute verb
executes. The ddl interaction is defined as follows:

<execute>
 <ddl id="query_id" sql="SQL_ddl_query"

 621

Query Adapter
 passThrough="true|false" />
</execute>

Or:

<execute>
 <ddl id="query_id" passThrough="true|false">
 SQL_ddl_query
 </ddl>
</execute>

where:

id (string) – Optional. A string uniquely identifying this query.

sql (string) – The SQL DDL statement that you want executing.

passThrough – Optional. Specifies whether the query is passed directly
to the backend database for processing or processed by the
Attunity Connect query processor.

Example

The following XML request uses a passthrough interaction to create a
stored procedure in an SQL Server database, specified in the binding file
as dbsql.

<?xml version="1.0" encoding="UTF-8"?>
<acx>
 <connect adapter="dbsql_adapter"/>
 <execute>
 <ddl id="1" passThrough="true">
 create procedure in_out_multi @p1 integer, @p2 integer output as
 select @p2 = @p1
 select n_nationkey, n_name, n_regionkey from nation
 select r_regionkey, r_name from region
 return 10
 </ddl>
 </execute>
 <disconnect/>
</acx>

Note that the adapter is specified as dbsql_adapter and not the
Attunity Connect default query adapter. The adapter is specified in the
binding settings as follows:

<adapter name="dbsql_adapter" type="query">
 <config defaultDatasource="dbsql" />
</adapter>

 622

Query Adapter
By specifying an adapter for the interaction with the data source results
in the name of the data source being recognized by Attunity Connect
when the XML is processed.

The callProcedure
Interaction

The callProcedure interaction enables a stored procedure to be called.

If the stored procedure has multiple results, all the recordsets are
returned in the output. The last recordset is always dedicated to the
return-value and output parameters.

" Several databases report output parameters as input-output. If this is the case
with the procedure you are running, make sure to provide an input value for this
parameter.

The callProcedure interaction is defined as follows:

<execute>
 <callProcedure datasource="datasource"
 name="in_out_multi"
 outputFormat="attributes|elements|msado"
 binaryencoding="base64|hex"
 metadata="boolean"
 nullString="string"
 <inputParameter value="number"
 type="string|number|timestamp|binary"
 null="boolean"/>
 </callProcedure>
</execute>

where:

id (string) – A string uniquely identifying this query. (optional)

datasource – The name of the data source as defined in the binding
configuration, where the stored procedure is found.

name – The name of the stored procedure.

outputFormat – One of the following XML result recordset formats:

attributes – For details, see page 615.

elements – For details, see page 616.

msado – Specifies Microsoft’s ADO XML recordset persistence
format.

binaryEncoding – Specifies one of the following as the encoding used to
return binary data in text format:

base64 – Sets base 64 encoding.

 623

Query Adapter
hex – Sets hexidecimal encoding.

metadata (boolean) – Specifies whether the query returns metadata for
the retrieved recordset.

nullString – Specifies the string returned in place of a null value. If not
specified, the column is skipped.

inputParameter – The input parameters to the stored procedure in
sequential order (as defined in the create procedure statement). For
each parameter you can specify the following attributes:

value – A value for the parameter.

type – The type of the parameter.

null (boolean) – Specifies whether the value is null or not.

Example callProcedure Interaction

The following XML request calls a stored procedure called in_out_multi,
stored in a database specified as dbsql in the binding settings.

<?xml version="1.0" encoding="UTF-8"?>
<acx>
 <connect adapter="dbsql_adapter"/>
 <execute>
 <callProcedure datasource="dbsql"
 name="in_out_multi"
 metadata="true">
 <inputParameter value="1" type="number"/>
 <inputParameter value="2" type="number"/>
 </callProcedure>
 </execute>
<disconnect/>
</acx>

The following is returned:

<?xml version=’1.0’ encoding=’UTF-8’?>
<acx type=’response’>
 <connectResponse idleTimeout=’0’></connectResponse>
 <executeResponse>
 <multipleResultset>
 <recordset>
 <metadata>
 <element name=’record’ type=’record’>
 <attribute name=’N_NATIONKEY’ type=’int’
 maxLength=’4’ nullable=’false’ ordinal=’2’/>
 <attribute name=’N_NAME’ type=’string’

 624

Query Adapter
 maxLength=’25’ nullable=’false’ ordinal=’3’/>
 ...
 </element>
 </metadata>
 <record N_NATIONKEY=’0’ N_NAME=’ALGERIA ’ N_REGIONKEY=’0’/>
 <record N_NATIONKEY=’1’ N_NAME=’ARGENTINA ’ N_REGIONKEY=’1’/>
 ...
 <record N_NATIONKEY=’24’ N_NAME=’UNITED STATES ’
 N_REGIONKEY=’1’/>
 </recordset>
 <recordset>
 <metadata>
 <element name=’record’ type=’record’>
 <attribute name=’R_REGIONKEY’ type=’int’ maxLength=’4’
 nullable=’false’ ordinal=’1’/>
 <attribute name=’R_NAME’ type=’string’ maxLength=’25’
 nullable=’false’ ordinal=’2’/>
 </element>
 </metadata>
 <record R_REGIONKEY=’0’ R_NAME=’AFRICA’/>
 ...
 </recordset>
 <recordset>
 <metadata>
 <element name=’record’ type=’record’>
 <attribute name=’RETURNVALUE’ type=’int’ maxLength=’4’
 nullable=’false’ ordinal=’1’/>
 <attribute name=’c1’ origName=’@P2’ type=’int’ maxLength=’4’
 nullable=’true’ ordinal=’2’/>
 </element>
 </metadata>
 <record RETURNVALUE=’10’ c1=’1’/>
 </recordset>
 </multipleResultset>
 </executeResponse>
</acx>

The getSchema
Interaction

The getSchema interaction specifies the type of schema information
that the ACX execute verb returns. The getSchema interaction is
defined as follows:

<execute>
 <getSchema id="query_id" type="schemaType"
 datasource="datasource"
 owner="owner"
 table="table_name"
 tableType="table_type"

 625

Query Adapter
 column="column name"
 procedure="procedure_name"
 foreignOwner="owner"
 foreignTable="table">
 </getSchema>
</execute>

where:

" Of the following attributes, only the type attribute is required.

id (string) – A string uniquely identifying this query.

type – The type of object whose schema you want to retrieve. One of the
following must be specified:

! datasource
! tables – retrieves schema metadata on all tables.
! table – retrieves schema metadata on a specific table.
! procedures – retrieves schema metadata on all procedures.
! procedure – retrieves schema metadata on all tables.
! columns
! indexes
! procedureColumns
! primaryKeys
! foreignKeys

datasource – The data source whose schema is retrieved.

owner – The name of the owner of the object whose schema is retrieved.

table – The name of the table whose schema is retrieved.

tableType – The type of the table whose schema will be retrieved, such
as "synonym", "system", or "table".

column – The name of a specific column whose schema is retrieved. This
attribute is appropriate only when "columns" is specified for the "type"
attribute.

procedure – The name of the procedure whose schema is retrieved. This
attribute is appropriate only if "procedure" or "procedures" is specified
for the "type" attribute.

foreignOwner – Owner of the table that is referenced in the foreignKeys
specification for the type attribute. The foreignOwner attribute can be
specified only if the type attribute specifies a foreignKeys entry.

 626

Query Analyzer
foreignTable – The name of the table referenced in the foreignKeys
specification for the type attribute. The foreignTable attribute can be
specified only if the type attribute specifies a foreignKeys entry.

Query Analyzer

To examine how a query is optimized by Attunity Connect, you can use
the Attunity Connect Query Analyzer. The Query Analyzer graphically
displays the query execution strategies for an SQL statement (called a
plan). Using the Attunity Connect Query Analyzer you can identify the
strategies selected by the query optimizer. The query execution plan is
displayed as a tree structure, which shows both how the query is broken
down into constituent parts and the strategy that is used with each
part. Once a plan is generated it can be saved and analyzed without
reference to any of the machines or data sources that were used in the
query.

The Attunity Connect Query Analyzer enables you to:

! Interactively view the execution plan for an SQL query. You can
analyze the plan that is generated or save both the SQL and the
plan for later analysis.

! Analyze an existing plan. You can analyze an existing plan even if
the data sources that were accessed in the SQL are not available.
" You can automatically generate a plan for every SQL statement that is

executed by any application using Attunity Connect application.

! To interactively view the optimization plan for a query:

1. Select Start|Programs|Attunity|Utilities|Query Analyzer
to start the Attunity Connect Query Analyzer.

2. If you do not want to use the Attunity Connect default binding,
select the binding where the data source you want to access is
defined (Workspace|Select Workspace).

 627

Query Analyzer
3. Select File|Analyze SQL. The Analyze SQL Statement dialog box
is displayed:

4. Select the default data source (or include the data source as part of
the query, as follows: ds:table).

5. Enter the SQL you want to analyze.
" To execute SQL that was previously saved, click Load SQL.

6. Click Analyze. The optimization plan is displayed.

" You can save the plan by selecting File|Save Plan As.

 628

Query Analyzer
! To generate a plan for every SQL statement that is executed by any
application using Attunity Connect:

Set the analyzerQueryPlan to true, in the binding editor Properties tab.

When this parameter is specified, the optimization plans for executed
queries are saved to files either in the directory specified in the traceDir
parameter in the binding environment information or (if this parameter
is not specified) in the same directory as the Attunity Connect log file.

The files are named optn.pln, where n is incremented by one for each
new plan generated up to a maximum of 100. The hundred and first
plan overwrites the first plan.

! To display an existing optimization plan:

1. Select Start|Programs|Attunity|Utilities|Query Analyzer
to start the Attunity Connect Query Analyzer.

2. Select File|Open Plan and specify the plan you want.

 629

Query Analyzer
The Attunity Connect Analyzer GUI

A plan is displayed as a tree structure, with each node of the tree
represented by an icon indicating the strategy utilized by the Attunity
Connect Query Processor at that point. For example, the following plan
shows that a number of different strategies are used, including hash
joins and semi-joins.

The following sections describe:

! The toolbar buttons and their menu equivalents.
! The full list of icons that can appear in an optimization plan.

 630

Query Analyzer
Attunity Connect
Query Analyzer
Toolbar

The following table describes the toolbar buttons and their
functionality:

Attunity Connect
Query Analyzer Icons

The following table describes the icons used by the Attunity Connect
Query Analyzer to represent different optimization strategies.

Button Menu Option Function

File|Analyze SQL Enables specifying a query in order to
analyze the optimization plan generated for
it by the Attunity Connect Query Optimizer.

File|Open Plan Enables you to open an existing plan.

File|Save Plan As Enables you to save the displayed plan.

File|Save Plan’s SQL As Enables you to save the SQL that generated
the displayed plan.

Binding|Select Binding Enables you to select the binding
configuration containing the connection
information for the data sources the query
references.

View|One Level Up Enables you to navigate up within levels of a
plan, one level at a time. Levels are created
for subqueries, chapters and when part of a
query is executed by a remote Attunity
Connect Query Processor.

" You can also change the level by selecting
another plan from the list of open plans in the
Window menu.

Icon Meaning

The SQL text of the current query.

 631

Query Analyzer
The list of retrieved expressions. If the select list
includes a chapter, a link to a subordinate
optimization plan is shown in the displayed box. Click
on this link to display the subordinate plan.
Aggregate Select – An aggregate function is included
on at least one of the columns.

Returns the rows of the <select> statement,
discarding any duplicate rows.

Returns all the rows returned by the <select>
statements, including duplicate rows.

Returns rows common to both result sets returned by
the <select> statements, discarding duplicate rows.

Returns rows that appear only in the first <select>
statement, discarding duplicate rows.

Returns a rowset composed of unique rows.

For every row from the left side, an iteration of the
records from the right side is performed and matching
records are output.
LOJ – Left outer join logic is performed.

Icon Meaning

 632

Query Analyzer
A hash join strategy is used at this point. All the
right-side rows are retrieved and broken down into
buffer-sized chunks (buckets) and written to a local
disk. The left-side rows are partitioned using the
same key so that each partition on the left-side
corresponds to the same bucket from the right side. A
local join is performed between each partition of the
left-side and the corresponding memory-resident
bucket of the right-side.

LOJ – Left outer join logic is performed.

A semi-join strategy is used at this point. In every
iteration of the join, a number of left-side rows are
retrieved and cached in memory, and a query is
formulated to retrieve all of the potentially relevant
right-hand rows.
LOJ – Left outer join logic is performed.

The predicates used to filter the data. If one of the
predicates is a subquery, a link to a subordinate
optimization plan for this subquery is shown in the
pop-up information panel. Click on this link to display
the subordinate plan showing the subquery
optimization.

Ordering of the output is performed according to the
ORDER BY clause in the SQL statement.

A lookup cache strategy used at this point. The table
is read once into memory and efficiently accessed in
memory via an index that is built for it.

All data is read into memory at one time and accessed
in memory.

Data from the left-side of the tree is cached together
with corresponding data from the right-side of the
tree. On subsequent calls data is fetched from the
cache if it is available.

Icon Meaning

 633

Query Analyzer
Rows returned by a subquery are cached.

The data source is accessed by the specific piece of
SQL.

The part of the SQL is processed by a remote Attunity
Connect query processor. A link to a subordinate
optimization plan for this part of the SQL is shown in
the displayed box. Click on this link to display the
optimization performed by a remote Query Processor.

A relational data source table is accessed. The
information panel includes the known statistics for
this table.

A file system table is accessed. The information panel
includes the known statistics for this table.

A stored procedure (stored query or Attunity Connect
procedure) is accessed. The name and data source
where the stored procedure resides, along with result
columns and parameter values are displayed.

Icon Meaning

 634

Query Analyzer
Working with an Optimization Plan

Display a plan either by executing an SQL statement (File | Analyze
SQL) or by opening an existing plan (File | Open Plan). As you move
the cursor over an icon in the displayed plan, an additional information
panel relevant to the icon pops up. The following table describes how to
control the display of this panel:

A query optimization plan can include subordinate plans. You display
a subordinate plan by clicking on a jump string at the bottom of the
relevant additional information panel. The following diagram shows a

Action Result

Move cursor over
an icon.

The information panel pops up.

Click on an icon. The information panel is permanently displayed
(until closed, see below). Clicking on an icon when
a panel is displayed causes the title bar of the
panel to blink (to identify the relevant panel when
many panels are displayed).

Double-click on an
information panel.
Or,
Click the close icon
on the information
panel.

The information panel closes.

 635

Query Analyzer
subordinate plan, generated for a chapter, and displayed by clicking the
Chapter0 jump string in the select list information panel:

In the following situations, a subordinate plan is generated:

Situation Jump String in
Information
Panel

Relevant
Icon

A filter in the SQL statement includes a
nested SELECT statement (a subquery).

SubQueryn (n is
the nesting
level)

Part of the query execution is done by
the Attunity Connect Query Processor
on the remote server where the data
being accessed resides.

Remote
optimization

The SQL statement includes syntax for a
chapter – either braces {} or parentheses
().

Chaptern (n is
the chapter
level)

 636

Query Governor
The current level of a plan is shown in the title bar. For example, a plan
two levels down (resulting from the remote processing of a subquery) is
displayed as:

Plan->Subquery->Remote

You can navigate through the levels of a plan with the Windows menu
by choosing the plan from the list of plans or select View|One Level
Up.

Query Governor
See "Workspace Governing" on page 249.

 637

Rdb Driver (OpenVMS Only)
Rdb Driver (OpenVMS Only)
The following sections provide information about the Attunity Connect
Rdb driver:

! Setting Up the Binding
! Mapping Rdb Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

" When the Attunity Connect Rdb driver is accessed through MS Access, update
operations fail without providing an error notification when the driver attempts
to update a table containing columns of the FLOAT data type.

The Rdb driver supports the use of the Rdb DBKey. See the showDbkey
driver property, below.

Setting Up the Binding

! To connect to Rdb data:

The Rdb data source is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select RDBSQL for the Type field.
! Specify the connect string as follows:

Database file path – The full path name of the database. You can
specify a logical name. In this case, the driver translates the logical
name before binding. This is useful if the logical database is
distributed among several physical databases. For example, if the
logical database is distributed among two physical databases called
BOSTON_DB and PARIS_DB, you can define this logical name as
follows:

define ALL_SITES BOSTON_DB,PARIS_DB

After defining this logical, you specify ALL_SITES for the Database
file path.

 638

Rdb Driver (OpenVMS Only)
Connecting to an Rdb Multischema Database

Attunity Connect does not natively support multischema databases. As
a workaround to use multischema databases via their stored names,
you must explicitly disable multischema mode. You do this by
specifying the following in the Database File Path:

database_name multischema is off

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

accessModeThreshold="accessMode_Threshold" – When a transaction is
started, this property is checked against the transactionMode property
and if the transactionMode value is within the scope of the threshold set
the request is granted. If the requested transaction mode exceeds the
threshold set, an error is returned.

" It is recommended to rely solely on the transactionMode property.

commitReadOnly="true|false" – Specifies read-only mode: all update
operations are blocked.

dbName="string" – (Database file path in the connect string) The full
path name of the database. You can specify a logical name. In this case,
the driver translates the logical name before binding.

defaultTransaction="readWrite|readOnly" – Sets the default data access
mode within a transaction (otherwise, data is accessed in read-only
mode until the first Create/Update/ Delete is performed).

" The setting specified by the <datasource> isolationLevel attribute overrides
this specification. If isolationLevel is not specified and this attribute is set, the
isolation level of the transaction is readCommitted.

imposedTransactionMode="read|write|none" – Used dynamically to
override the default data access mode within a transaction (see the
defaultTransaction attribute, above).

read – The database is read only.

write – The database is updateable.

none – The default access mode is used.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

 639

Rdb Driver (OpenVMS Only)
! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

lockWait="value" – Specifies whether the driver waits for a locked record
to become unlocked or returns a message that the record is locked.

reservingForReadTransaction="value" – Specifies the "RESERVING"
clause (excluding the keyword RESERVING) is applied on read-only
transactions.

reservingForWriteTransaction="value" – Specifies the "RESERVING"
clause (excluding the keyword RESERVING) is applied on updateable
transactions.

showDbkey="true|false" – Controls the availability of the DbKey field.
This attribute cannot be set dynamically. The DBKey can be used only
as a column in a WHERE clause, when evaluated against a parameter.
Thus, the following SQL is valid:

select * from nation where DBKey = ?

While the following SQL is not valid:

select * from nation where DBKey = ’11:1111:2’

Mapping Rdb Data Types

The following table shows how Attunity Connect maps Rdb data types
to OLE DB and ODBC data types.

Rdb OLE DB ODBC

(signed) long DBTYPE_I4 SQL_INTEGER

(signed) word DBTYPE_I2 SQL_SMALLINT

Char (m<256) DBTYPE_STR SQL_CHAR

Char (m>255) DBTYPE_STR SQL_LONGVARCHARa

 640

Rdb Driver (OpenVMS Only)
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Rdb data types:

Date DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Float (double precision)b DBTYPE_R8 SQL_DOUBLE

Realc DBTYPE_R4 SQL_REAL

Scaled long DBTYPE_ NUMERIC SQL_NUMERIC

Scaled quad DBTYPE_NUMERIC SQL_NUMERIC

Scaled word DBTYPE_NUMERIC SQL_NUMERIC

Varchar (m<256) DBTYPE_STR SQL_CHAR

Varchar (m>255) DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647.If the <odbc longVarcharLenAsBlob> parameter is set to true in
the Attunity Connect environment settings, then precision of m.

b. The Float data type is accurate to 15 significant figures in the Attunity Connect Rdb driver.
c. The Real data type is accurate to six significant figures.

Rdb OLE DB ODBC

CREATE TABLE Rdb

Char[(m)] Char[(m)]

Date Date

Double Double precision

Float Real

Image -

Integer Integer

Numeric[(p[,s])] Double precision

Smallint Smallint

Text -

 641

Rdb Driver (OpenVMS Only)
Stored Procedures

The Attunity Connect Rdb driver supports Rdb stored procedures.
However, the stored procedure name must be less than 27 characters.
and cannot return a resultset.

To retrieve output parameters and the return code from the stored
procedure, use the "? = CALL" syntax, described on page 728.

Transaction Support

The Attunity Connect Rdb driver supports two-phase commit and can
fully participate in a distributed transaction when the transaction
environment property convertAllToDistributed is set to true.

You use Rdb with its two-phase commit capability through an XA
connection using the OpenVMS integrated DTM transaction processing
manager.

" Multiple concurrent transactions are not supported.

Isolation Levels and Locking

The Attunity Connect Rdb driver supports the following isolation
levels:

! Committed read
! Repeatable read
! Serializable

" The isolation levels supported can be overwritten in the binding settings. For
details, see "Driver Configuration Properties" on page 308.

The isolation level is used only within a transaction.

Rdb supports record level locking. Updates in Rdb are performed with
no wait flag – if one of the records is locked, the update operation fails.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.

Tinyint Tinyint

Varchar(m) Varchar(m)

CREATE TABLE Rdb

 642

Recovery
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

Recovery
Attunity Connect provides a user interface that enables you to examine
the transaction status, initiate automatic recovery when possible, and
manually resolve the status of transactions that were in the middle of
a Commit when a crash occurred. For details see "Recovery Utility",
below.

You can examine a transaction log file to determine which transactions
failed.

Recovery can take place starting either on the client (with automatic
cascading) or on a server machine (cascading to its servers).

Recovery Utility
To examine the status of transactions processed by Attunity Connect,
use the Attunity Connect Recovery utility. The Recovery utility
graphically displays the contents of the Attunity Connect transaction
log file. Using the Recovery utility you can identify the status of
transactions managed by Attunity Connect.

The Recovery utility enables you to:

! Commit transactions that have not yet been committed.
! Rollback transactions to their previous state.
! Recover a transaction, based on how Attunity Connect interprets

its current status.
! Recover all the transactions, based on how Attunity Connect

interprets the current status.

" Do not use the recovery utility while running transactions.

" To use the Recovery utility with an OS/390 machine, define every library in the
NAVROOT.USERLIB(ATTSRVR) JCL as an APF-authorized library, where
NAVROOT is the high-level qualifier where Attunity Connect is installed.

 643

Recovery Utility
! To use the Recovery utility:

1. Select Start|Programs|Attunity|Utilities|Recovery Utility
to start the Recovery utility.

The Recovery utility opens showing the transactions logged in the
transaction log file, along with their status:

For details of the transaction log file, see page 777.

2. Right-click on a transaction in the left pane or click to show the
transaction status. A message is displayed showing the current
status of the transaction and the recommended recovery procedure.

Example

The following message shows that the transaction status is Commit
and that no recovery is required, meaning that all the resources in
the transaction were committed. If one of the resources wasn’t
committed, the recovery required would have been Commit.

3. Right-click on a transaction in the left pane or click on the
appropriate button in the toolbar to chose the type of recovery you
want performed for the transaction.

 644

Recovery Utility
The options are:

Heuristic – Recovery is done automatically, according to the
information in the log file. This is the recommended option.

Commit – Commits the selected transaction.

Rollback – Rolls back updates made by the transaction to the
state immediately before the transaction was issued.

Forget – Maintains the current situation and deletes the selected
transaction information from the log file.

" Select Heuristic All to recover all the transactions in the log file. Recovery
is done automatically by Attunity Connect.

The Recovery Utility
Toolbar

The following table describes the toolbar buttons, their menu
equivalents and their functionality:

Button Menu Option Function

Machine|Refresh
Transactions List

Redisplays the transaction log file.

Machine|Heuristic
Recover All

Recovery is done automatically by
Attunity Connect for every
transaction listed in the
transaction log file for the selected
machine.

Transaction|Heuristic
Recover

Recovery is done automatically by
Attunity Connect, dependent on
the information in the log file.

Transaction|Transaction
Status

A message is displayed showing
the status of the transaction and
the recovery strategy
recommended.

Transaction|Commit
Transaction

Commits the selected transaction.

Transaction|Rollback
Transaction

Updates made by the selected
transaction are rolled back to the
state immediately before the
transaction was issued.

 645

Red Brick Driver
Red Brick Driver
The following sections provide information about the Attunity Connect
Red Brick driver:

! Setting Up the Binding
! Mapping Red Brick Data Types
! CREATE TABLE Data Types
! Transaction Support

" The Redbrick driver does not support the CONVERT function on date fields.

Setting Up the Binding

! To connect to Red Brick data:

The Red Brick data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select Red Brick for the Type field.
! Specify the Red Brick connect string as follows:

Redbrick Connect String – The connect string.
" When creating an ODBC DSN to connect to Red Brick data from

Attunity Connect, the DSN must be defined as a User DSN (and not a
System DSN or File DSN).

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

Transaction|Forget
Transaction

Maintains the current situation
and deletes the selected
transaction information from the
log file.

Button Menu Option Function

 646

Red Brick Driver
! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

odbcConnect ="string" – (Redbrick Connect String in the connect string)
Specifies the connect string.

Mapping Red Brick Data Types

The following table shows how Attunity Connect maps Red Brick data
types to OLE DB and ODBC data types.

Red Brick OLE DB ODBC

Char (m<256) DBTYPE_STR SQL_VARCHAR

Char (m>255) DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647.If the <odbc longVarcharLenAsBlob> parameter is set
to true in the Attunity Connect environment settings, then precision of m.

Char [(m<256)] DBTYPE_STR SQL_CHAR

Char [(m>255)] DBTYPE_STR SQL_LONGVARCHARa

Double Precision DBTYPE_R8 SQL_DOUBLE

Integer DBTYPE_I4 SQL_INTEGER

Numeric [(p[,s])] DBTYPE_NUMERIC SQL_NUMERIC(P,S)

Smallint DBTYPE_I2 SQL_SMALLINT

Timestamp DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Tinyint DBTYPE_I1 SQL_TINYINT

 647

Referential Integrity
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Red Brick data types:

Transaction Support

Red Brick Warehouse does not support transactions and the Red Brick
driver is always in AUTOCOMMIT mode.

The Attunity Connect Red Brick driver supports one-phase commit. It
can participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Referential Integrity
Referential integrity is a feature provided by relational database
management systems (RDBMS's) that prevents users or applications
from entering inconsistent data. Most RDBMS's have various referential
integrity rules that you can apply when you create a relationship
between tables.

CREATE TABLE Red Brick

Char[(m)] Char[(m)]

Date Timestamp

Double Double Precision

Float Double Precision

Image -

Integer Integer

Numeric [(p[,s])] Numeric [(p[,s])]

Smallint Smallint

Text -

Tinyint Tinyint

Varchar(m) Char(m)

 648

Registering Attunity Connect
Update Rules

The following are standard rules determining how referential integrity
is maintained for a foreign key when the primary key of the referenced
table is updated.

cascade – When the primary key of the referenced table is updated, the
foreign key of the referencing table is also updated.

restrict – If an update of the primary key of the referenced table would
cause a "dangling reference" in the referencing table (that is, rows in
the referencing table would have no counterparts in the referenced
table), then the update is rejected. If an update of the foreign key of the
referencing table would introduce a value that does not exist as a value
of the primary key of the referenced table, then the update is rejected.

setNull – When one or more rows in the referenced table are updated
such that one or more components of the primary key are changed, the
components of the foreign key in the referencing table that correspond
to the changed components of the primary key are set to NULL in all
matching rows of the referencing table.

Delete Rules

The following are methods determining how referential integrity is
maintained for the foreign key when a row of the referenced table is
deleted.

cascade – When a row in the referenced table is deleted, all the
matching rows in the referencing tables are also deleted.

restrict – If a delete of a row in the referenced table would cause a
"dangling reference" in the referencing table (that is, rows in the
referencing table would have no counterparts in the referenced table),
then the update is rejected.

setNull – When one or more rows in the referenced table are deleted,
each component of the foreign key of the referencing table is set to NULL
in all matching rows of the referencing table.

Registering Attunity Connect
You need to register the copy of Attunity Connect before you can access
data sources on this machine. To use Attunity Connect you must have
a Product Authorization Key (PAK) file, called license.pak. A PAK is
normally supplied by the Attunity Connect vendor. It contains details
such as the product expiration date (if any), the maximum number of
concurrent sessions allowed, which drivers you are authorized to use,

 649

Remove Command in Attunity Studio
and other information. The PAK is supplied in electronic form, and you
must register it before you can use the product, using NAV_UTIL
REGISTER (see the relevant installation guide for details).

" If you upgraded a previous version of Attunity Connect, a new license is
automatically registered.

Remove Command in Attunity Studio
The Remove menu item removes the object referred to from Attunity
Studio, but not from the repository on the machine being managed.
Compare this function with the Delete command, which deletes the
object referred to from the repository, on whatever machine is being
managed.

Also see: "Delete Command in Attunity Studio" on page 304.

Repository
Attunity Connect holds information internally in the repository. There
are two types of repository: a general repository and a repository per
data source.

The general repository – Used for user profiles (a list of
username/password pairs for machines and data sources) and Attunity
Connect queries and views.

The SYS data source is the name of the general repository.

A data source repository – A repository exists for each data source
specified in a binding. The information includes Attunity Connect
metadata for the data source and Attunity Connect synonym
definitions for the data.

Remote Data
Remote data is data that requires the Attunity Connect daemon to
access the data. Thus, when using the JDBC driver, even if the data
resides on the same machine as the application, access to the data is via
the Attunity Connect daemon and the data is considered to be remote.

 650

Reserved Keywords
Reserved Keywords

Reserved Keywords for
SQL

The following are the Attunity Connect SQL reserved keywords:

Other Reserved
Keywords

The word event is a reserved word and cannot be used when naming an
adapter.

ACCESS GRANT OPTIMIZE
ALL GROUP OPTIONS
AND HASHJOIN OR
ANY HAVING ORDER
AS IN OUTER
ASC INDEX OUTPUT
AVG INDEXSCAN PROC
BEGIN INNER PROCEDURE
BETWEEN INSERT QUERY
BY INTERSECT RIGHT
CALL INTERVAL ROJ
CASE INTO ROLLBACK
COMMIT IS ROWS
CONVERT JOIN SELECT
COUNT LAST SEMIJOIN
CREATE LEFT SET
CURRENT LIKE SOME
DATEADD LIMIT STRING
DATEDIFF LOJ SUM
DELETE MANY_TO_MANY SYNONYM
DESC MANY_TO_ONE TABLE
DISTINCT MAX TEXT
DISTINCTROW MIN THEN
DROP MINUS TO
ELSE MYWHERE TRANSACTION
END NAV_CONVERT UNION
ESCAPE NESTEDJOIN UNIQUE
EXEC NOT UPDATE
EXISTS NULL VALUES
FIRST OF VIEW
FOR ON WHEN
FORCE ONE_TO_MANY WHERE
FROM ONE_TO_ONE WITH

WITHOUT

 651

Reusable Server
Reusable Server
Once the client processing finishes, the server process does not die and
can be used by another client, reducing startup times and application
startup overhead.

This mode does not have the high overhead of single client mode since
the servers are already initialized. However, this server mode may use
a lot of server resources (since it requires as many server processes as
concurrent clients).

RMS CDD Metadata Import (OpenVMS Only)
The RMS CDD import utility produces ADD metadata from information
stored in an RMS CDD directory.

To generate ADD metadata, use the following command line (activated
directly from DCL):

$ CDD_ADL [cdd_dir] [record_spec] ds_name [filename_table]
[CDD/Plus_version_major] [organization] [basename] [options]

" Use double quotes (’ ’) to hold a parameter’s position when you do not specify
its value and it is followed by a parameter whose value is specified. For
example, $ CDD_ADL "" sales.

Activation of this utility is based on environment symbols defined by the login
file that resides in the BIN directory under the directory where Attunity Connect
is installed. You can always replace the environment symbol with the
appropriate entry.

where:

cdd_dir – The location of the CDD records.

record_spec – The set of records that you want converted. All CDD
records matching record_spec in the specified CDD directory are
converted. If you want all the record information in the directory
converted, don’t specify a value for record_spec.

ds_name – The name of an Attunity Connect data source defined in the
binding settings. The imported metadata is stored as ADD metadata in
the repository for this data source.

filename_table – A text file containing a list of records and the names of
their data files. Each row in this file has two entries: record_name and
physical_CDD_data_file_name (which is used for the value for the Data
file field for the table in the Metadata perspective of Attunity Studio).
If a table is not listed in this text file, the entry for the Data file field for

 652

RMS CDD Metadata Import (OpenVMS Only)
the table defaults to table_FIL, where table is the name of the table. If
this text file does not exist, the names for the Data file field specifying
the tables default to table_FIL, where table is the name of the table.

" In cases where the filename defaults to table_FIL, the filename must be
changed to the correct name in order to access the data. This is done using the
Metadata perspective of Attunity Studio, or NAV_UTIL EDIT.

The text file specified in this parameter contains entries similar to the
following:

CDD/Plus_version_major – The CDD/Plus version major, which
determines:

! The separator between the record_name and version_number
in the output CDD records

! The repository metadata format

The values available for this parameter are:

0 – Specifies that the metadata is in DMU format and the semicolon
(;) is the separator between record name and version number.

4 – Specifies that the metadata is in CDO format and the semicolon
(;) is the separator between record name and version number.

x (anything else, or blank) – Specifies that the metadata is in CDO
format and the open parenthesis "(" is the separator between record
name and version number.
" If you are using a version of CDD prior to V4.0, specify "0" (since CDO

format was introduced in version 4.0).

Organization – The value for the ORGANIZATION clause for the ADD
metadata for the CDD record. If not specified, this parameter defaults
to INDEX.

basename – A user defined name, used for the intermediate files used
during the import operation.

Options – enables you to specify the following options:

D – Specifies that all intermediate files are saved. You can check
these files if problems occur in the conversion.

C – Specifies that the column name is used for an array name,
instead of the concatenation of the parent table name with the child
table name.

OpenVMS Platforms
orders us5:[attunity.acme]orders.inx
purchase us5:[attunity.acme]purchase.inx

 653

RMS Metadata Import from COBOL Copybooks (OpenVMS Only)
" If a column name is not unique in a structure (as when a structure includes
another structure, which contains a column with the same name as a
column in the parent structure), the nested column name is suffixed with
the nested structure name.

Example

$ CDD_ADL cdd$top.personnel sales rmsdemo

" To display online help for this utility, run the command with help as the only
parameter: $ CDD_ADL HELP.

RMS Metadata Import from COBOL Copybooks (OpenVMS
Only)

You can generate metadata for RMS from COBOL copybooks that
describe the RMS data.

The following steps are used to import metadata from COBOL
copybooks.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

DESCRIPTION

Get Input Files If COBOL copybooks are available defining the application input or
output: Specify the copybooks.

Apply Filters The data from the input files specified in the previous step is analyzed
and converted to XML.

Select Tables Select the tables, identified from the COBOL, you want to import
metadata for from the list of tables.

Resolve Table
Names

In cases where there are multiple tables with the same name, the
source COBOL file that describes each specific table is specified.

Generate Final
Metadata

Prepares the final XML defining the metadata.

Import Metadata The metadata can be imported to the machine where the data source
resides. This step can be returned to and redone at any time.

 654

RMS Driver (OpenVMS Only)
RMS Driver (OpenVMS Only)
The following sections provide information about the Attunity Connect
RMS driver:

! Setting Up the Binding
! CREATE TABLE Data Types
! Transaction Support
! Locking
! Metadata Considerations

In addition, the RMS driver provides array handling – see "Hierarchical
Queries" on page 390.

The RMS driver supports RFA usage. The RFA can be used as a column
in a WHERE clause, when the RMS record is indexed.

Setting Up the Binding

! To connect to RMS data:

The RMS data source is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select RMS for the Type field.

! Specify the connect string as follows:

Data directory – The directory where the RMS files and indexes you
create with CREATE TABLE and CREATE INDEX statements reside.
You must specify the full path for the directory.
" The value specified is specified in the Data file field in the metadata

perspective of Attunity Studio. If a value is not specified in this field, the
data files are written to the DEF directory under the directory where
Attunity Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

 655

RMS Driver (OpenVMS Only)
filepoolCloseOnTransaction="true | false" – Specifies that all the files in
the filepool for this data source, close at the end of each transaction
(commit or rollback).

filepoolSize="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

filepoolSizePerFile="n" – Specifies how many instances of a file from the
filepool may be open concurrently for each file.

lockWait="value" – Specifies whether the driver waits for a locked record
to become unlocked or returns a message that the record is locked.

newFileLocation="string" – (Data directory in the connect string) The
directory where the RMS files and indexes you create with CREATE
TABLE and CREATE INDEX statements reside. You must specify the full
path for the directory.

useGlobalFilepool="true | false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.

useRmsJournal="true | false" – Enables using RMS journalling, when
SET FILE/RU_JOURNAL is issued under OpenVMS.

" The SET FILE/RU_JOURNAL OpenVMS command marks an RMS file for
recovery unit journalling.

Any RMS table used in a transaction where journalling applies must be
defined with an index. The following SQL statements are used with RMS
journalling, with their OpenVMS equivalents:

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to RMS data types:

SQL OpenVMS
Begin SYS$START_TRANS

Commit SYS$END_TRANS

Rollback SYS$ABORT_TRANS

CREATE TABLE RMS

Char[(m)] Char[(m)]

Date Date+time

Double Double

 656

RMS Driver (OpenVMS Only)
The RMS driver does not enable creation and deletion of a record in the
same session.

Transaction Support

The Attunity Connect RMS driver supports two-phase commit and can
fully participate in a distributed transaction when the transaction
environment property convertAllToDistributed is set to true.

You use RMS with its two-phase commit capability through an XA
connection using the OpenVMS integrated DTM transaction processing
manager.

" Multiple concurrent transactions are not supported.

Also refer to the useRmsJournal driver property described in "Driver
Configuration" on page 654.

Locking

Record level locking is supported. The lock is released only when the file
is closed or when the record is re-read without a lock being applied.

Metadata Considerations

The Attunity Connect RMS driver requires Attunity Connect metadata.

If the metadata exists as COBOL copybooks, you can import the
metadata to Attunity Connect using the RMS import utility in the
Metadata Import perspective of Attunity Studio.

Float Float

Image -

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text -

Tinyint Tinyint

Varchar(m) Varchar(m)

CREATE TABLE RMS

 657

RRS (OS/390 and z/OS Platforms Only)
If the metadata exists in a CDD data dictionary, you can use the
RMS_CDD import utility to import this metadata to Attunity Connect
metadata (see page 651).

You use the Metadata perspective of Attunity Studio to maintain the
metadata and update the statistics for the data.

RRS (OS/390 and z/OS Platforms Only)
RRS (Transaction Management and Recoverable Resource Manager
Services) enables transactions management on OS/390 and z/OS
platforms. Attunity Connect interfaces with RRS to manage distributed
transactions for the CICS, DB2, IMSTM and VSAM under CICS drivers
and for the CICS and IMSTM adapters.

" If RRS is not running, the data source can participate in a distributed
transaction, as the only one-phase commit data source, if the logFile
parameter is set to NORRS in the transactions node of the binding properties
for the relevant binding configuration, in the Configuration perspective of the
Attunity Studio. The XML representation is as follows:

<transactions logFile="log,NORRS" />

where log is the high level qualifier and name of the log file. If this parameter is
not specified, the format is the following:

<transactions logFile=",NORRS" />

That is, the comma must be specified.

For further details about setting up a data source to be one-phase commit in a
distributed transaction, refer to "The CommitConfirm Table" on page 779.

To use two-phase commit capability to access data on the OS/390 or z/OS
machine, define every library in the ATTSRVR JCL as an
APF-authorized library.

" To define a DSN as APF-authorized, in the SDSF screen enter the command:
"/setprog apf,add,dsn=navroot.library,volume=ac002"
where ac002 is the volume where you installed Attunity Connect and
NAVROOT is the high level qualifier where Attunity Connect is installed.

If the Attunity Connect installation volume is managed by SMS, when defining
APF-authorization enter the following command in the SDSF screen:
"/setprog apf,add,dsn=navroot.library,SMS"

Make sure that the library is APF-authorized, even after an IPL (reboot) of the
machine.

 658

Runtime Perspective
Runtime Perspective
The Runtime perspective enables monitoring daemon activity on any
machine running a daemon.

Open the Runtime perspective by right-clicking a machine in the
Configuration perspective and choosing Open Runtime Perspective, or

by clicking the Open a Perspective button and choosing Runtime
Manager, or via the Window|Open Perspective menu.

To add daemons you want to monitor, right-click the Daemons node and
choose Add Daemon from the popup menu.

The following window is displayed:

Access to the machine is set by specifying the following information.

Host name/IP address – The name of the machine on the network. The
name can be entered manually or found using the Browse button, which
lists all the machines running an Attunity Connect daemon listener on
the specified port currently accessible over the network.

Port – Specifies the port where the Attunity Connect daemon is
running. The default port for Attunity Connect is 2551.

Display name – (Optional) An alias used to identify the machine when
different from the host name.

 659

Runtime Perspective
User name – (Optional) The username of a user defined as an
administrator for the machine.

" An administrator is specified when the machine is installed or using NAV_UTIL
ADD_ADMIN on the machine itself, as described in Attunity Connect
Reference.

Password – (Optional) The password of the user.

Connect via NAT with a fixed IP address – Specifies whether the machine
uses the NAT firewall protocol.Once a machine is added you can drill
down to it’s workspaces and the server processes for each workspace.

Managing a Daemon The following options are used to manage the daemon, workspace and
server settings. These options are accessed by right-clicking a resource:

Status – Checks the status of the daemon, workspace or server.

Reload Configuration (at daemon level) – Reloads the configuration after
any changes. Any started servers are not effected by the changed
configuration.

" The configuration must be reloaded to apply changes.

View Log – View the log for the selected daemon, workspace or server.
The details displayed are the same as those written to the daemon log
or the server log only that they are displayed only from the time the
view is relevant. The number of servers the can be managed depend on
the monitor section of the daemon control.

View Events – View the activity on the daemon, workspace or server
selected. The event router provides a filtered representation of the log
monitor.

Daemon Properties (at daemon level) – Information about the machine
the on which the daemon is running.

Shutdown Daemon (at daemon level) – Shuts down the daemon on the
machine.

" You can only start a daemon from the machine command line and not from the
Attunity Studio.

End Unused Servers (at daemon and workspace levels) – Refreshes the
daemon either for all workspaces (the daemon level) or for the specified
workspace. Changing various server properties affects only new server
processes. All available and unconnected servers are terminated and
any connected servers are marked and terminated on release. Use this
option when changes to the binding configuration or to the environment
settings were made after servers were started up. On the next

 660

Runtime Perspective
operation, servers are restarted, based on the available server and
reusable server settings.

" This option has no meaning unless the Keep When Daemon Ends field is
checked in the WS Info tab for the Workspace.

End All Servers (at daemon and workspace levels) – Kills all the active
servers for all workspaces (the daemon level) or for the specified
workspace, regardless of whether the server has an active client.

End (at server level) – Kills the server.

Rename (at daemon level) – Rename the daemon.

Remove (at daemon and workspace levels) – Removes the daemon or
workspace with its servers from the Runtime explorer. If the workspace
was removed, you can add it back by right-clicking the daemon and
choosing Refresh from the popup menu.

Edit Daemon Configuration (at daemon level) – Opens the Daemon editor
to update the daemon configuration.

Edit Workspace Configuration (at workspace level) – Opens the
Workspace editor to update the daemon configuration.

Refresh – Refreshes the display.

Import XML definitions (at daemon level) – Imports daemon definitions
from an XML file.

Export XML definitions (at daemon level) – Exports the daemon definition
to an XML file. Before you export the definition, it is displayed.

Logs in the Runtime
Perspective

Attunity Studio manages the following logs that you can use to
troubleshoot problems:

Daemon log – Displays activity between clients and the daemon,
including clients logging in and logging out from the daemon.

Workspace log – Displays information about the workspace being used
by the client.

Server process log – Displays activity between clients and the server
process used by that client to handle the client request.

The Runtime perspective of Attunity Studio provides a monitor for
these logs.

Display the required log by right-clicking the level you want (daemon,
workspace or server) and choosing the View Log option.

 661

Runtime Perspective
Determining What is Displayed in the Log

You can change the level of logging by clicking the Properties button.
The following levels of logging are available:

none – The log displays who has logged in and out from the daemon.

error – The log displays who has logged in and out from the daemon and
any errors that have been generated.

debug – The log displays who has logged in and out from the daemon,
any errors that have been generated and any tracing that has been
specified in the daemon configuration.

 662

Sample Data
Sample Data
See "NAVDEMO" on page 537.

Security
Attunity Connect provides the following types of security:

Design Time – Security used to access resources.

Machine Access – Granting users rights to access machines.

Workspace Access – Granting users rights to access workspaces.

Users – Managing user authorizations and user profile files.

Runtime – Security used to access resources from an application via
Attunity Connect.

Administration – Granting users rights to manage the daemon and
workspace configuration.

The default daemon configuration grants all users administrative
rights. Change this default by specifying in the configuration only
the users who have administration rights, as described below.

Client Access – Granting users access to a specific data sources or
adapters.

" Attunity Connect works within the confines of the platform security system. For
example, on an OS/390 machine with RACF installed, and with the workspace
server mode set to multi-tasking, a RACROUTE VERIFY is performed for each
task in the address space, according to the client connection.

Design Time

An administrator sets rights to resources as follows:

! Initially accessing a machine – Specifies the authorization needed to
access the machine.

! Accessing a workspace – Specifies the authorization needed to
access a workspace.

! Users – Sets authorization to user profiles.

 663

Security
Initial Access to a
Machine

The first time you connect to a machine via Attunity Studio, the
username and password needed to connect to the machine are entered
in the Connection section of the Add machine window.

Access to the machine is set by specifying the following information.

Host name/IP address – The name of the machine on the network. The
name can be entered manually or found using the Browse button, which
lists all the machines running an Attunity Connect daemon listener on
the specified port currently accessible over the network.

Port – Specifies the port where the Attunity Connect daemon is
running. The default port for Attunity Connect is 2551.

Display name – (Optional) An alias used to identify the machine when
different from the host name.

User name – (Optional) The username of a user defined as an
administrator for the machine.

An administrator is specified when the machine is installed or using
NAV_UTIL ADD_ADMIN on the machine itself, as described
"NAV_UTIL ADD_ADMIN" on page 501.

Password – (Optional) The password of the user.

 664

Security
User Authorization Once a machine is defined in Attunity Studio, you can authorize
viewing and editing rights of users and groups according to their role in
the design process. Users can be identified with the following roles:

Administrators – Allowed to edit all of the definitions in Attunity Studio.

Designers – Allowed to edit binding definitions and view daemon
definitions in Attunity Studio.

Users – Allowed to view the definitions in Attunity Studio.

! To assign authorization rights to users:

1. Right-click the machine in the Attunity Studio Configuration
perspective, and choose Administration Authorization from the
popup menu.

2. In the Administration Authorization window, use the Add User and
Add Group buttons to assign authorization to specific users and
groups of users.
" Administration Authorization is set from the top down, meaning that if a

higher level is set, there is no need to set the same users for the lower
levels.

Workspace
Authorization

Once a machine is defined in Attunity Studio, you can authorize
viewing and editing rights for specific workspaces

! To assign authorization rights to a workspace:

1. Right-click the workspace in the Attunity Studio Configuration
perspective, and choose Set Authorization from the popup menu.

2. Specify the user name and password for the user with authorization
rights for this workspace.

User Profile Access Access to the user profiles (described on page 793) can be restricted by
setting a master password for the user profile.

! To set a master password for a user profile:

1. Expand the machine under which the user is set.
2. Expand Users under the machine.
3. Right-click the User in the Attunity Studio Configuration explorer.
4. Choose Change Master Password from the popup menu.
5. Enter the password to change and the new password and click OK.

 665

Security
Runtime

An administrator manages communication, via the daemon.

Administration An administrator manages the daemon and workspaces, including
which workspaces are usable by a client

Administration Rights to the Daemon

You can grant a user full administration rights to the daemon. An
administrator has the right to perform actions such as starting and
shutting down a daemon.

! To grant administrative rights to a daemon:

1. In Configuration explorer, open the daemon editor for the machine.
2. Open the Daemon Security tab.
3. Select the Selected Users Only option.
4. Use the Add Group and Add User buttons to grant Administration

rights to groups and users.

OpenVMS and OS/390 or z/OS Platforms

To define a group of users, preface the name of the group in the
configuration with ’@’. Under OS/390 and z/OS the group name is
validated by a security system such as RACF.

 666

Security
The results can be seen in XML, in the Source tab. For example:

! To prevent anonymous access and limit administration rights to a
user called sysadmin:

<security anonymousClientAllowed="false"
 administrator="sysadmin" />

! To allow anonymous access a server and to grant all users
administration right:

<security anonymousClientAllowed="true"
 administrator="*" />

Administration Rights to a Workspace

You can authorize a user to have administration rights to a specific
workspace.

Users without administrative rights to the daemon can be given rights
to a workspace. For example, a user with administrative rights to a
workspace can refresh the specific workspace server processes.

! To grant administrative rights to a workspace:

1. In the Configuration explorer, open the workspace editor for the
machine you want.

2. Open the WS Security tab.
3. Select the Selected Users Only option.
4. Use the Add Group and Add User buttons to grant administration

rights to groups and users.

OpenVMS and OS/390 or z/OS Platforms

! To prevent anonymous access and limit administration rights to a
user named sysadmin and to a group named sys:

<security anonymousClientAllowed="false"
 administrator="sysadmin,@sys" />

OpenVMS and OS/390 or z/OS Platforms

To define a group of users instead of a single user, preface the name
of the group in the configuration with ’@’. Under OS/390 and z/OS the
group name is validated by a security system such as RACF.

 667

Security
Following is an example of setting administrative rights to a
workspace:

The following examples are based on the daemon configuration as it is
displayed in the Source tab.

! To ensure that users must be defined in the Attunity Connect user
profile and to grant all users administration rights to a workspace:

<workspace name="Navigator"
 description="An Attunity Server"
 workspaceAccount="orders"

 startupScript="machine_dependent"1

 serverMode="reusable" reuseLimit="20"
 anonymousClientAllowed="false"
 administrator="*" />
</workspace>

1. The value for startupScript in these examples is machine dependent. For example, for
OS/390 the startup script might be startupScript=”ATTSRVR.AB”,
for OpenVMS startupScript="dka0:[user.orders]NAV_SERVER.COM",
for OS/400 startupScript="navutil.pgm svc" and for Windows startupScript="nav_util svc"

 668

Security
! To ensure that users must be defined in the Attunity Connect user
profile and to limit administration rights to a user called sysadmin:

<workspace name="Navigator"
 description="An Attunity Server"
 workspaceAccount="orders"

 startupScript="machine_dependent"1

 serverMode="reusable" reuseLimit="20"
 anonymousClientAllowed="false"

 administrator="sysadmin"2 />
</workspace>

Client Access The Attunity Connect daemon allocates Attunity Connect server
processes to Attunity Connect clients. Before a server process is
allocated, the daemon is responsible for user authentication. You can
configure the daemon either to allow anonymous access (without
requiring user authentication) or to require user authentication at
several levels.

Authorization is performed at the following points when a user requests
access to a data source:

1. Accessing the server machine

To access the data on a server through Attunity Connect, the user
must log on to the server. One of the following occurs:
! Anonymous access to the server is allowed. Set this level of

security by specifying security information in the Security
section of the daemon configuration. See "Administration
Rights to the Daemon" on page 665.

! Anonymous access to the server is not allowed. A valid user
name and password exist in the user profile (see below). These
values are used to log on to the server. See "User Profiles" on
page 793 for details.

! Anonymous access to the server is not allowed and a valid user
name and password does not exist in the user profile. An error
occurs.

" If you are setting up access to data, using Attunity Studio, you are
prompted to enter a user name and password.

If the server is successfully accessed, the next step is performed.
2. Accessing the workspace

If anonymous access to the workspace is allowed, the next step
(Accessing the data) is performed.

2. Under OS/390, z/OS and OpenVMS, to limit administration rights to a user named sysad-
min and a group named dev, the following line is required: administrator="sysad-
min,@dev".

 669

Security
If anonymous access is not allowed, the client must be specified in
the daemon configuration in the list of users permitted to use the
workspace. If the client is a valid user, the next step (Accessing the
data) is performed. Set this level of security by specifying security
information in the Workspace section of the daemon configuration
on the machine where the daemon is located. See "Setting Access to
a Workspace" below for details.

3. Accessing the data

Whenever a specific data source is accessed for the first time,
Attunity Connect looks at the user profile to see if a user name and
password pair has been specified for this data source. If the user
name and password have been specified, Attunity Connect passes
the user information to the data source itself for authentication.
" The user name/password pair is defined on a per-data-source basis, and

may be different for the different data sources.

Set this level of security by specifying user information for the data
source.

Setting User Names and Passwords for Machines and Data

A valid user name and password for a server machine and for data is
specified in the user profile, either on the client machine or the server
machine (when using the JDBC client interface, the user profile must be
on the server machine). These values are used so that logging on is
performed automatically (without prompting the user for a user name
and password). For details about user profiles, see "User Profiles" on
page 793.

Setting Access to a Workspace

Data is accessed via a workspace, which allocates a server process to a
client. A user must have permission to access the data through this
workspace.

! To set access to a workspace using Attunity Studio:

1. In the Configuration explorer, open the daemon for the machine.
2. Open the Workspace Editor WS Security tab.
3. In the Workspace Access section, choose the Selected Users Only.
4. Add Workspace Users (accounts) for users who can access data

using this workspace.

OpenVMS and OS/390 or z/OS Platforms

To define a group of users instead of a single user (so that the group
name is validated by a security system), preface the name of the
group in the configuration with ’@’.

 670

Security
The client access is set in Attunity Studio, as displayed below:

When you restrict access to a specific workspace (by unchecking the
Anonymous Client Allowed check box and specifying the users via the
Workspace Access field), you must also define a user profile on the
machine with the workspace for each user defined as able to access the
workspace. Each user profile must have the same name as specified in
the Workspace Users field. For details, see "User Profiles" on page 793.

" The user profile does not need to include authenticator definitions. All
authenticators can be defined in a user profile on the client.

Accessing a Server Through a Firewall

Attunity Connect enables you to access a server through a firewall in
the following ways:

! By specifying a range of ports through which Attunity Connect can
access the server.

! When the server uses SOCKS. The SOCKS server can perform
authentication and pass the request on to an Attunity Connect
instance.

! When the server uses NAT.

 671

Security
You can specify in the daemon a range of port numbers that are
recognized by Attunity Connect.

! To specify port range:

1. In the Configuration explorer, open the daemon for the machine.
2. Open the Workspace Editor WS Security tab.
3. Specify the range.

You can access a server via a firewall and NAT in the following cases:

! When NAT uses a fixed configuration, mapping each external IP to
one internal IP, regardless of the port specified. You set this option
by specifying "fixednat" when you add a machine to the
Configuration perspective in Attunity Studio.
" This solution does not require a change to the daemon configuration.

! When NAT uses non-fixed configurations, in which each external IP
is not necessarily mapped to only one internal IP. You can access
the server by using an Attunity Connect NT machine as a proxy.
You use an additional machine behind the firewall (the NT proxy),
which provides a secure single point of access to the server on behalf
of the client. You must start the NT proxy as a standalone server,
by running the following command on the NT machine:

nav_util svc :2551

 672

Security
Along with starting the standalone NT proxy, you also need to specify
binding information on both the client and the NT proxy, as follows:

! On the client, specify connection information to the NT proxy, as in
the following:

<datasource name="mydata" type="remote"
 connect="ntproxy"/>
...
<remoteMachine name="ntproxy"
 address="address" port="port"
 firewallProtocol="nat"/>

! On the NT proxy, specify connection information for those data
sources you want to access through the firewall on the server, as in
the following:

<datasource name="mydata" type="remote"
 connect="acme"/>
...
<remoteMachine name="acme" address="address"
 port="port"/>

Encrypting Network Communications

To encrypt communications passed over the network, you need to
specify the following encryption parameters in Attunity Connect:

! On the client machine:
! the server machine, specifying an encryption protocol.
! the user profile, indicating this information is encrypted.

! On the server machine:
! the encryption key.

For a Java thin client, you can specify encryption of client/server
communication via the JDBC connect string ("Encryption as Part of the
JDBC Connect String" on page 676).

 673

Security
Setting an Encryption
Protocol

The encryption protocol between the client and the server is set on the
client machine. All communication from the client machine is encrypted
using the specified protocol.

! To set the encryption protocol for the server machine:

1. Right-click the binding in the Attunity Connect Configuration
perspective and choose Edit Binding from the popup menu.

2. In the Machine tab of the Binding editor, select the client machine
and click Network.

3. In the Network settings window, select the encryption protocol.

 674

Security
Specifying Encrypted
Communication

After specifying the encryption protocol, you must specify which servers
the client is going to communicate with using the specified encryption
protocol.

! To specify the server machine that the client communicates with via
encryption:

1. Right-click the user profile in the Attunity Connect Configuration
perspective and choose Edit User from the popup menu.

2. In the User editor, select the client machine and click Add to open
the Add Authenticator window.

3. Specify the following in the Add Authenticator window:

Resource type – Specify the resource type as Remote machine.

Resource name – Specify the communication to the machine is
encrypted in the following format:

enckey:machine_name
where machine_name is the machine you are connecting to.

username – The name optionally associated with the encryption
password and which the daemon on the remote machine looks up.

Multiple clients may specify this name in their user profile. In this
case, the user profile on the remote machine needs to list only this
one username/password entry for network encryption (rather than
listing and looking up multiple username/password pairs).

If this username entry is not specified, the daemon on the remote
machine uses the name of the current active user profile.

password – The password that is required in order to pass or access
encrypted information over the network.

 675

Security
Specifying the
Encryption Key on the
Server Machine

Any communication from the client to the server machine is encrypted.
The server machine must be configured to decipher the encrypted
information using an encryption key.

! To specify the encryption key on the server machine:

1. Select the server machine in the Attunity Connect Configuration
perspective.

2. Right-click the user profile in the Attunity Connect Configuration
perspective and choose Edit User from the popup menu. The User
editor opens.

3. Open the Encryption Key tab.

4. Click Add and specify the following in the Add Encryption Key
window:

Key name – Enter the name associated with the encryption
password and which the daemon on this machine looks up.

Key – Enter the Encryption key.

Confirm key – Re-enter the Encryption key.

 676

Security
Encryption as Part of
the JDBC Connect
String

You can specify encryption from a Java thin client by specifying the
following in the JDBC connection string:

jdbc:attconnect://[username:password@]
machine:port:encryption_protocol[/workspace];
resource=value;password=value[;parameter=value]...

where the following parameters are relevant for encrypting
client/server network communications:

" The JDBC connect string is described in the documentation supplied with the
Attunity Connect thin client kit.

username:password – To connect to the Attunity Connect daemon. If
anonymous access is allowed on the remote machine, these parameters
are optional.

machine – The IP address where the Attunity Connect daemon runs.

port – The port that the daemon listens to. If omitted, the default (2551)
is used.

encryption_protocol – The protocol used for encrypting network
communications. The RC4 and DES3 protocols are currently supported.

" If encryption_protocol is specified, a password must also be specified with the
encryptionKey parameter.

encryptionKey=resource/password – Establishes encryption of
client/server network communication from a Java thin client.

" If you specify encryption_protocol in the connection string, you must specify
this encryptionKey parameter.

resource – The name associated with the encryption password and
which the daemon on the remote server looks up.

If this resource entry is not specified, the daemon on the server machine
uses the name of the user account that is accessing this remote
machine.

password – The password is required in order to pass or access
encrypted information over the network.

" A password entry surrounded by curly braces (as in {password}) is assumed to
be in hexadecimal format. Thus {456ACF} is interpreted as 0x456ACF, and
{TDX} is not a legal password but TDX is.

 677

Segmented Data Sources
Example

jdbc:attconnect://dev.acme.com:2551:rc4;
encryptionKey=dev/tiger;

Segmented Data Sources
A segmented data source consists of a number of different data sources,
all of which have identical schemas. Each data source in the segmented
data source is of the same type (for example, all the data sources are
Oracle databases, or they are all SQL Server databases).

Only one segmented data source can appear in a query and can be
accessed only for retrieval and not for update.

You can perform joins between a segmented data source and a standard
(non-segmented) data source. The join is performed between the result
of the union and the other data sources. Aggregate functions are
performed on the result of the union.

" Segmented data sources do not work with tables containing BLOB fields or
array fields of any type (including chapters).

To work with a segmented data source, define a new data source:

1. Specify a name for the segmented data source in the Name field.
2. Select Segmented as the data source Type.
3. Specify the segmented data source connection string as follows:

OS/390 and z/OS Platforms

Access to the machine is through the security system installed on that
machine (such as RACF), using this information.

 678

Segmented Data Sources
Move the data sources that are part of the segmented data source
from the left column to the right column.

" For a data source included in a segmented data source, it must have been
previously defined to Attunity Connect as an independent data source.

This example defines a segmented data source, called SEGDS, with two
segments, DS1 and DS2. Both DS1 and DS2 are defined as normal data
sources.

" You cannot perform inserts into the segmented data source (SEGDS in this
example). Perform the insert into the physical data source (DS1 or DS2 in this
example).

Windows Platform
To access segmented databases via Attunity Studio, drill-down to the
environment settings, under Bindings List and set
noThreadedReadAhead, under the queryProcessor group to true.

 679

Server Machine
The following example queries demonstrate how the SEGDS segmented
data source is accessed:

! SELECT * FROM SEGDS:tb

This is equivalent to a union of DS1:tb and DS2:tb.

! SELECT * FROM SEGDS:tb1, SEGDS:tb2

This is equivalent to performing a join between tb1 and tb2 on each
segment and then performing a union on the results of all the
segments.

! SELECT * FROM SEGDS:tb1, SEGDS:tb2, DEMO:tb3

This is equivalent to a union of:
SELECT * FROM DS1:tb1, DS1:tb2, DEMO:tb3

and:
SELECT * FROM DS2:tb1, DS2:tb2, DEMO:tb3

Environment
Parameters for
Segmented Data
Sources

Query execution when one of the segments fails is controlled by the
<queryProcessor IgnoreSegmentBindFailure> parameter in the
Attunity Connect binding environment. Setting this parameter to true
(the default) causes Attunity Connect to log a message and continue the
execution of the entire query when the execution of one of the segments
fails. When this parameter is set to FALSE, execution stops when any of
the segments fails.

You can optimize performance when working with segmented data
sources by setting the <queryProcessor maxSegmentedDbThreads>
parameter in the Attunity Connect binding environment (see page 322).
This parameter controls the number of segments that Attunity Connect
processes in parallel.

Server Machine
A machine that can supply data to other machines is called a server.
The Attunity Connect Query Processor and the inter-machine
communications components are generally present on every one of the
machines in an Attunity Connect network. The Attunity Connect
interface programs to the specific data sources (called drivers) and
applications (called adapters) generally reside on the same machine as
the data sources and applications.

Every server machine has a daemon process whose main task is to
allocate Attunity Connect servers to Attunity Connect clients.

 680

Server Mode
Server Mode

The server mode dictates how the daemon starts up new server
processes. The daemon supports the following server modes:

Single Client – Each client receives a dedicated server process. The
account in which a server process runs is determined either by the
client login information or by the specific server workspace.

This mode enables servers to run under a particular user account and
isolates clients from each other (since each receives its own process).
However, this server mode incurs a high overhead due to process
startup times and may use a lot of server resources (since it requires as
many server processes as concurrent clients).

Multi-Client – Clients share a server process and are processed serially.

This mode has low overhead since the server processes are already
initialized. However, because clients share the same process, they may
impact one another, especially if they issue lengthy queries.

" When accessing a database that supports two-phase commit through XA, do
not specify this mode.

" When accessing Adabas or DBMS, do not specify this mode.

The number of clients that share a process is determined by the “Clients
per server limit” field (the maximum number of concurrent clients a
server process for the current workspace accepts) in the Attunity Studio
Configuration perspective.

" This value is set in the daemon configuration settings via the
maxNClientsPerServer parameter using the text editor.

 681

Server Mode
In Attunity Studio, this parameter is set in the WS Info tab of the daemon
workspace editor.

Reusable – This is an extension of the single client mode. Once the client
processing finishes, the server process does not die and can be used by
another client, reducing startup times and application startup
overhead.

This mode does not have the high overhead of single client mode since
the servers are already initialized. However, this server mode may use
a lot of server resources (since it requires as many server processes as
concurrent clients).

" When accessing Informix through XA, do not specify this mode. In this case,
define a new workspace for Informix, so that all the other data sources you are
accessing use reusable servers.

The other modes can be set so that the server processes are reusable.
The number of times a process can be reused is controlled by the “Reuse
Limit” field value in the Configuration Manager (the maximum number
of times a particular server process can be reused or how many clients
it can serve before it is retired). Reuse of servers enhances performance
since it eliminates the need to repeat initializations. However, reuse
runs a risk higher memory utilization over time. The default for the
“Reuse Limit” field value is 0, indicating that no reuse limit is enforced.

Windows Platforms

Multi-Threaded – Clients are allocated a dedicated thread in a shared
server process.

This mode has low overhead since the servers are already initialized.
However, because clients share the same process, they may impact one
another, especially if the underlying database is not multi-threaded.

" Multiple multi-client and multi-threaded servers may be started simultaneously
for optimal performance.

When accessing a database that supports two-phase commit through XA, do
not specify this mode.

The number of multi-threaded clients that share a process is
determined by the “Clients per server limit” field (the maximum
number of concurrent clients a server process for the current workspace
accepts) in the Attunity Studio Configuration perspective.

" This value is set in the daemon configuration settings via the
maxNClientsPerServer parameter.

 682

Single Client
Single Client
Each client receives a dedicated server process. The account in which a
server process runs is determined either by the client login information
or by the specific server workspace.

This mode enables servers to run under a particular user account and
isolates clients from each other (since each receives its own process).
However, this server mode incurs a high overhead due to process
startup times and may use a lot of server resources (since it requires as
many server processes as concurrent clients).

Snapshot of the Metadata
See "LOCAL_COPY Metadata (Metadata Caching)" on page 443.

SQL
Within an application, Attunity Connect accepts the following versions
of SQL to access data:

! SQL specific to the data source you want to access.

! Standard ANSI ’92 SQL.3

Additionally, you can incorporate the Attunity Connect SQL
enhancements into the SQL. These enhancements include joining data
from multiple different data sources using a single SQL query. Also, if
the data source is non-relational and does not natively support SQL, you
can use Attunity Connect SQL.

Whatever version of SQL you use, you can always use the
Attunity Connect SQL extensions to incorporate additional features.

" For information about customizing the way Attunity Connect processes SQL
based on the data source being accessed, see Using the Attunity Connect
Syntax File.

You can test SQL interactively to ensure the correct results, using
NAV_UTIL EXECUTE (see page 512).

Also see: "Writing Queries Using Attunity Connect SQL" on page 825, "Reserved Keywords" on
page 650.

3. Attunity Connect does not support select for update of statements.

 683

SQL Server (ODBC) and SQL Server Drivers
SQL Server (ODBC) and SQL Server Drivers
From Attunity Connect version 3.3, the following Microsoft SQL Server
drivers are provided:

! SQL Server (ODBC) in Attunity Studio and MSSQLODBC in the
binding configuration.

! SQL Server in Attunity Studio and MSSQL in the binding
configuration.

Attunity recommends using the SQL Server (ODBC) driver. The SQL
Server driver is supported for existing applications that use it.

The following sections provide information about the Attunity Connect
SQL Server drivers:

! Setting Up the Binding
! Mapping SQL Server Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

" The Attunity Connect SQL Server drivers require an SQL Server connection
per SQL statement. This can cause problems when you work with multiple data
sources referencing more than a single SQL Server database or when you
work with Microsoft’s InterDev application (since it issues an SQL_CONNECT
command every time it executes a query).

To increase the number of available connections, you can use SQL Server’s
Enterprise Manager.

Table names in SQL Server must be less than or equal to 64 characters to be
usable with Attunity Connect.

The security information required in order to access SQL Server is taken
from the machine where Attunity Connect and SQL Server are
installed. The drivers support:

! Integrated (trusted) security mode.
! Standard security mode.

 684

SQL Server (ODBC) and SQL Server Drivers
Setting Up the Binding

! To connect to SQL Server data:

The SQL Server (ODBC) or SQL Server are set in Attunity Studio, via the
Configuration perspective.

! Open the binding under the machine where the data resides.
! Right-click Datasource and select the New DataSource option.
! Specify a name for the data source in the Name field.
! Select SQL Server (ODBC) or SQL Server as the data source Type

field, according to the driver you are using.
! Enter the connect string as follows:

SQL Server name – The name of the server machine for the SQL
Server data.

Database name – The name of the database.
" If you specify only Database name, omitting Server name, the driver uses

the following subtree of the Windows NT/2000 registry:

HKEY_LOCAL_MACHINE\
SOFTWARE\
Microsoft\
MSSQLServer\
Client\
ConnectTo

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

ansiNull="true|false" – Sets the treatment of NULLs to be compliant
with the ANSI standard. The default is true.

dbName="database_name" – (Database name in the connect string) The
name of the database.

" If you specify only Database name, omitting Server name, the driver uses the
following subtree of the Windows NT/2000 registry:

HKEY_LOCAL_MACHINE\
SOFTWARE\
Microsoft\
MSSQLServer\
Client\
ConnectTo

 685

SQL Server (ODBC) and SQL Server Drivers
isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

NumericNullable – Specifies that a numeric field can receive null values.

server="server_name" – (SQL Server name in the connect string) The
name of the server machine for the SQL Server data.

timeout="n" – The timeout on any SQL Server API call, via the dbsettime
API.

Mapping SQL Server Data Types

The following table shows how Attunity Connect maps SQL Server data
types to OLE DB and ODBC data types.

SQL Server OLE DB ODBC

Binary(m<256) DBTYPE_BYTES SQL_BINARY

Bit DBTYPE_I2 SQL_TINYINT

Char (m<256) DBTYPE_STR SQL_VARCHAR

Char (m>255) DBTYPE_STR SQL_LONGVARCHARa

Datetime DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Decimal DBTYPE_NUMERIC SQL_NUMERIC

Float DBTYPE_R8 SQL_DOUBLE

Image DBTYPE_BYTES SQL_LONGVARBINARY

Integer DBTYPE_I4 SQL_INTEGER

Money DBTYPE_NUMERIC SQL_NUMERIC(19,4)

Ncharb DBTYPE_STR SQL_VARCHAR

 686

SQL Server (ODBC) and SQL Server Drivers
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to SQL Server data types:

Ntextb DBTYPE_STR SQL_LONGVARCHARa

Numeric DBTYPE_NUMERIC SQL_NUMERIC

Nvarcharb DBTYPE_STR SQL_VARCHAR

Real DBTYPE_R4 SQL_REAL

Small Datetime DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Small Money DBTYPE_NUMERIC SQL_NUMERIC(10,4)

Smallint DBTYPE_I2 SQL_SMALLINT

Text DBTYPE_STR SQL_LONGVARCHARa

Timestamp DBTYPE_BYTES SQL_BINARY

Tinyint DBTYPE_I2 SQL_TINYINT

Varbinary(m<256) DBTYPE_BYTES SQL_BINARY

Varchar (m<256) DBTYPE_STR SQL_VARCHAR

Varchar (m>255)c DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647. If the <odbc longVarcharLenAsBlob> parameter is set to
true in the Attunity Connect environment settings, then precision of m.

b. Supported by the SQL Server (ODBC) – MSSQLODBC – driver.
c. The column definition is returned as varchar(255) and the data is truncated to 255

characters.

SQL Server OLE DB ODBC

CREATE TABLE SQL Server

Binary Binary

Char[(m)] Char[(m)]

Date Datetime

Double Float

 687

SQL Server (ODBC) and SQL Server Drivers
Stored Procedures

The Attunity Connect SQL Server driver supports SQL Server stored
procedures, including procedures that return multiple resultsets.

To retrieve output parameters, multiple resultsets, and the return code
from the stored procedure, use the "? = CALL" syntax, described on page
728.

In order to guarantee that SQL Server does not misinterpret dates,
regardless of regional setting, use yyyy-mm-dd hh:mm:ss date format.

" It is recommended to set the regional setting for the required date format. For
example, an American regional setting expects dates with a format of
mm/dd/yyyy, while a European setting expects dates with a dd/mm/yyyy
format.

Float Real

Image Image

Image(m) Binary(m)

Integer Integer

Numeric float

Numeric(p[,s]) Numeric(p,s)

Smallint Smallint

Text Text

Time Datetime

Timestamp Datetime

Tinyint Tinyint

Varchar(m) Varchar(m)

CREATE TABLE SQL Server

 688

SQL Server (ODBC) and SQL Server Drivers
Transaction Support

The Attunity Connect SQL Server drivers support two-phase commit
and can fully participate in a distributed transaction when the
transaction environment parameter convertAllToDistributed is set to
true.

You can use SQL Server with its two-phase commit capability both
under MTS, and directly through an XA connection. In both cases,
Microsoft DTC must be running on the server.

If you are working under MTS, start an OLE transaction. The SQL
Server data source is automatically included in the distributed
transaction.

If the connection to the data is through an XA connection, the
connection is made automatically. The daemon server mode must be
configured to Single-client mode (see "Server Mode" on page 680).

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

Isolation Levels and Locking

The Attunity Connect SQL Server drivers support the following
isolation levels:

! Uncommitted read
! Committed read
! Serializable

The repeatable read isolation level is treated by the Attunity Connect
SQL Server drivers as Serializable.

" The isolation levels supported can be overwritten in the binding settings.

The isolation level is used only within a transaction.

SQL Server supports page level locking. Updates in SQL Server are
blocking – if another connection tries to access a locked record, the
Attunity Connect server is locked.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

 689

SQL Syntax
SQL Syntax
This topic describes the following SQL statements, including
enhancements specific to Attunity Connect:

! The SELECT statement (page 691)
! The FROM clause (page 693)
! The WHERE clause (page 700)
! The GROUP BY clause and HAVING clause (page 701)
! The ORDER BY clause (page 703)
! Set Operators on SELECT Statements (page 705)

! The SELECT XML Statement (page 707)

! Batch update statements
! The INSERT statement (page 708)
! The UPDATE statement (page 709)
! The DELETE statement (page 714)

! Table and index create and drop statements
! The CREATE TABLE statement (page 718)
! The DROP TABLE statement (page 721)
! The CREATE INDEX statement (page 722)

! View statements
! The CREATE VIEW statement (page 723)
! The DROP VIEW statement (page 724)

! Stored procedure statements
! The CREATE PROCEDURE statement (page 725)
! The DROP PROCEDURE statement (page 727)
! The CALL statement (page 728)

! Synonym statements
! The CREATE SYNONYM statement (page 730)
! The DROP SYNONYM statement (page 731)

! The GRANT statement (page 732)
! Transaction statements

! The BEGIN statement (page 733)
! The ROLLBACK statement (page 733)
! The COMMIT statement (page 733)

! Constant formats (page 733)
! Expressions (page 734)
! Parameters (page 748)
! Functions

 690

SQL Syntax
! Aggregate functions (page 735)
! Conditional functions (page 738)
! Data type conversion functions (page 744)
! Date and time functions (page 748)
! Numeric functions and arithmetic operators (page 744)
! String functions (page 746)

! Search conditions and comparison operators (page 748)
! Passthru query statements (bypassing the Attunity Connect Query

Processor, page 753)

 691

SQL Syntax
The SELECT Statement

The SELECT statement retrieves a rowset from one or more data
sources.

For details about <from>, see page 693.

For details about <hint>, see page 695.
For details about <cond>, see page 748.

DISTINCT

,

table .

AS alias

*

<expr>

<select>()

<select>{ }

WHERE <order_by><cond>

<select>:

SELECT

<group_by>

OPTIMIZE m ROWS

LIMIT TO m ROWS

OPTIONS(FORCE ORDER) FOR UPDATE

ds

FROM

: owner . alias <cond>ON

table

view

<join>

()-> chapter <hint>

<from>:

,()

<passthru>

stored_prc

param

synonym

colDISTINCT

,

table .

AS alias

*

<expr>

<select>()

<select>{ }

WHERE <order_by><cond>

<select>:

SELECT

<group_by>

OPTIMIZE m ROWS

LIMIT TO m ROWS

OPTIONS(FORCE ORDER) FOR UPDATE

ds

FROM

: owner . alias <cond>ON

table

view

<join>

()-> chapter <hint>

<from>:

,()

<passthru>

stored_prc

param

synonym

ds

FROM

: owner . alias <cond>ON

table

view

<join>

()-> chapter <hint>

<from>:

,()

<passthru>

stored_prc

param

synonym

col

 692

SQL Syntax
For details about <where>, see page 700.
For details about <group_by>, see page 701.
For details about <order_by>, see page 703.

Keywords and Options

DISTINCT – The query retrieves only unique rows. Null values are
considered equal for the purposes of this keyword: only one is selected
no matter how many the query encounters.

table – A specific table whose columns are retrieved.

* – All columns are retrieved in the order they appear in the tables
specified in the FROM clause (for example, T1.* specifies all columns in
table T1).

col – A specific column in the table is retrieved.

(<select>) – A nested SELECT statement used to flatten a hierarchical
rowset.

<expr> – Expressions are constants, functions, or any combination of
column names, constants, and functions connected by arithmetic
operators and listed in the order in which you want to see them.

{<select>} – A nested SELECT statement reflecting a parent-child
relationship. The result of the nested SELECT statement is represented
by a single column, which must be identified using an alias.

alias – A new name for this output column of the retrieved rowset. This
new name is used to represent any resulting rowsets and can be
referenced in any of the SELECT statement clauses (WHERE,
GROUP BY, etc.).

" An alias can be specified either as an identifier or as a constant. For example,
select n_name as a ... where the alias is an identifier or select
n_name as ’a’ ... where the alias is a constant.

LIMIT TO m ROWS – Only m rows of the result rowset are retrieved.

" The LIMIT TO syntax is useful in test and prototype environments.

OPTIONS(FORCE ORDER) – The query optimizer orders the tables in the
same order as they appear in the FROM clause.

FOR UPDATE – Records are locked as they are retrieved (pessimistic
locking mode). This option can be applied only to the main SELECT
statement.

OPTIMIZE m ROWS – The optimization strategy is selected to ensure that
the first m rows are returned as quickly as possible. Optimization is set

 693

SQL Syntax
to First Row optimization and overrides any value specified for the
<optimizer goal> parameter in the Attunity Connect environment. This
option can be applied only to the main SELECT statement.

Example

SELECT title, type, price
FROM titles
 WHERE price > 9.99
 ORDER BY title
 OPTIMIZE 5 ROWS

The FROM Clause The FROM clause specifies which sources (such as tables, rowsets and
stored procedures) are used in the SELECT statement.

For details of <hint>, see page 695.
For details of <join>, see page 697.
For details of <cond>, see page 748.
For details of <passthru>, see page 753.

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

ds

FROM

: owner . alias <cond>ON

table

view

<join>

()-> chapter <hint>

<from>:

,()

<passthru>

stored_prc

param

synonym

ds

FROM

: owner . alias <cond>ON

table

view

<join>

()-> chapter <hint>

<from>:

,()

<passthru>

stored_prc

param

synonym

 694

SQL Syntax
Example

SELECT * FROM DS1:Table1, DS2:Table2
 WHERE...

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

" You cannot perform schema or catalog functions for a specific owner.

Example

The following SQL statement retrieves information about
employees from the EMPLOYEE table, on the Ora1 database. The
table owner name is WHITE:

SELECT * FROM Ora1:white.employee

If you need to define different owners for the tables, define a data source
for each owner and access the tables of the data source in the same way
that you access multiple data sources in a single query.

table – The name of the table or view that includes the columns to
retrieve. The order in which the tables or views appear is not significant
(the logical query execution order may be changed by the Attunity
Connect query optimizer) except when <join> includes a left outer join.

" The maximum length for a table name is 64.

Example

SELECT * FROM Table1, Table2
 WHERE Table1.col1 = Table2.col2

table->chapter – The identifier for data that is stored in a data source
such that it can be represented hierarchically (such as information
stored in arrays in RMS). For details and examples see "Hierarchical
Queries" on page 390.

view – The name of an Attunity Connect view on one or more data
sources. For details, see "The CREATE VIEW Statement" on page 723.

synonym – The name of an Attunity Connect synonym (alias) for a table,
view or stored procedure. For details, see "The CREATE SYNONYM
Statement" on page 730.

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (").

 695

SQL Syntax
stored_prc – The name of a data source or Attunity Connect procedure.
For details, see "The CREATE PROCEDURE Statement" on page 725.

" The maximum length for a stored query name is 64.

Example

select * from T1,stored_proc1 Q1
 where Q1.col1=T1.col2 and Q1.col3<T1.col4

where stored_proc1 is a stored query that contains the following
query:

select * from T2,T3
 where T2.col5=T3.col6 and T2.col7>T3.col8

<passthru> – See "Passthru Query Statements (bypassing Attunity
Connect Query Processing)" on page 753 (specifically, <select
passthru>).

param – Specifies values for the stored_prc or <passthru> parameters.
The number of values supplied must match exactly the number of
parameters defined in the stored procedure or passthru query. If there
are no parameters, no values need to be supplied; however, the
parentheses () following the name are still required. For full details, see
"The CREATE PROCEDURE Statement" on page 725 and "Passthru
Query Statements (bypassing Attunity Connect Query Processing)" on
page 753.

alias – An alias used either for clarity or to distinguish the different
roles played in a self-join or a subquery.

" For stored procedures, views and passthru queries the alias is mandatory if the
rowset name is to be used as a column qualifier elsewhere in the query.

Example

SELECT pub_name, title_id
FROM publishers pu, titles t
 WHERE t.pub_id = pu.pub_id

" Once an alias is specified, the columns can be referenced only using the alias
(or if the name is not ambiguous without any identifier).

<hint> – The optimization strategy you want used instead of the
optimization strategy selected by the Attunity Connect query
optimizer. If you specify more than one strategy, the optimizer uses the
strategy from this list that is most efficient. If you specify strategies
that you don’t want used, the optimizer doesn’t use any of the strategies
from this list.

" If you specify optimization strategies that cannot be satisfied, the query
execution fails. The query optimizer creates a number of possible optimization

 696

SQL Syntax
strategies. Only after these strategies have been generated is the best strategy
selected from the list of available strategies, based either on any hints specified
or on what the optimizer evaluates as the best strategy.

Only specify a hint in the SQL if you have checked the optimization
strategy used via the Attunity Connect Query Analyzer. Attunity
recommends using hints only when advised by Attunity Support.

WITH – The designated optimization strategy should be used.

WITHOUT – The designated optimization strategy should not be
used.

SCAN – Indexes are ignored and the data is scanned according to its
physical order.

INDEX – The index specified by indname is used to seek for specific
values in the WHERE clause or, if WITHOUT is specified, the index
is ignored for the specific values.

INDEXSCAN – The index specified by indname is used to seek for all
values or, if WITHOUT is specified, the index is ignored.

indname – The name or an ordinal of an index

n – The number of segments in the index that should be used.
Specifying a value of zero (0) is equivalent to specifying
INDEXSCAN.

FIRST – The leftmost table in the join strategy. This table will be the
first table in the optimized tree (on the left side).

LAST – The table will be the last table in the optimized tree.

Examples
! SELECT * FROM T1 <ACCESS(INDEX(emp_prim, 2))>

 WHERE key = 323 or key = 512
! SELECT * FROM T1 <ACCESS(WITHOUT SCAN), LAST>

ON <cond> – A condition determining the results of the <join>. The
condition is used as part of the FROM clause when a join keyword is
used (see below). For full details, see "Search Conditions and
Comparison Operators" on page 748.

<hint>:

LAST

WITHOUT

WITH
n,

INDEXSCAN

INDEX (indname

(indname)

)

,ACCESS ()SCAN

, FIRST

< >

 697

SQL Syntax
" The condition can be included in the WHERE clause, instead of in the FROM
clause, without impacting the results.

<join> – A join between successive tables. <join> has the following
format:

Joins can be used only with columns containing scalar values and with
aggregate-free expressions. The joins are processed left-to-right, each
pair of joined tables becoming in effect a single data source for the next
join connector.

, (comma) – A standard cross join.
" Search conditions cannot be used (see page 748).

ONE_TO_ONE – Each row in the left rowset has one and only one
matching row in the right rowset.

ONE_TO_MANY – Each row in the left rowset may have more than
one matching row in the right rowset, while each row in the right
rowset has exactly one matching row in the left rowset.

MANY_TO_ONE – Each row in the right rowset may have more than
one matching row in the left rowset, while each row in the left
rowset has exactly one matching row in the right rowset.

MANY_TO_MANY – A row in either rowset may have more than one
matching row in the other rowset.
" If one of the above modifiers is used in executing a join, it directly

influences whether a result row is updateable. The modifier is not
considered during query optimization.

INNER – Used for clarity. The following are equivalent:
T1 INNER JOIN T2 ON…
T1 JOIN T2 ON…

JOIN – A standard inner join.
" JOIN is evaluated before commas. Parentheses may be used to affect the

grouping of the data sources.

ONE_TO_ONE

ONE_TO_MANY

MANY_TO_MANY

MANY_TO_ONE

INNER
JOIN

,
<join>:

ROJ

LOJ

NESTEDJOIN

HASHJOIN

SEMIJOIN

< >

 698

SQL Syntax
In cases where an ON condition is replaced by a WHERE condition,
inner joins and cross joins are equivalent, as in the following
example:

FROM T1 JOIN T2 ON T1.c1 = T2.c2

FROM T1, T2 WHERE T1.c1 = T2.c2

The exception to this equivalence occurs when the join is under the
right branch of an LOJ. Such cases generate two different
optimization strategies, which produce different results. The
following queries, for example, generate different results:

Select * from nv_dept d LOJ (nv_emp e JOIN nv_sal s
ON e.emp_id = s.emp_id) ON d.dept_id=e.dept_id

Select * from nv_dept d LOJ (nv_emp e, nv_sal s) ON
d.dept_id=e.dept_id where e.emp_id = s.emp_id

Join Examples
! SELECT *

FROM Table1 JOIN Table2
 ON Table1.col1 = Table2.col2
 WHERE...

! SELECT *
FROM Table1, Table2 INNER JOIN Table3
 WHERE...
This is equivalent to:
SELECT *
FROM Table1, (Table2 INNER JOIN Table3)
 WHERE...

! Use parentheses to change the order in which the joins are
processed. For example:
SELECT *
FROM (Table1, Table2) INNER JOIN Table3
 WHERE...

! SELECT *
FROM Table1 ONE_TO_MANY JOIN Table2
 ON Table1.col1 = Table2.col2
 WHERE...

LOJ – The join includes all rows from the left rowset regardless of
whether there is a matching row in the right rowset. These joins are
called left outer joins. Every row from the left rowset is first
matched (using the ON <cond>) with rows from the right rowset, or
with null values if there are no matching rows in the right rowset;
the predicates from the WHERE clause are then applied to filter the
result.

 699

SQL Syntax
" Search conditions (ON <cond>) must be used (see page 748).

LOJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords LEFT JOIN or LEFT OUTER JOIN can be used instead of
LOJ to improve readability. For conformity with ODBC format you can use
{OJ source LEFT OUTER JOIN source ON <cond>}.

ROJ – The join includes all rows from the right rowset regardless of
whether there is a matching row in the left rowset. These joins are
called right outer joins. Every row from the right rowset is first
matched (using the ON <cond>) with rows from the left rowset, or
with null values if there are no matching rows in the left rowset; the
predicates from the WHERE clause are then applied to filter the
result.
" Search conditions (ON <cond>) must be used (see page 748).

ROJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords RIGHT JOIN or RIGHT OUTER JOIN can be used instead
of ROJ to improve readability. For conformity with ODBC format you can
use {OJ source RIGHT OUTER JOIN source ON <cond>}.

NESTEDJOIN – Forces the Attunity Connect query optimizer to use
a nested join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

SEMIJOIN – Forces the Attunity Connect query optimizer to use a
semi-join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

HASHJOIN – Forces the Attunity Connect query optimizer to use a
hash join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

For join examples, see page 697.

LOJ Examples

SELECT * FROM Table1, Table2 LOJ Table3
 ON Table2.col1 = Table3.col3
 WHERE...

The following join, for example, lists all authors whose last name
starts with R or greater, and retrieves all the publishers (if any) in
their city:

 700

SQL Syntax
SELECT au_fname, au_lname, pub_name
 FROM authors LOJ publishers
 ON authors.city = publishers.city
 WHERE au_lname >= ’R’

ROJ Examples

SELECT * FROM Table1, Table2 ROJ Table3
 ON Table2.col1 = Table3.col3
 WHERE...

The following join, for example, lists all authors whose last name
starts with R or greater, and retrieves all the publishers (if any) in
their city:

SELECT au_fname, au_lname, pub_name
 FROM publishers ROJ authors
 ON authors.city = publishers.city
 WHERE au_lname >= ’R’

" This example produces the same result as the example for a left outer join
above. Note that in this ROJ example the FROM clause lists publishers
before authors. In the LOJ example, authors are listed before publishers.

NESTEDJOIN Example

SELECT * FROM Table1, Table2 LOJ <NESTEDJOIN> Table3
 ON Table1.col1 = Table3.col3
 WHERE...

The WHERE Clause The WHERE clause sets the search conditions for filtering rows in a
SELECT, UPDATE, or DELETE statement.

Keywords and Options

<cond> – The search condition. The syntax for the search conditions is
described on page 748.

" If more than one search condition is used in a single statement, the conditions
need to be connected with AND or OR.

Parameters can be specified in the WHERE clause. For details, see
"Parameters" on page 748.

Identifiers in the WHERE clause in a subquery can come from the
higher level (a level which includes the nested query).

WHERE <cond>

<where>:

 701

SQL Syntax
Subqueries nest a SELECT statement inside a WHERE clause or another
subquery.

Example

SELECT DISTINCT pub_name
FROM publishers
WHERE 'business' IN
(SELECT type FROM titles
WHERE pub_id = publishers.pub_id)

This subquery returns a list of the types of books published by each
publisher. The main query selects the names of those publishers
who publish at least one “Business” title.

Examples
! WHERE advance * 2 > total_sales * price
! WHERE phone NOT '415%' (finds all rows in which the phone

number does not begin with 415)
! WHERE advance < 5000 OR advance IS NULL
! WHERE (type = 'business' OR type = 'psychology')

AND advance > 5500
! WHERE total_sales BETWEEN 4095 AND 12000
! WHERE state IN ('CA', 'IN', 'MD')
! WHERE total_sales > ? (a parameter is used)
! WHERE au.last_name LIKE 'R%' AND EXISTS (SELECT *

FROM pubs WHERE au.city = pubs.city)

The GROUP BY and
HAVING Clauses

The GROUP BY and HAVING clauses are used in SELECT statements to
divide a table into groups and optionally to filter the groups.

For details of <cond>, see page 748.

Keywords and Options

<expr> – Expressions are constants, functions, or any combination of
column names, constants, and functions connected by arithmetic
operators.

<group_by>:

HAVING <cond>

alias

select_num

GROUP BY <expr>

,

 702

SQL Syntax
" In certain circumstances (dictated by the data source) a GROUP BY clause
may return an error if it contains more than eight columns.

GROUP BY cannot reference a constant expression – it returns an error
prior to execution. For example, the following returns a syntax error:

SELECT * FROM employee
 GROUP BY 3*7

Column names and expressions that do not appear in the list of columns
after the SELECT keyword can be used in GROUP BY and HAVING
clauses. For example:

SELECT pub_id, SUM (advance), AVG(price)
 FROM titles
 GROUP BY city
 HAVING SUM(advance) > 15000 AND AVG(price) < 10

This query groups the results by the cities of the various publishers.

select_num – The ordinal number of the column to group the results by
from the list of columns after the SELECT keyword.

alias – An alias for an output column specified in the list of columns
retrieved by the query.

HAVING <cond> – Search conditions for the grouping. The search
conditions must be aggregate expressions (they cannot include
subqueries). For details see "Search Conditions and Comparison
Operators" on page 748.

Examples
! The following example calculates the average advance and the

sum of the sales for each type of book:
SELECT type, AVG(advance), SUM(total_sales)
 FROM titles
 GROUP BY type

! The following example groups the results by a combination of
type and pub_id:
SELECT type, pub_id, AVG(advance),
SUM(total_sales)
 FROM titles
 GROUP BY type, pub_id

! The following example displays the results for groups matching
the conditions in the HAVING clause:
SELECT pub_id, SUM (advance), AVG(price)
 FROM titles
 GROUP BY pub_id
 HAVING SUM(advance) > 15000

 703

SQL Syntax
 AND AVG(price) < 10
 AND pub_id > '0700'

The ORDER BY Clause The ORDER BY clause returns query results sorted by the specified
columns.

Keywords and Options

<expr> – Expressions are constants, functions, or any combination of
column names, constants, and functions connected by arithmetic
operators.

Example

SELECT emp_id, emp_name FROM employee
 ORDER BY emp_name

The query results are sorted by emp_name, in ascending order.

Column names and expressions that do not appear in the list of columns
after the SELECT keyword can be used in an ORDER BY clause. For
example:

SELECT title, type, price FROM titles
 WHERE price > 9.99
 ORDER BY author_id

This query orders the results by the authors of the books that are
retrieved.

select_num – The ordinal number of the column to order the results by
from the list of columns after the SELECT keyword.

Example

SELECT emp_id, emp_name FROM employee
 ORDER BY 2

The query results are sorted by the second column in the list of
columns (the emp_name column), in ascending order.

<order_by>:

ASC

DESC

,

ORDER BY <expr>

alias

select_num

 704

SQL Syntax
alias – An alias for an output column specified in the list of columns
retrieved by the query.

ASC – Sorts query results in ascending order. ASC is the default.

DESC – Sorts query results in descending order.

Additional Information

! ORDER BY can be used to display query results in a meaningful
order. Without an ORDER BY clause you cannot control the order in
which query results are returned.

! With ORDER BY, null values may come before or after all others.
Sorting is carried out inside Attunity Connect or inside a data
source containing some of the data, as determined by the query
optimizer. Since different data sources use different strategies
regarding the ordering of nulls, the null order is unpredictable.
However, for any one query, NULLS are always either sort first or
sort last.

! ORDER BY cannot be used in subqueries and queries with child
rowsets. ORDER BY can be used in the main (unnested) part of a
query and in queries that use nested SELECT statements to reflect
parent-child relationships.

Examples
! SELECT title, type, price FROM titles

 WHERE price > 9.99
 ORDER BY title

! SELECT title AS BookName, type AS Mytype
 FROM titles
 ORDER BY 2

! SELECT Dept, Max(Sal) FROM Sal
 GROUP BY Dept
 ORDER BY 2

! SELECT Firstname, Lastname FROM Authors
 ORDER BY (Lastname || Firstname)

! The following query orders rowsets by salary:
SELECT emp_name, (select salary FROM E -> salary)
 FROM employee E
 ORDER BY 2

! The following query returns an error since ORDER BY is used in
the nested query:
SELECT emp_name, (select salary FROM E -> salary
 ORDER BY 1)
 FROM employee E

 705

SQL Syntax
Set Operators on
SELECT Statements

Set operations combine the results of two SELECT statements into one
result.

The SELECT statement can be any SELECT statement supported by
Attunity Connect (such as a SELECT statement in a CREATE VIEW
statement, or in an hierarchical query, and so forth).

When a statement includes an INTERSECT operator with other set
operators and parentheses are not used to enforce an order of
operations, the INTERSECT operation is performed first. The other set
operators are performed as they appear in the query, from left to right.

Keywords and Options

<select> – A SELECT statement that is non-hierarchical.The SELECT
statement may be scrollable but cannot be updateable (and thus the
query can be run only in read-only mode).

" When the ORDER BY clause is included within a SELECT statement itself,
rather than applied to the result of the set operations, this clause may specify
either the name or ordinal number of one of the columns.

Each SELECT statement involved in the set operation must return the
same number of columns. The columns in the same position of the
returned queries must be of the same data type or coercible, although
they may be of different lengths. All the returned data of a particular
column will have the size of the longest item in the column (shorter
column values are padded, as necessary). For example, when handling
character data of different lengths, all returned results are the length
of the largest character data returned, with the other results padded to
this length.

The set operation statement takes the names and data types from the
first SELECT statement. If a column is NULL, the data type for this
column in the next table of the statement is used.

" BLOBs or chapters cannot be used in set operations.

<select>

UNION ALL

INTERSECT

MINUS

<order by>

UNION <select>

<limit to>

<select>

UNION ALL

INTERSECT

MINUS

<order by>

UNION <select>

<limit to>

 706

SQL Syntax
When you combine tables with different structures (as when some
tables have missing columns and different data types), you can use
dummy columns and convert functions, as in the following:

select n_name, n_regionkey from nation
union
select r_name, null from region order by 1

UNION – Returns the rows of the <select> statements, discarding any
duplicate rows.

UNION ALL – Returns all the rows returned by the <select> statements,
including duplicate rows.

INTERSECT – Returns rows common to both result sets returned by the
<select> statements, discarding duplicate rows.

MINUS – Returns rows that appear only in the first <select> statement,
discarding duplicate rows.

<order by> – Returns the combined query results of the set operation
sorted by the specified column. You can order the results only by the
ordinal number of a column of the rows returned by the statement.

<limit to> – Limits the number of rows returned in the retrieved rowset.

" The LIMIT TO syntax is useful in test and prototype environments.

" For the <order by> or <limit to> clauses to apply only to the final <select>
statement, rather than to the combined results of the union, you must explicitly
group the <order by> or <limit to> with the final <select>, as follows:

<select> union (<select> <order by>)

<select> union (<select> <limit to>)

 Examples

! select n_name from nation
union
select r_name from region

! (select c_name from customer
 union select s_name from supplier)
intersect
select n_name from nation

Note that the result of this query is different from the following:

select c_name from customer
union
select s_name from supplier

 707

SQL Syntax
intersect
select n_name from nation

In this case, the INTERSECT operator is applied before the UNION
operator.

The SELECT XML Statement

The SELECT XML statement retrieves a rowset from a specified table as
XML, where the XML reflects the true structure of the table, including
array and variant structures.

" To use a SELECT XML statement you must first set the exposeXmlField
property of the binding in the Misc section of the binding environment
properties. See "miscellaneous Category" on page 329.

Keywords and Options

XML – Indicates that the data returned is to be displayed in XML format.
" The keyword XML can be changed in the binding environment properties,

by specifying another name for the keyword "XML". This is done by setting
the xmlFieldName property. See "miscellaneous Category" on page 329.

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

table – The specific table whose columns are retrieved.

<cond> – Search conditions.

LIMIT TO m ROWS – Only m rows of the result rowset are retrieved.

Example

SELECT XML FROM navdemo:nation WHERE n_nationkey=3

XML

<select XML>:

SELECT tableFROM

:owner. LIMIT TO m ROWSWHERE <cond>ds :

XML

<select XML>:

SELECT tableFROM

:owner. LIMIT TO m ROWSWHERE <cond>ds :

HP (Compaq) NonStop Platforms

Fully qualified table names must be delimited by quotes (").

 708

SQL Syntax
The INSERT Statement

The INSERT statement adds to one base table one row of data or the
results of another query.

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table containing rows to be inserted.

" The maximum length for a table name is 64.

" If the table contains a field with data type BLOB or CLOB, you must define a
unique index for the table before you can insert data into the table. For details
of creating an index, see "The CREATE INDEX Statement" on page 722.

chapter – The identifier for data that is stored hierarchically in a data
source (for example, information stored in arrays in RMS). For details
see "Hierarchical Queries" on page 390.

column – The name of a column in the table. A column needs to be
present only if the expressions specified do not match in order or in

)(VALUES

ds : owner

INSERT INTO

. chapter->
,

)(column

<insert>:

table

<constant>

,
<select>

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

 709

SQL Syntax
count the columns of the table. The columns must be in the same order
and count as the values.

" Columns not specified are assigned Null values.

<select> – The data returned by a SELECT statement is copied to the
table. See details of the SELECT statement on page 691.

" Make sure that the data types of data retrieved by the SELECT statement
match the data types of the columns inserted in the table.

Example

INSERT INTO ORACLE:table1
 SELECT * FROM DISAM:table2

VALUE <constant> – See "Constant Formats" on page 733.

The UPDATE Statement

The UPDATE statement updates rows in one or more of base tables. No
result rowset object is returned to the user.

The base tables affected must each be updateable, or the operation fails.
A table is updateable only if for each row in the base table there is at
most one corresponding row in the retrieved rowset and according to
updateability rules described below. Note that within this limitation,
Attunity Connect supports updateable joins.

For details of <cond>, see page 748.

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

,

UPDATE

SET column = value

ds : owner .

<update>: <join>

<cond>ON

table

chapter-> <hint> <cond>ON

<cond>WHERE

,

UPDATE

SET column = value

ds : owner .

<update>: <join>

<cond>ON

table

chapter-> <hint> <cond>ON

<cond>WHERE

 710

SQL Syntax
" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table containing rows to be updated.

chapter – The identifier for data that is stored hierarchically in a data
source (for example, information stored in arrays in RMS).

<hint> – The optimization strategy you want used instead of the
optimization strategy selected by the Attunity Connect query
optimizer. If you specify more than one strategy, the optimizer uses the
strategy from this list that is most efficient. If you specify strategies
that you don’t want used, the optimizer doesn’t use any of the strategies
from this list.

" If you specify optimization strategies that cannot be satisfied, the query
execution fails. The query optimizer creates a number of possible optimization
strategies. Only after these strategies have been generated is the best strategy
selected from the list of available strategies, based either on any hints specified
or on what the optimizer evaluates as the best strategy.

Only specify a hint in the SQL if you have checked the optimization
strategy used via the Attunity Connect Query Analyzer. Attunity
recommends using hints only when advised by Attunity Support.

WITH – The designated optimization strategy should be used.

WITHOUT – The designated optimization strategy should not be
used.

SCAN – Indexes are ignored and the data is scanned according to its
physical order.

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

<hint>:

LAST

WITHOUT

WITH
n,

INDEXSCAN

INDEX (indname

(indname)

)

,ACCESS ()SCAN

, FIRST

< >

 711

SQL Syntax
INDEX – The index specified by indname is used to seek for specific
values in the WHERE clause or, if WITHOUT is specified, the index
is ignored for the specific values.

INDEXSCAN – The index specified by indname is used to seek for all
values or, if WITHOUT is specified, the index is ignored.

indname – The name or an ordinal of an index

n – The number of segments in the index that should be used.
Specifying a value of zero (0) is equivalent to specifying
INDEXSCAN.

FIRST – The leftmost table in the join strategy. This table will be the
first table in the optimized tree (on the left side).

LAST – The table will be the last table in the optimized tree.

ON <cond> – A condition determining the results of the <join> (see
below). For full details see "Search Conditions and Comparison
Operators" on page 748.

<join> – A join between successive tables. <join> has the following
format:

Joins can be used only with columns containing scalar values and with
aggregate-free expressions. The joins are processed left-to-right, each
pair of joined tables becoming in effect a single data source for the next
join connector.

, (comma) – A standard cross join.
" Search conditions cannot be used (see page 748).

ONE_TO_ONE – Each row in the left rowset has one and only one
matching row in the right rowset.

ONE_TO_MANY – Each row in the left rowset may have more than
one matching row in the right rowset, while each row in the right
rowset has exactly one matching row in the left rowset.

MANY_TO_ONE – Each row in the right rowset may have more than
one matching row in the left rowset, while each row in the left
rowset has exactly one matching row in the right rowset.

ONE_TO_ONE

ONE_TO_MANY

MANY_TO_MANY

MANY_TO_ONE

INNER
JOIN

,
<join>:

ROJ

LOJ

NESTEDJOIN

HASHJOIN

SEMIJOIN

< >

 712

SQL Syntax
MANY_TO_MANY – A row in either rowset may have more than one
matching row in the other rowset.
" If one of the above modifiers is used in executing a join, it directly

influences whether a result row is updateable. The modifier is not
considered during query optimization.

INNER – Used for clarity. The following are equivalent:
T1 INNER JOIN T2 ON…
T1 JOIN T2 ON…

JOIN – A standard inner join.
" JOIN is evaluated before commas. Parentheses may be used to affect the

grouping of the data sources.

In cases where an ON condition is replaced by a WHERE condition,
inner joins and cross joins are equivalent, unless the join is under
the right branch of an LOJ. Such cases generate two different
optimization strategies, which produce different results.

LOJ – The join includes all rows from the left rowset regardless of
whether there is a matching row in the right rowset. These joins are
called left outer joins. Every row from the left rowset is first
matched (using the ON <cond>) with rows from the right rowset, or
with null values if there are no matching rows in the right rowset;
the predicates from the WHERE clause are then applied to filter the
result.
" Search conditions (ON <cond>) must be used (see page 748).

LOJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords LEFT JOIN or LEFT OUTER JOIN can be used instead of
LOJ to improve readability. For conformity with ODBC format you can use
{OJ source LEFT OUTER JOIN source ON <cond>}.

ROJ – The join includes all rows from the right rowset regardless of
whether there is a matching row in the left rowset. These joins are
called right outer joins. Every row from the right rowset is first
matched (using the ON <cond>) with rows from the left rowset, or
with null values if there are no matching rows in the left rowset; the
predicates from the WHERE clause are then applied to filter the
result.
" Search conditions (ON <cond>) must be used (see page 748).

ROJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords RIGHT JOIN or RIGHT OUTER JOIN can be used instead
of ROJ to improve readability. For conformity with ODBC format you can
use {OJ source RIGHT OUTER JOIN source ON <cond>}.

 713

SQL Syntax
NESTEDJOIN – Forces the Attunity Connect query optimizer to use
a nested join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

SEMIJOIN – Forces the Attunity Connect query optimizer to use a
semi-join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

HASHJOIN – Forces the Attunity Connect query optimizer to use a
hash join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

For join examples, see page 697.

" If the join includes a relational data source, it is recommended to have an index
defined, otherwise Attunity Connect generates a virtual unique index from all
the columns in the table.

SET column – The name of a column in the table. A column needs to be
present only if the expressions specified do not match in order or in
count the columns of the table. The columns must be in the same order
and count as the values.

" A SET clause that includes an expression col1=col2 is supported only if col1
and col2 are from the same updateable table.

value – The value to be assigned to the specified column: it may be any
scalar-valued expression valid in a WHERE clause.

WHERE <cond> – See "The WHERE Clause" on page 700.

Updateability rules (described below) determine how to include more
than one table in an UPDATE statement.

Additional Information

Expressions for SET and WHERE clauses are evaluated prior to any
actual updates, and the order of the column assignments in the SET
clause is not significant.

Updateability Rules

It is not semantically meaningful to specify UPDATE Table1, Table2,...
since it assumes a Many-to-Many join between Table1 and Table2,
making neither table updateable. If more than one table is involved,
join modifiers such as One-to-One or Many-to-One must be used, and at
least one table must be at the opposite end of a -To-One join and thus
be updateable.

 714

SQL Syntax
The table on the right side of a left outer join or the left side of a right
outer join is not updateable.

A SET clause that includes an expression col1=col2 is supported only if
col1 and col2 are from the same updateable table.

The DELETE Statement

The DELETE statement deletes rows in one or more base tables. No
result rowset object is returned to the user.

The base tables affected must each be updateable, or the operation fails.

For details of <cond>, see page 748.

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table containing rows to be deleted.

chapter – The identifier for data that is stored hierarchically in a data
source (for example, information stored in arrays in RMS).

DELETE FROM

ds : owner .

<delete>: <join>

table

chapter->

<cond>ON

<hint>

<cond>WHERE

DELETE FROM

ds : owner .

<delete>: <join>

table

chapter->

<cond>ON

<hint>

<cond>WHERE

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

 715

SQL Syntax
<hint> – The optimization strategy you want used instead of the
optimization strategy selected by the Attunity Connect query
optimizer. If you specify more than one strategy, the optimizer uses the
strategy from this list that is most efficient. If you specify strategies
that you don’t want used, the optimizer doesn’t use any of the strategies
from this list.

" If you specify optimization strategies that cannot be satisfied, the query
execution fails. The query optimizer creates a number of possible optimization
strategies. Only after these strategies have been generated is the best strategy
selected from the list of available strategies, based either on any hints specified
or on what the optimizer evaluates as the best strategy.

Only specify a hint in the SQL if you have checked the optimization
strategy used via the Attunity Connect Query Analyzer. Attunity
recommends using hints only when advised by Attunity Support.

WITH – The designated optimization strategy should be used.

WITHOUT – The designated optimization strategy should not be
used.

SCAN – Indexes are ignored and the data is scanned according to its
physical order.

INDEX – The index specified by indname is used to seek for specific
values in the WHERE clause or, if WITHOUT is specified, the index
is ignored for the specific values.

INDEXSCAN – The index specified by indname is used to seek for all
values or, if WITHOUT is specified, the index is ignored.

indname – The name or an ordinal of an index

n – The number of segments in the index that should be used.
Specifying a value of zero (0) is equivalent to specifying
INDEXSCAN.

FIRST – The leftmost table in the join strategy. This table will be the
first table in the optimized tree (on the left side).

LAST – The table will be the last table in the optimized tree.

<hint>:

LAST

WITHOUT

WITH
n,

INDEXSCAN

INDEX (indname

(indname)

)

,ACCESS ()SCAN

, FIRST

< >

 716

SQL Syntax
ON <cond> – A condition determining the results of the <join> (see
below). For details, see "Search Conditions and Comparison Operators"
on page 748.

Examples
! SELECT * FROM T1 <ACCESS(INDEX(emp_prim, 2))>

 WHERE key = 323 or key = 512
! SELECT * FROM T1 <ACCESS(WITHOUT SCAN), LAST>

<join> – A join between successive tables. <join> has the following
format:

Joins can be used only with columns containing scalar values and with
aggregate-free expressions. The joins are processed left-to-right, each
pair of joined tables becoming in effect a single data source for the next
join connector.

, (comma) – A standard cross join.
" Search conditions cannot be used (see page 748).

ONE_TO_ONE – Each row in the left rowset has one and only one
matching row in the right rowset.

ONE_TO_MANY – Each row in the left rowset may have more than
one matching row in the right rowset, while each row in the right
rowset has exactly one matching row in the left rowset.

MANY_TO_ONE – Each row in the right rowset may have more than
one matching row in the left rowset, while each row in the left
rowset has exactly one matching row in the right rowset.

MANY_TO_MANY – A row in either rowset may have more than one
matching row in the other rowset.
" If one of the above modifiers is used in executing a join, it directly

influences whether a result row is updateable. The modifier is not
considered during query optimization.

INNER – Used for clarity. The following are equivalent:
T1 INNER JOIN T2 ON…
T1 JOIN T2 ON…

ONE_TO_ONE

ONE_TO_MANY

MANY_TO_MANY

MANY_TO_ONE

INNER
JOIN

,
<join>:

ROJ

LOJ

NESTEDJOIN

HASHJOIN

SEMIJOIN

< >

 717

SQL Syntax
JOIN – A standard inner join.
" JOIN is evaluated before commas. Parentheses may be used to affect the

grouping of the data sources.

In cases where an ON condition is replaced by a WHERE condition,
inner joins and cross joins are equivalent, unless the join is under
the right branch of an LOJ. Such cases generate two different
optimization strategies, which produce different results.

LOJ – The join includes all rows from the left rowset regardless of
whether there is a matching row in the right rowset. These joins are
called left outer joins. Every row from the left rowset is first
matched (using the ON <cond>) with rows from the right rowset, or
with null values if there are no matching rows in the right rowset;
the predicates from the WHERE clause are then applied to filter the
result.
" Search conditions (ON <cond>) must be used (see page 748).

LOJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords LEFT JOIN or LEFT OUTER JOIN can be used instead of
LOJ to improve readability. For conformity with ODBC format you can use
{OJ source LEFT OUTER JOIN source ON <cond>}.

ROJ – The join includes all rows from the right rowset regardless of
whether there is a matching row in the left rowset. These joins are
called right outer joins. Every row from the right rowset is first
matched (using the ON <cond>) with rows from the left rowset, or
with null values if there are no matching rows in the left rowset; the
predicates from the WHERE clause are then applied to filter the
result.
" Search conditions (ON <cond>) must be used (see page 748).

ROJ is evaluated before commas. Parentheses may be used to affect the
grouping of the data sources.

The keywords RIGHT JOIN or RIGHT OUTER JOIN can be used instead
of ROJ to improve readability. For conformity with ODBC format you can
use {OJ source RIGHT OUTER JOIN source ON <cond>}.

NESTEDJOIN – Forces the Attunity Connect query optimizer to use
a nested join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

SEMIJOIN – Forces the Attunity Connect query optimizer to use a
semi-join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

 718

SQL Syntax
HASHJOIN – Forces the Attunity Connect query optimizer to use a
hash join strategy when joining the tables. For general details
about forcing a specific optimization strategy, see <hint> on page
695.

For join examples, see page 697.

WHERE <cond> – See "The WHERE Clause" on page 700.

Updateability rules (described below) determine how to include more
than one table in a DELETE statement.

Additional Information

Expressions (particularly aggregates in subqueries) are evaluated prior
to any actual deletes.

Updateability Rules

It is not semantically meaningful to specify DELETE Table1, Table2,...
since it assumes a Many-to-Many join between Table1 and Table2,
making rows in either table undeletable. If more than one table is
involved, join modifiers such as One-to-One or Many-to-One must be
used, and at least one table must be at the opposite end of a -To-One join
and thus be deletable.

The table on the right side of a left outer join or the left side of a right
outer join is not updateable.

The CREATE TABLE Statement

The CREATE TABLE statement creates a new table in the specified data
source. CREATE TABLE statements are translated by the
Attunity Connect Query Processor into the native syntax required by
each specific data source.

" This statement is supported for all Attunity Connect data sources, except
ADABAS, DBMS and VSAM under CICS.

CREATE TABLE

ds : owner .

<create table>:

table

NOT NULL

NULL

,

column data_type()

 719

SQL Syntax
Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table to be created.

" The maximum allowed length for a table name is 64.

column – A column in the table.

data type – The data type for the column, which can be one of the
following:

! Char[(m)] (The default value of m is 1.)
! [Char] varchar(m)
! Tinyint
! Smallint
! Integer
! Numeric[(p[,s])] (The default value of p (precision) is 10 and s (scale)

is 0.)
! Float
! Double
! Date
! Time
! Timestamp (consisting of date and time components for use as a

timestamp)
! Text (a text large object)
! Image (a binary large object)

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

 720

SQL Syntax
These data types are mapped to the data source data types by the
relevant Attunity Connect driver:

NULL – NULL values are allowed for the column. (This is the default.)

NOT NULL – NULL values are not allowed for the column.

Example

The following SQL statement creates a table named EMPLOYEE, on the
Ora1 data source. The name of the table owner is WHITE.

Relational Non-relational Generic

DB2 – See page 269. Btrieve – See page 145. Flat File – See page 381.

Informix – See page 429. CISAM – See page 179. ODBC – See page 562.

Ingres – See page 435. DISAM – See page 307. OLEFS – See page 577.

Ingres II – See page 435. Enscribe – See page 316. OLESQL – See page 582.

Oracle – See page 587. IMS/DB – See page 414. Text delimited – See page 770.

Rdb – See page 640. RMS – See page 655.

Red Brick – See page 647. VSAM – See page 812.

SQL/MP – See page 758.

SQLServer – See page 686.

Sybase – See page 766.

 721

SQL Syntax
CREATE TABLE Ora1:white.employee (emp_num integer NOT
NULL, emp_name varchar(20)).

The DROP TABLE Statement

The DROP TABLE statement deletes an existing table at the specified
data source. DROP TABLE statements are translated by the
Attunity Connect Query Processor into the native syntax required by
each specific data source.

" This statement is supported for all Attunity Connect data sources, except
ADABAS and DBMS.

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

HP (Compaq) NonStop Platforms
An explicit CATALOG clause must be added to the CREATE statement,
otherwise it is assumed that the current subvolume is the catalog. For
example:

create table $d0117.nssdata.ET_md0(
PLANT_CODE SMALLINT not null,
DEPARTMENT_CODE SMALLINT not null,
FACILITY_NO INTEGER not null,
PRODUCTION_DATE DATE not null,
DELAYTIMESUMALLCMT FLOAT,
DELAYEVENTSSUMALLC INTEGER,
primary key(PLANT_CODE, DEPARTMENT_CODE, FACILITY_NO,
 PRODUCTION_DATE))
CATALOG $d0117.nssdata

ds .owner

DROP TABLE

:

table

<drop table>:

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

 722

SQL Syntax
" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table to be deleted. If this name is the name of
a synonym, the table the synonym refers to is dropped.

Example

The following SQL statement deletes the EMPLOYEE table from the
Ora1 data source. The table owner name is WHITE.

DROP TABLE Ora1:white.employee

The CREATE INDEX Statement

The CREATE INDEX statement creates a new index on the specified
table at the specified data source. This statement is valid for all data
sources that support indexes; CREATE INDEX statements are
translated by the Attunity Connect Query Processor into the native
syntax required by each specific data source.

Keywords and Options

UNIQUE – The entries in the index will be unique.

index_name – The name of the index to be created.

" The maximum length for an index name is 64.

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

<create index>:

CREATE

UNIQUE

INDEX

,

index_name

ON table column()

ds : owner .

 723

SQL Syntax
" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of the table the index is created for.

column – The columns (segments) constituting the index.

Example

CREATE INDEX empname ON employee(last_name, first_name)

The CREATE VIEW Statement

Attunity Connect enables you to define views on one or more data
sources. This statement creates a read-only view that can be used later
in the FROM clause of an SQL query, or wherever a subquery can be
specified. An Attunity Connect view is stored by default in the SYS data
source.

" A view cannot accept parameters (compare with Attunity Connect procedures).
You cannot create a view in a single session after dropping a view with the
same name.

For details about <select>, see page 691.

Keywords and Options

ds – The name of a data source of type Virtual. This enables you to
specify a location for the view other than the default internal Attunity
Connect SYS data source.

If you do not want to use the default SYS data source, define a data
source of type Virtual and specify the name of this data source as the ds

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

<create view>:

CREATE VIEW

AS

view_name <select>

ds :

 724

SQL Syntax
value when you create the view. (For information about defining a
Virtual data source, see page 799.)

" To create a view on a Virtual data source of a remote machine, you need to
pass the CREATE VIEW statement directly to the data source via a passthru
query, using the TEXT={{query}} syntax.

" You may want to store views in a location other than the SYS data source for
organizational reasons and because storing a large number of views in SYS
might degrade performance.

view_name – The name used to identify the view.

" The maximum length for a view name is 64.

<select> – A SELECT statement. For the syntax, see "The SELECT
Statement" on page 691.

" A view cannot include parameters.

AS – Used for clarity.

Example

create view1 as select * from T2,T3
where T2.col5=T3.col6 and T2.col7>T3.col8

This view is stored by default in the SYS data source. To use this view,
you specify the following:

select * from sys:view1
where view1.col1=T1.col2 and view1.col3<T1.col4

" You do not need to supply an alias if the rowset name is used as a column
qualifier elsewhere in the query (as in this example).

The DROP VIEW Statement

The DROP VIEW statement deletes the specified Attunity Connect view.

" You cannot create a view in a single session after dropping a view with the
same name, since the dropped view details remain cached for the duration of
the session.

<drop view>:

DROP VIEW view_name

ds :

 725

SQL Syntax
Keywords and Options

ds – The name of the data source other than the default internal
Attunity Connect SYS data source, where the view is located. The view
must be an Attunity Connect view, as opposed to a view defined in the
backend data source.

" To drop a view of an Attunity Connect data source on a remote machine, you
need to pass the DROP VIEW statement directly to the remote machine via a
passthru query using the TEXT={{query}} syntax.

view_name – The name of the view to be deleted.

The CREATE PROCEDURE Statement

Attunity Connect supports the following types of stored procedures:

! Attunity Connect stored queries, created by a
CREATE PROCEDURE statement.

! Stored procedures native to a particular relational data source.

Attunity Connect’s support for stored procedures native to
particular data sources is described per data source.

! Attunity Connect procedures. An Attunity Connect procedure is a
cdecl user-written DLL that returns a rowset. Attunity Connect
treats the returned rowset in the same way that it treats data from
any data source. (For details about Attunity Connect procedures,
see "Procedure Driver (Application Connector)" on page 600.)

You can execute any of these stored procedures via a CALL statement
(page 728) or reference them within a SELECT statement (page 691).

" When you access a stored procedure in a SELECT statement, you must
specify parentheses after the stored procedure, even when you do not supply
the parameters.

An Attunity Connect stored query is a SELECT statement that accesses
a data source or another stored procedure. You create an Attunity
Connect stored query with the CREATE PROCEDURE statement. This
statement creates a query that can be used later in the FROM clause of
an SQL query, or wherever a subquery can be specified.

 726

SQL Syntax
Stored procedures can have parameters (specified in the WHERE clause
of the SELECT statement), and can be used only for data retrieval
operations.

For details about <select>, see page 691.

Keywords and Options

ds – The name of a data source of type Virtual. This enables you to
specify a location for the stored procedure other than the default
internal Attunity Connect SYS data source.

If you do not want to use the default SYS data source, define a data
source of type Virtual and specify the name of this data source as the ds
value when you create the stored procedure. (For information about
defining a Virtual data source, see page 799.)

" To create an Attunity Connect stored query on a Virtual data source of a remote
machine, you need to pass the CREATE PROCEDURE statement directly to
the data source via a passthru query using the TEXT={{query}} syntax.

" You may want to store procedures in a location other than the SYS data source
for organizational reasons and because storing a large number of views in SYS
might degrade performance.

stored_proc – The name used to identify the stored procedure.

" The maximum length is 64.

<select> – A SELECT statement. For the syntax, see "The SELECT
Statement" on page 691.

AS – Used for clarity.

Examples

! P1 is a stored procedure defined as follows:

CREATE PROCEDURE P1 AS
 SELECT * FROM T1 WHERE COL1 > ?

This stored procedure is stored by default in the SYS data source.
To use this stored procedure, you include SYS as the ds specification

<create procedure>:

AS

stored_proc <select>

ds :

CREATE PROCEDURE

 727

SQL Syntax
in the query accessing the stored procedure. You can execute the
procedure with a value for the parameter as follows:

CALL sys:P1(20)

! Sp_salaries is a stored procedure defined as follows:

CREATE PROCEDURE sp_salaries
 select * from sal where emp_id =?

This stored procedure is stored by default in the SYS data source.
To use this stored procedure, you include SYS as the ds specification
in the query accessing the stored procedure. Thus the following
query joins the employee table with sp_salaries, retrieving
information on employee salaries:

select* from emp,sys:sp_salaries(emp.emp_id)

! stored_proc1 is a stored procedure defined as follows:

CREATE PROCEDURE stored_proc1 as
 select * from T2,T3
 where T2.col5=T3.col6 and T2.col7>T3.col8

The following query joins the T1 table with stored_proc1, as follows:

select * from T1,sys:stored_proc1() Q1
 where Q1.col1=T1.col2 and Q1.col3<T1.col4
" You must supply an alias if the rowset name is used as a column qualifier

elsewhere in the query (as in this example).

The DROP PROCEDURE Statement

The DROP PROCEDURE statement deletes the specified
Attunity Connect stored procedure.

Keywords and Options

ds – The name of the data source other than the default internal
Attunity Connect SYS data source, where the stored query is located.
The stored query must be an Attunity Connect procedure, as opposed to
a procedure defined in the backend data source.

" To drop an Attunity Connect stored query of an Attunity Connect data source
on a remote machine, you need to pass the DROP PROCEDURE statement

<drop procedure>:

ds :

DROP PROCEDURE stored_proc

 728

SQL Syntax
directly to the data source via a passthru query using the TEXT={{query}}
syntax.

stored_proc – The name of the stored procedure to be deleted.

The CALL Statement

The CALL statement executes a stored procedure and returns a rowset.
A stored procedure can be:

! An Attunity Connect procedure.
! A native data source stored procedure.
! Attunity Connect stored queries.

" The maximum number of nested CALL statements is 20.

Keywords and Options

? = – Retrieves the return value from the stored procedure.

" This syntax is not supported with DB2 stored procedures.

ds – The name of the data source where the stored procedure is created.
The ds entry is determined by the type of stored procedure you are
calling:

! For a stored procedure native to a specific data source, specify the
data source name as it is defined in the binding configuration.

! For an Attunity Connect procedure, specify the data source name
defined for the Attunity Connect procedure in the binding
configuration.

! For an Attunity Connect stored query, specify SYS, or, if the
procedure was created in another data source (which had to be of
type Virtual), specify the name of this data source.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default

<call>:

,stored_proc

ds : param
EXEC

? =

CALL

()owner .

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (“).

 729

SQL Syntax
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

stored_proc – The name of the stored procedure being called.

param – A list of parameters.

" The following rules apply also to passing parameters to Attunity Connect
procedures, which are described on page 600.

The number of values supplied must match exactly the number of
parameters defined in the stored procedure. If the stored procedure has
no parameters, no values need to be supplied; however, the parentheses
() following the name of the stored procedure are still required. If
several values are specified, they must be separated by commas.

You can specify values for parameters positionally or by name. When
specified positionally, you list the values in the order expected by the
data source or Attunity Connect procedure. This format is always valid.
Specifying the values by name is valid only if the stored procedure
defined named parameters; in this case, the values may be specified in
the form parameter_name = value, separated by commas. The order in
which the values are specified is not significant. These two formats for
specifying values cannot be mixed in any single invocation of a stored
procedure.

A value may be a literal or an expression. As an extension of standard
ANSI ‘92 SQL, Attunity Connect enables users to specify as values
expressions involving columns of tables that appeared previously in the
FROM list. For example, the following is valid where V is a
parameterized stored procedure and col1 is a column of table A:

SELECT * FROM A, V(A.col1)

This creates an implicit join between A and V: for each row of A, the
current value of col1 is used to compute a new row based on the stored
procedure V. For this join to be valid, A must appear before V in the
FROM list.

Example

You can execute the procedure P1 with a single parameter, as follows:

CALL P1(20)

 730

SQL Syntax
The CREATE SYNONYM Statement

The CREATE SYNONYM statement creates a synonym (alias) for a table,
view or stored procedure. You can use the synonym name instead of the
name of the table (stored procedure, etc.) that it is replacing.

" You cannot create a synonym in a single session after dropping a synonym
with the same name.

A synonym can be used to implement an Attunity Connect virtual data
source. A virtual data source presents a view to the user such that only
selected tables from one or more data sources are available, as if from a
single data source. You populate a virtual data source by defining
synonyms for the tables, views, and stored procedures you want the
virtual data source to make available. For details about Attunity
Connect virtual data sources, see "Virtual Data Source" on page 799.

Keywords and Options

ds – The data source name as specified in the binding configuration.
Specify for this ds entry the name of the virtual data source (if it is not
the default).

" You can specify the default data source as part of the connect string.

synonym_name – The name of the synonym to be created. The name
must not be the name of an existing table or synonym.

<create synonym>:

CREATE SYNONYM synonym_name FOR

ds :

table

ds : owner .

view

stored_proc()

synonym

 731

SQL Syntax
ds – The data source name as specified in the binding configuration.
This ds entry is the data source where the table referenced by the
virtual data source resides.

owner – A table owner.

" You can assign a default owner with the owner property in the binding
configuration. Using Attunity Studio, you specify this property in the Default
table owner field in the Advanced tab, which is displayed by right-clicking the
specific data source, selecting Edit data source and choosing the Advanced
tab.

table – The name of a table for which the synonym is created. The name
cannot be the name of an existing synonym. The synonym can be used
as if it is the table.

" If the table does not exist, the synonym will automatically refer to the table
when it is created.

view – The name of the existing Attunity Connect view for which the
synonym is created.

stored_proc – The name of the existing stored procedure for which the
synonym is created. You can only specify this option if creating a virtual
data source entry.

synonym – The name of an existing synonym, which this new synonym
references. You can only specify this option if creating a virtual data
source entry.

Example

! create synonym vdb1:emp for sybase:employees

This stores with the virtual data source vdb1 the emp synonym
referencing the Sybase employees table.

The DROP SYNONYM Statement

The DROP SYNONYM statement deletes a synonym from
Attunity Connect (the table the synonym refers to is not dropped).

" You cannot create a synonym in a single session after dropping a synonym
with the same name.

<drop synonym>:

DROP SYNONYM synonym_name

ds :

 732

SQL Syntax
Keywords and Options

ds – The name of the data source other than the default internal
Attunity Connect SYS data source, where the synonym is located. The
synonym must be an Attunity Connect synonym, as opposed to a
synonym defined in the backend data source.

synonym_name – The name of the synonym to be deleted.

The GRANT Statement

The GRANT statement grants to the specified user all permissions on a
table.

" The data source being accessed must support the GRANT statement.

Keywords and Options

user –The user who subsequently has all permissions on the specified
table.

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

table – The name of the table for which permissions are granted.

GRANT ALL TO user tableON

ds :

<grant>:

HP (Compaq) NonStop Platforms
Fully qualified table names must be delimited by quotes (").

 733

SQL Syntax
Transaction Statements

The BEGIN Statement The BEGIN statement starts a transaction on all data sources, which
continues until a ROLLBACK or COMMIT statement is executed.

" For an XML data source, the BEGIN statement causes the table data to be
stored in memory.

The COMMIT
Statement

The COMMIT statement commits a transaction.

" For an XML data source, the COMMIT statement releases the table data from
the memory.

The ROLLBACK
Statement

The ROLLBACK statement aborts a transaction.

" For an XML data source, the ROLLBACK statement releases the table data
from the memory.

Constant Formats

Attunity Connect SQL supports the following constant formats:

BEGIN

<begin>:

TRANSACTION

COMMIT

<commit>:

ROLLBACK

<rollback>:

Constant Format Example

nnnnnn (long constant) 124234

123.34 (double constant)
12E-3

123.34
12E-3

‘abcde’ (string constant) ‘The weather is sunny’

NULL (NULL constant)

 734

SQL Syntax
Expressions <expr>

An expression is a combination of one or more constants, literals,
column names, parameters, subqueries and functions, connected by
operators, that returns a single value. The components of an expression
may mix data types, within the constraints of the supported coercions.

You can use the following arithmetic operators in expressions in
Attunity Connect SQL:

These arithmetic operators can be used on all Attunity Connect data
types where the value contains only numeric values.

Operator Precedence

Operators have the following precedence levels, where 1 is the highest
level and 5 is the lowest:

1. unary (single argument) -, NOT

2. * / =
3. binary (two arguments) + -
4. AND
5. OR

When all operators in an expression are of the same level, the order of
execution is left to right. You can change the order of operation with
parentheses – the most deeply nested expression is then handled first.

Hexadecimal 0x1AB5

Constant Format Example

Symbol Meaning

+ Addition or string concatenation

- Subtraction

* Multiplication

/ Division

 735

SQL Syntax
Single Quotation Marks in String Expressions

To include single quotation marks in string expressions, you need to
place an additional single quotation mark before the quotation mark
you want to include. For example:

WHERE col_3 = ’He said "Let’’s Go"’

Functions

Functions typically are used in expressions. Functions take one or more
arguments and return a single value.

All Attunity Connect functions can be used with the ODBC format:
{fn function(value)}.

Aggregate Functions The aggregate functions generate summary values that appear as new
columns in the query results. Aggregate functions can be used in the
select list of a query or subquery or in a HAVING clause. Aggregate
functions often appear in a statement that includes a GROUP BY clause.

The aggregate functions, their individual syntax, and the results they
produce are described in the following table. The expression is
computed once for every qualifying input row.

Aggregate Function Result

AVG([ALL|DISTINCT] expr) Returns the average (over the input rows) of the values in
expr.
ALL – Applies the function to all values (the default).
DISTINCT – Eliminates duplicate values before applying
AVG.

COUNT([ALL|DISTINCT] expr) Returns the number of non-null values in expr.
ALL – Applies the function to all values (the default).
DISTINCT – Returns the number of unique non-null values.
COUNT can be used with all data types except text and
image. Null values are ignored.
COUNT(column_name) returns a value of 0 on empty tables,
on columns that contain only null values, and on groups
that contain only null values.

COUNT(*) Returns the number of qualifying input rows in this group.
All rows are counted, regardless of any null values.
The number of rows returned must be less than
2,147,483,647 or the wrong value is returned.

 736

SQL Syntax
Notes

! Aggregate functions can be used in:
! The list of values to be retrieved as specified after the SELECT

keyword.
! A HAVING clause of a SELECT statement.

! When a list of values to be retrieved, as specified after the SELECT
keyword, includes an aggregate, all the columns must either have
aggregate functions applied to them or be in the GROUP BY list.

! Aggregate functions can be applied to all the rows in a table, in
which case they produce a single value, a scalar aggregate.
Aggregate functions can also be applied to all the rows that have
the same value in a specified column or expression (using the
GROUP BY and, optionally, the HAVING clause), in which case they
produce a value for each group, a vector aggregate. The results of
the aggregate functions are shown as new columns.

" Aggregate functions cannot be used in WHERE clauses.

Examples

! The following example calculates the average advance and the sum
of the total sales for all history books. Both functions produce a
single summary value for all of the retrieved rows. The aggregates

MAX(expr) Returns the highest value (among the input rows) of the
values in expr. With character columns, MAX finds the
highest value in the sort sequence. Null values are ignored.

MIN(expr) Returns the lowest value (among the input rows) of the
values in expr. With character columns, MIN finds the
lowest value in the sort sequence. Null values are ignored.

SUM([ALL|DISTINCT] expr) Returns the total (over the input rows) of the values in expr.
SUM can be used only on numeric (integer or floating point)
data types. Null values are ignored.
ALL – Applies the function to all values (the default).
DISTINCT – Eliminates duplicate values before applying
SUM.

Aggregate Function Result

 737

SQL Syntax
are computed over the entire titles table, and are not broken into
groups.

SELECT AVG(advance), SUM(total_sales)
FROM titles
WHERE type = ’history’

! Used with a GROUP BY clause, both aggregate functions produce
single values for each group, rather than for the entire table. The
following example produces summary values for each type of book:

SELECT type, AVG(advance), SUM(total_sales)
FROM titles
GROUP BY type

! The following example finds the number of different cities in which
authors live:

SELECT COUNT(distinct city)
FROM authors

! The following example lists the book types in the titles table but
eliminates the types that include one or no books:

SELECT type
FROM titles
GROUP BY type
HAVING count (*) > 1

! The following example groups the titles table by publishers and
includes only those groups of publishers who have paid more than
$25,000 in total advances and whose average book price is more
than $15:

SELECT pub_id, SUM(advance), AVG(price)
FROM titles
GROUP BY pub_id
HAVING SUM(advance) > 25000 AND AVG(price) > 15

 738

SQL Syntax
Conditional Functions Attunity Connect SQL supports the following conditional functions:

" Use the CONVERT function (page 744) to ensure that the data types match.
For example, if the expression involves multiplying an integer by a numeric, the
result can be a double, causing an error. In this type of situation, convert all
values to double before applying the CASE statement.

Example CASE with Search

SELECT emp_id, CASE emp_id
 WHEN 11 then ’eleven’
 WHEN 21 then ’twenty one’
 ELSE ’other’
 END
 FROM emp

Conditional Function Result

CASE expr
when search1 then result1
when seacrh2 then result2
…
When searchN then resultN
[else default]
END

Compares expr to each search value, one at a time. If expr is
equal to search, the function returns the corresponding result. If
no match is found, the function returns default, or NULL if the
ELSE statement is omitted.
The data types of search1…searchN must be comparable to the
data type of expr and are converted to this data type if
necessary.
The data types of result1…resultN must be the same (including
the same precision and scale for non-atomic data types except
for strings). For strings, every result is padded to have the same
length as the longest result. The data type returned by this
function is that of result.

CASE
when condition1 then
result1
when condition2 then
result2
…
when conditionN then
resultN
[else default]
END

Evaluates the conditions in the order in which they appear.
Returns the corresponding result for the first condition that
evaluates to TRUE.
The data types of result1…resultN must be the same (including
the same precision and scale for non-atomic data types except
for strings). For strings, every result is padded to have the same
length as the longest result. The data type returned by this
function is that of result.

IFNULL(expr1,expr2)
NVL(expr1,expr2)

Returns expr2, if expr1 evaluates to NULL; otherwise, returns
expr1.
expr2 is mapped to the data type of expr1 and the result data
type is the data type of expr1.

 739

SQL Syntax
Example CASE with Condition

SELECT emp_id, CASE
 WHEN emp_id>’10’
 then ’twelve’
 WHEN emp_id>’20’
 then ’twenty three'
 ELSE ’eight’
 END
FROM emp

Data Type Conversion
Functions

Attunity Connect SQL supports the following data type conversion
functions:

Conversion Function Result

CONVERT(expression, datatype) Returns the expression converted to the specified data
type. The valid data types are:
! Char[(m)] (The default value of m is 1.)
! [Char] varchar(m)
! Tinyint
! Smallint
! Integer
! Numeric[(p[,s])] (The default value of p (precision) is 10

and s (scale) is 0.)
! Float
! Double
! Date
! Time
! Timestamp

" expression cannot be a BLOB.

" The converted expression is delegated to the data source for
processing whenever possible. Note that data sources handle
strings differently and therefore the result of converting an
expression to a string can be different per data source.

The

NAV_CONVERT(expression,
datatype)

Returns the expression converted to the specified data
type and does not pass the query to the data source for
processing (see "Passthru SQL" on page 590). The valid
data types are the same as for the CONVERT function,
listed above.

 740

SQL Syntax
Date and Time
Functions

Attunity Connect date and time functions use string representations of
dates and time with the following forms:

Date Format

Any of the following forms are valid:

! ’dd-mm-yy[yy]’
! ’dd-mmm-yy[yy]’
! ’yyyy-mm-dd’
! ’yyyy-mmm-dd’

You can use a hyphen (-) or a slash (/) as a separator (for example,
’dd/mm/yy[yy]’).

If you are using characters (JAN, FEB, MAR, etc.) to denote the month,
use the format ’dd-mmm-yy[yy]’.

When using the format ’dd-mm-yy’ or ’dd-mmm-yy’, the year2000Policy
parameter in the environment settings determines the century (1900 or
2000). For details, refer to the YEAR2000_POLICY parameter on page
333.

Time Format

’hh:mm:ss[.f]’ – The placeholder f represents billionths of a second, and
can be up to nine characters long.

Timestamp Format

Attunity Connect timestamp functions use string representations of
timestamps, which combine the date and time formats described above.

Attunity Connect SQL supports the following date functions:

TO_GRAPHIC(string) Returns the string converted to a graphic string (a double
byte).

Conversion Function Result

Date Function Comment and Result

{d ‘date string’} Accepts string designation of the date, prefixed by d. For example:
 select * from ORD where datefield = {d ’01-01-03’}
Returns the present value of SQL_DATE.

 741

SQL Syntax
{t ‘time string’} Accepts string designation of the time, prefixed by t. This is
equivalent to the TO_TIME function.
Returns the present value of SQL_TIME.

{ts ‘timestamp string’} Accepts string designation of the date and time, prefixed by ts. This
is equivalent to the TO_DATE function.
Returns the present value of SQL_TIMESTAMP.

ADD_MONTHS(date, n) Accepts a date and integer (n) and returns the date plus n months.
If date is the last day of the month or if the resulting month has
fewer days than the day component of date, the result is the last
day of the resulting month. Otherwise, the result has the same day
component as the date.

CURRENT_DATE()
TODAY()

Returns the current date as SQL_DATE data type.

CURRENT_TIME() Returns the current time as SQL_TIME data type.

CURRENT_TIMESTAMP()
NOW()

Returns the current day and time as SQL_TIMESTAMP data type.

DATEADD(datepart,
number, date)

In addition to a number and date, accepts one of the following for
datepart:
! year
! quarter
! month
! day
! week
! hour
! minute
! second
Returns a date value equal to the date plus the number of
dateparts.

Date Function Comment and Result

 742

SQL Syntax
DATEDIFF(datepart,
date1, date2)

Accepts two dates and one of the following for datepart:
! year
! quarter
! month
! day
! week
! hour
! minute
! second
Returns the number of datepart boundaries crossed between the
two dates (date1 and date2).

DAY(expression) Accepts a date or timestamp expression and returns the day part
of the expression as SQL_INTEGER data type.

DAYNAME(date) Accepts a date or timestamp expression and returns the name of
the day for the input date.

DAYOFWEEK(date) Accepts a date or timestamp expression and returns the number of
the day in the week for the input date (Sunday is 1, Monday is 2,
...).

DAYOFYEAR(date) Accepts a date or timestamp expression and returns the number of
days since the beginning of the year.

LAST_DAY(date) Accepts a date and returns the date of the last day of the month
that contains date.

LEAPYEAR(date) Accepts a date or timestamp expression and returns 1 if the year is
a leap year and 0 if the year isn’t a leap year.

HOUR(expression) Accepts a time or timestamp expression and returns the hour part
of the expression as SQL_INTEGER data type.

MINUTE(expression) Accepts a time or timestamp expression and returns the minute
part of the expression as SQL_INTEGER data type.

MONTH(expression) Accepts a date or timestamp expression and returns the month
part of the expression as SQL_INTEGER data type.

MONTHNAME(date) Accepts a date or timestamp expression and returns the name of
the month.

Date Function Comment and Result

 743

SQL Syntax
MONTHS_BETWEEN
(date1, date2)

Accepts two dates and returns the number of months between
them. If date1 is later than date2, the result is positive; if date1 is
earlier than date2, the result is negative. If date1 and date2 are
either the same days of the month or both last days of months, the
result is an integer; otherwise, the fractional portion of the result
is calculated based on a 31-day month and the difference in the
time components of the dates is considered.

NEXT_DAY(date, char) Accepts a date and a weekday named by char that is later than the
date date. char must be a day of the week in the session’s date
language – either the full name or the abbreviation. The minimum
number of letters required is the number of letters in the
abbreviated version; any characters immediately following the
valid abbreviation are ignored. The return value has the same
hours, minutes, and seconds component as the argument date.

QUARTER(date) Accepts a date or timestamp expression and returns the quarter for
the input date (January to March is 1, April to June is 2, ...).

SECOND(expression) Accepts a time or timestamp expression and returns the seconds
part of the expression as SQL_INTEGER data type.

TO_DATE(date literal) Accepts a string designating the date and returns the date as
SQL_TIMESTAMP. For example:

select * from ORD
 where datefield = TO_DATE(’01-01-03’)

" Use the CONVERT function to return the data as an SQL_DATE.

Returns the present value of SQL_DATE.

TO_TIME(time literal) Accepts a string designating the time and returns the time as
SQL_TIME. For example:

select * from APPOINT
 where datefield = TO_DATE(’01-01-03’)
 and timefield = TO_TIME(’14:00:00’)

" Times are represented in terms of a 24-hour clock.

Returns the present value of SQL_TIME.

WEEK(date) Accepts expressions with either a DATE or TIMESTAMP data type
and returns the number of the week in the year for the input date.

Date Function Comment and Result

 744

SQL Syntax
Date Comparison Semantics

With date comparison operations, you can use the {d date_literal}
function to compensate for the lack of uniformity among date data types
and literals on different platforms. When comparing a column of a date
data type with a date literal value, prefix the date literal, as follows:

date_col comparison_operator {d date_literal}

where the comparison operator can be one of =, <, >, <=, >=, <>.

Comparisons are done to the level of seconds (milliseconds are ignored).

Numeric Functions and
Arithmetic Operators

Attunity Connect SQL supports the following numeric and
mathematical functions:

YEAR(expression) Accepts an expression and returns the year as SQL_INTEGER data
type.

Date Function Comment and Result

Numeric Function Result

ABS(expression) Returns the absolute value of expression.

CEIL(expression) Returns the smallest integer value bigger than or equal
to expression.

EXP(expression) Returns e to the power of expression.

FLOOR(expression) Returns the biggest integer value less than or equal to
expression.

LOG10(expression) Returns the base 10 logarithm of expression.

LN(expression) Returns the natural logarithm of expression.

MOD(a,b) Returns the remainder of a/b.
" This function converts the given expression to a long data

type and returns a long data type.

PI() Returns Pi to 14 decimal places.

POWER(expressionx, expressiony) Returns expressionx to the power of expressiony.

 745

SQL Syntax
All functions (except for the MOD function) convert the given expression
to a double data type and return a double data type.

ROUND(expressionx, expressiony) Returns expressionx rounded to expressiony places to the
right of the decimal point. If expressiony is negative,
returns expressionx rounded to the nearest ten to the
power of expressiony.
For example,
ROUND(153.193, 1) = 153.2
ROUND(153.193, -2) = 200

" The ROUND function is similar to the TRUNC function (see
below).

expressiony is converted to a long data type.

SIGN(expression) Returns -1 if expression < 0
Returns 0 if expression = 0
Returns 1 if expression > 0

SQRT(expression) Returns the square root of expression.

trig(expression)
where trig is one of the following:
! SIN, ASIN, SINH
! COS, ACOS, COSH
! TAN, ATAN, TANH

Returns the result of the trigonometric function.

TRUNC(expressionx, expressiony) Returns expressionx truncated to expressiony places to
the right of the decimal point. If expressiony is negative,
returns expressionx truncated to the nearest ten to the
power of expessiony. For example,
TRUNC(153.193, 1) = 153.1
TRUNC(153.193, -2) = 100

" The TRUNC function is similar to the ROUND function,
always rounding down. TRUNC(n, 0) is equivalent to
FLOOR(n).

Numeric Function Result

 746

SQL Syntax
String Functions Attunity Connect SQL supports the following string functions:

String Function Result

ASCII(expression) Returns the ASCII value of the first character. On EBCDIC
machines, returns the EBCDIC value.
" expression is converted to a string data type.

" This function applies to single byte character sets.

CHR(expression) Returns the character with the ASCII value of expression.
On EBCDIC machines, returns the EBCDIC value.
" expression is converted to a string data type.

(expr1 || expr2)
CONCAT(expr1,expr2)

Returns a string containing expr1 with expr2 appended to
it.

LCASE(string)
LOWER(string)

Returns string in lower case.

LENGTH(string) Returns the number of bytes (as SQL_INTEGER) of string.

LPAD(expr1,expr2) Returns a cstring with length equal to expr2, padded by
spaces to the left. expr2 must evaluate to a non-negative
long. If expr2 is less than the length of expr1, the first
characters are returned. If expr2 is a long constant, the
returned the cstring maximum size equals the expr1 size.
Otherwise, the size is 2000.
" expression is converted to a string data type.
For example:
LPAD(’abcd’, 5) = ’ abcd’

LPAD(’abcd’, 3) = ’abc’

" Compare with RPAD(), below.

LTRIM(expression) Returns a cstring without leading spaces. The length of
this cstring is equal to the length of expression.
" expression is converted to a string data type.

" Compare with RTRIM(), below.

MBLENGTH(graphic_string) Returns the number of characters (as SQL_INTEGER) of
graphic_string.

MBPOSITION(substring IN
graphic_string)

Searches for presence of substring in graphic_string. If
substring exists, a numeric value is returned indicating
the position (in characters) of substring in graphic_string.
If substring is not found, 0 is returned.

 747

SQL Syntax
" The maximum length allowed for a string literal is 350 characters.

MBSUBSTR(graphic_string, i [, j]) Returns a substring of graphic_string, i characters from
the beginning of graphic_string and ending j characters
later or at the end of the graphic_string, if no j is specified.

POSITION(substring IN string)a Searches a substring in a string. If substring exists, a
value indicating the position (in bytes) of substring in
string is returned. 0 indicates no substring is found.

RPAD(expr1,expr2) Returns a cstring of length equal to expr2, padded by
spaces to the right. expr2 must evaluate to a non-negative
long. If expr2 is less than expr1, the first characters are
returned. If expr2 is a long constant, the returned cstring
has a maximum size equal to the size of expr1. Otherwise,
the size is 2000.
" expression is converted to a string data type.
For example,
RPAD(’abcd’, 5) = ’abcd ’
RPAD(’abcd’, 3) = ’abc’

" Compare with LPAD(), above.

RTRIM(expression) Returns a cstring without trailing spaces. The length of
this cstring is equal to the length of expression.
" expression is converted to a string data type.

" Compare with LTRIM(), above.

SUBSTRING(string, i [, j])
SUBSTR(string, i [, j])

Returns a substring of string, offset i bytes from the
beginning of string and ending j bytes later or at the end
of the string, if j is not specified.

UCASE(string)
UPPER(string)

Returns string in upper case.

a. When using the POSITION function against Ingres or Ingres II, the POSITION function is translated into the
Ingres and Ingres II LOCATE function. This function returns the first position of the specified string. If the
string is not found the maximum size of the field plus one is returned. Thus, when the POSITION function is
used with the MAX function and the specified string is not found in all the rows, or when it is used with the
MIN function and the string specified is not found in any of the rows, the result is the size of the field plus one.

String Function Result

 748

SQL Syntax
Parameters

A parameter is used like a constant and may be used anywhere a literal
value is valid, except in a list of retrieved data after a SELECT keyword.
A value must be assigned to the parameter before the query is executed.

A parameter is specified either by a colon followed by the parameter
name (for example: WHERE col1 = :param1) or by a question mark
(WHERE col1 = ?)

A parameter prefixed by a colon can be assigned values by position or
name. A parameter prefixed by a question mark can only be assigned
values by position. Although an ODBC API does not support keywords
for passing parameter values to a statement prior to execution, you can
still use passthru queries calling Attunity Connect procedures
specifying parameter values by keywords. See "Passthru Query
Statements (bypassing Attunity Connect Query Processing)" on page
753 and "The DROP PROCEDURE Statement" on page 727.

" Colon and question marks cannot be used together in the same query.

Search Conditions and Comparison Operators

Search conditions are predicates (or a combination of predicates) used
in WHERE and HAVING clauses to select a subset of rows from a table.

 749

SQL Syntax
Search conditions often employ comparison operators, logical operators,
and other common SQL keywords and options.

Keywords and Options

NOT – Negates any logical expression or keywords such as LIKE, NULL,
BETWEEN, and IN.

<expr> – An expression is a combination of one or more constants,
literals, column names, parameters, subqueries and functions,
connected by operators, that returns a single value. The components of
an expression may mix data types, within the constraints of the
supported coercions.

NOT

<expr> <expr>

NOT

NOT

<expr> NULLIS

ESCAPE ‘ ’charNOT

<select>()

string LIKE <expr>

EXISTS <select>()

<expr>

<
>
=

<
>
=

<>

>=
<=

OR
AND

ANY
ALL

<select>()

()

<cond>:

, ANDBETWEEN <expr> <expr>

IN ()<expr>

 750

SQL Syntax
A comparison between a string and a numeric value is performed
according to the numeric order, and not the string order. To perform a
string comparison, make sure that both sides of the comparison are
string values or place single quotes (’) around the numeric value.

Example

Comparing 100 with 5 produces a different result when comparing
numbers or strings: 100 is greater than 5 but ’100’ is less than ’5’.

" To convert a numeric value to a string value, use the CONVERT function. See
page 744.

=, <, >, <=, >=, <> – Comparison operators.

" When comparing data of type SQL_CHAR or SQL_VARCHAR, the operator <
means “closer to the beginning of the alphabet” and the operator > means
“closer to the end of the alphabet.”
For the purposes of comparison, trailing blanks are ignored for data of type
SQL_CHAR but are significant for SQL_VARCHAR. When the data types are
mixed, the coercion is always to SQL_CHAR, and trailing blanks are ignored.
Literals are also considered to be of type SQL_VARCHAR. For example,
SQL_VARCHAR with a value ’Dirk’ is not the same as a value ’Dirk ’.

" When comparing dates, < means “earlier” and > means “later”.

Single quotes must be placed around character and date data used with
a comparison operator. For example:

= ’Bennett’
> ’94609’

AND – Joins two conditions and returns results when both of the
conditions are true.

OR – Joins two conditions and returns results when either condition is
true.

" When both AND and OR are used in a statement, OR is evaluated after AND.
Use parentheses to change the order of execution.

NULL – Use to search for null values (or for all values except null
values). For example:

WHERE advance < 5000 OR advance IS NULL

An expression with an arithmetic operator evaluates to NULL if any of
the operands are null. Null values in tables or views being joined never
match each other.

BETWEEN – Denotes the beginning of an inclusive range of values. The
keyword AND denotes the end of a range of values. For example:

WHERE val BETWEEN x AND y

 751

SQL Syntax
" If the first value specified is greater than the second value, no rows are
returned.

IN – Specifies whether a given value matches any one of a list of
expressions (all of which must be of the same data type) or is included
among the values retrieved by the subquery (<select>).

IN <select> – A SELECT statement (subquery). For the syntax, see "The
SELECT Statement" on page 691. The maximum number of nested
SELECT statements is 10. The SELECT statement can return only one
column (multiple rows can be returned).

" The IN <select> syntax can be used only in a WHERE clause.

string – A string of characters or an expression that evaluates to a string
of characters (for example, CONCAT(firstname,lastname)).

LIKE – The character string is a matching pattern for columns of
data type SQL_CHAR or SQL_VARCHAR. For example:

WHERE FAMILY_NAME LIKE ’JOHNSO%’

<expr> – An expression. When the expression is a string of characters
and wildcards, it must be enclosed in quotes. <expr> can include the
following wildcard characters:

! % (percent symbol) – A string of zero or more characters.
! _ (underscore) – A single character.

" <expr> must include at least one character and be less than 256 characters.

char – An escape character used to search for literal occurrences of
wildcard characters. The following example defines and uses the pound
sign (#) as an escape character:

WHERE ’10%DIS’ LIKE ’10#%D%’ ESCAPE ’#’

EXISTS <select> – Tests for the existence of at least one row in the rowset
from the nested SELECT statement (subquery).

" The EXIST <select> syntax can be used only in a WHERE clause.

Example

The following example retrieves the names of publishers who have
published mathematics books:

SELECT DISTINCT pub_name FROM publishers
 WHERE EXISTS
 (SELECT * FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = ’mathematics’)

 752

SQL Syntax
ALL <select> – True when at least one row retrieved by the nested
SELECT statement (subquery) matches the expression specified as the
first operand. The SELECT statement can return only one column.

" The ALL <select> syntax can be used only in a WHERE clause.

" If neither ALL nor ANY is specified, the subquery can return only a single row.

Example

The following example retrieves the books that commanded an
advance greater than the largest advance paid by CompMath
Publishers:

SELECT A.title FROM titles A
 WHERE advance > ALL
 (SELECT advance FROM titles B, publishers
 WHERE B.pub_id = publishers.pub_id
 AND pub_name = ’CompMath Publishers’)

ANY <select> – True when any value retrieved by the nested SELECT
statement (subquery) matches the expression specified as the first
operand. The SELECT statement can return only one column.

" The ANY <select> syntax can be used only in a WHERE clause.

" If neither ANY nor ALL is specified, the subquery can return only a single row.

Example

The following example retrieves the authors who live in the same
city as some publisher:

SELECT au_lname, au_fname FROM authors
 WHERE city = ANY
 (SELECT city
 FROM publishers)

Examples

! WHERE advance * 2 > total_sales * price

! WHERE phone NOT LIKE ’415%’ /* finds all rows in
which the phone number does not begin with 415 */

! WHERE advance < 5000 OR advance IS NULL

! WHERE (type = ’business’ OR type = ’psychology’) AND
advance > 5500

! WHERE total_sales BETWEEN 4095 AND 12000

! WHERE state IN (’CA’, ’IN’, ’MD’)

! WHERE au.last_name LIKE ’R%’ AND EXISTS (SELECT *
FROM pubs WHERE au.city = pubs.city)

 753

SQL Syntax
Passthru Query Statements (bypassing Attunity Connect Query Processing)

DDL statements and SELECT statements can be passed directly to a
relational data source, instead of being processed by the
Attunity Connect Query Processor. You can specify a query as a
passthru query either as part of the SQL syntax for the query (described
below) or by setting a parameter to pass all SQL or a specific set of SQL
to the backend data source (see "Passthru SQL" on page 590).

The SQL syntax for a non-returning rowset passthru query is:

The SQL syntax for a retrieval passthru query is part of the FROM
clause:

Keywords and Options

ds – The data source name for a table as specified in the binding
configuration, when this is not the default data source.

" ds can be omitted for the default data source. You can specify the default data
source as part of the connect string.

<query> – The passthru query.

" For Rdb, prefix all table names in the query with the data source name
specified in the binding configuration.

n – The number of parameters included in the passthru query, as in the
following:

TEXT={{insert into t1 values(?,?)}}(2)

ds :

<non-returning rowset passthru>:

TEXT= <query> }}{{

()n

<select passthru>:

...SELECT FROM ... ,
ds : param

()

alias

<query> }}TEXT= {{

HP (Compaq) NonStop Platforms
When specifying a passthru query to a HP (Compaq) NonStop SQL/MP
data source, if the query is not within a transaction, append the words
“BROWSE ACCESS” at the end of the query.

 754

SQL Syntax
param – Specifies values for the parameters required by the passthru
query. The number of values supplied must match exactly the number
of parameters defined in the passthru query. If the passthru query has
no parameters, no values need to be supplied; however, the parentheses
() following the name are still required. If several values are specified,
they must be separated by commas.

If the parameter value is supplied externally to the query (for example,
via the Append method on the Parameter object in ADO or using a
setXXX method in JDBC), specify a question mark (?) in the parameter
value list.

You specify parameters positionally, in the order expected by the
passthru query.

A value may be a literal or an expression. As an extension of standard
ANSI ’92 SQL, Attunity Connect enables users to specify as values
expressions involving columns of tables that appeared previously in the
FROM list.

For example, the following is valid where col1 is a column of table A:

SELECT * FROM A, TEXT={{parameterized passthru
query}}(A.col1)

This creates an implicit join between A and the passthru query: for each
row of A, the current value of col1 is used to compute a new row based
on the passthru query. For this join to be valid, A must appear before
the passthru query in the FROM list.

alias – You must supply an alias if the rowset name is to be used as a
column qualifier elsewhere in the query.

" An alias is supported only for retrieval passthru queries (as part of a SELECT
statement).

Examples

! A non-returning result:
oracle:TEXT={{CREATE TABLE employee (emp_num
number(5) NOT NULL, emp_name varchar2(32))}}

! As part of a SELECT statement:

SELECT * FROM disam:nation,
rdbms:TEXT={{SELECT * FROM customer
 WHERE c_nationkey = ?
 AND c_custkey = ?}}(7,100)

where disam and rdbms are data sources specified in the binding
configuration. The SQL to the rdbms data source is passed directly

 755

SQL/MP Driver
to this data source, bypassing the Attunity Connect Query
Processor.

SQL/MP Driver
The following sections provide information about the Attunity Connect
SQL/MP driver:

! Setting Up the Binding
! Mapping SQL/MP Data Types
! CREATE TABLE Data Types
! Mapping SQL/MP Table Names
! SQL/MP Primary Keys
! Partitioned Tables
! Transaction Support
! Isolation Levels and Locking

Both the Attunity Connect SQL/MP and Enscribe (file system) drivers
share the same transaction. This automatically provides consistency
between SQL/MP and Enscribe. Thus, you cannot start a new
transaction for Enscribe when one is open for SQL/MP.

" When specifying a passthru query to SQL/MP, if the query is not within a
transaction, you must include the words “BROWSE ACCESS” at the end of the
query.
Fully qualified table names in non-returning rowsets (such as UPDATE,
INSERT, DELETE and DDL statements) must be delimited by quotes (“).

The SQL/MP driver uses the maxSqlCache parameter, which is set in
the queryProcessor category of the binding environment. In addition to
the Query Processor cache, the SQL/MP driver also caches SQL/MP
queries for reuse. For details of the Query Processor parameter, refer to
"queryProcessor Category" on page 335.

Setting Up the Binding

! To connect to SQL/MP data:

The SQL/MP datasource is set in Attunity Studio, via the Configuration
perspective.

! Open the binding under the machine where the data resides.
! Right-click Datasource and select the New DataSource option.
! Specify a name for the data source in the Name field.

 756

SQL/MP Driver
" In order that there wont be problems if an Attunity Connect local copy of
the metadata is ever required, it is recommended that the name does not
include digits and that the third to eighth characters in the name are
unique.

! Select SQL/MP for the data source Type field.
! Specify the SQL/MP connect string as follows:

Catalog name – The subvolume used as the default catalog for new
tables.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

catalog="string" – (Catalog name in the connect string) The subvolume
used as the default catalog for new tables.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

Mapping SQL/MP Data Types

The following table shows how Attunity Connect maps supported
SQL/MP data types to OLE DB and ODBC data types:

SQL/MP OLE DB ODBC

Char (m<256) DBTYPE_STR SQL_CHAR

Char (m>255) DBTYPE_STR SQL_LONGVARCHARa

 757

SQL/MP Driver
Other SQL/MP data types (such as Interval and Multibyte string) are
not supported by Attunity Connect. When retrieving a table that
includes columns with unsupported data types, only columns with
supported data types are retrieved correctly in all circumstances.

Date DBTYPE_DBDATE SQL_DATE

Datetime year to day DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Datetime year to minute DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Datetime year to fraction DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Double Precision DBTYPE_R8 SQL_DOUBLE

Float DBTYPE_R4 SQL_REAL

Integer DBTYPE_14 SQL_INTEGER

Large Integer DBTYPE_NUMERIC SQL_NUMERIC

Numeric(x,y) DBTYPE_NUMERIC SQL_NUMERIC

Real DBTYPE_R4 SQL_REAL

Small Integer DBTYPE_12 SQL_SMALLINT

Time DBTYPE_DBTIME SQL_TIME

Timestamp DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Varchar
(m<256)

DBTYPE_STR SQL_VARCHAR

Varchar
(m>255)

DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647.If the <odbc longVarcharLenAsBlob> parameter is set to true in
the Attunity Connect environment settings, then precision of m.

SQL/MP OLE DB ODBC

 758

SQL/MP Driver
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to SQL/MP data types:

Mapping SQL/MP Table Names

Since SQL/MP table naming conventions restrict names to eight
characters and limits the character set that can be used, you can create
a mapping file to map SQL/MP table names to logical names.

Create a mapping file called NAVMAP in the subvolume where
Attunity Connect is installed. In the NAVMAP file you define a section
for each SQL/MP data source (defined in the binding settings) for which
you want a mapping. Within each section you specify the mapping you

CREATE TABLE SQL/MP

Binary -

Char[(m)] Char(m)

Date Date

Double Float

Float Real

Image -

Integer Integer signed

Numeric Float

Numeric(p) Numeric(p)

Numeric(p,s) Numeric(p,s)

Smallint Smallint signed

Text -

Time Time

Timestamp Datetime year to fraction

Tinyint Smallint signed

Varchar(m) Varchar(m)

 759

SQL/MP Driver
want for each table name in the database, as it is identified by
Attunity Connect.

Enter the following syntax in the NAVMAP file for each table name:

table_alias = \machine_name.$volume_name.subvolume_name.filename

For example:

a1 = \mach1.$D3018.sqlmp.emp

SQL/MP Primary Keys

Since SQL tables always have a primary key in SQL/MP, when creating
SQL Tables with no primary key, SQL/MP automatically adds a hidden
column named SYSKEY, which forms the primary key for the table. This
column is not included in SELECT * clauses or INSERT … VALUES (…)
statements. It is recommended always to have a user defined primary
key, to improve access time to the data.

" When a CREATE TABLE statement is immediately followed by CREATE
UNIQUE INDEX statement, a table with a primary key is created and therefore
a SYSKEY column is not created.

Since SQL tables always have a primary key (either user defined or
SYSKEY), a unique index is always defined. The Attunity Connect
SQL/MP driver always generates table bookmarks consisting of the
fields of the first unique index, thereby guaranteeing the uniqueness of
the bookmark.

Partitioned Tables

You can create SQL/MP tables that are partitioned. The first (head)
partition is always the partition with the lowest key range.

Different partitions of one table can be registered in different catalogs
the only restriction being that a partition must be registered in a
catalog of the same system as the partition itself.

In handling partitioned tables, you follow standard SQL/MP behavior.
This includes the ability to refer to any one of the partitions and not
necessarily to the head partition. For example, when an SQL/MP
database has more than one partitioned table with the same table
name, for the first table you use the short name and for the other tables
you use the full pathname of any one of the partitions. (Note that
Attunity Connect refers to the full pathname by dropping the $ prefix
and replacing the periods with underscores, as in
volume_subvolume_tablename).

 760

SQL/MP Driver
" For information about defining an alias for the full pathname, see "Mapping
SQL/MP Table Names" on page 758.

Example

The following example creates a new SQL/MP catalog in $D0117.partcat
and a table $DSMSCM.orders.ODETAIL that consists of two partitions.
$DSMSCM.orders.ODETAIL is the first (head) partition and
$D0117.orders.ODETAIL is the second partition.

CREATE TABLE $DSMSCM.orders.ODETAIL

ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
UNIT_PRICE NUMERIC (8,2) NO DEFAULT NOT NULL,
QTY_ORDERED NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
PRIMARY KEY (ORDERNUM, PARTNUM)
)

CATALOG $D0117.partcat
ORGANIZATION KEY SEQUENCED

PARTITION (
 $D0117.orders.ODETAIL
 CATALOG $D0117.partcat
 EXTENT (16368,64)
 MAXEXTENTS 650
 FIRST KEY 450000
)
EXTENT (16368,64)
MAXEXTENTS 650
BUFFERED NO AUDIT;

Transaction Support

The Attunity Connect SQL/MP driver supports one-phase commit. It
can participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

 761

SQS
Isolation Levels and Locking

The Attunity Connect SQL/MP driver supports the following isolation
levels:

! Browse access
! Stable access
! Repeatable access

" The isolation levels supported can be overwritten in the binding settings.

The isolation level can be one of the following:

The isolation level is used only within a transaction.

The Attunity Connect SQL/MP driver supports locking of the single row
in the database table.

SELECT statements are performed with BROWSE ACCESS, so there is
no wait for the data to be unlocked by another application.

SQS
A stored query specification in Attunity Connect.

See "Stored Procedure", below.

Stored Procedure
A stored procedure (or stored query specification – SQS) is a query saved
for reuse. The stored procedure is created using the CREATE
PROCEDURE statement. For details refer to "The CREATE
PROCEDURE Statement" on page 725.

Attunity Connect also provides the ability to execute functions (such as
a COBOL function) via SQL and receive the results. For details of this

isolationLevel attribute Equivalent SQL/MP
Isolation Level

readUncommitted BROWSE ACCESS

readCommitted STABLE ACCESS

repeatableRead REPEATABLE ACCESS

serializable REPEATABLE ACCESS

 762

Subquery
type of procedure, see "Procedure Driver (Application Connector)" on
page 600.

Subquery
A SELECT statement nested within another SELECT statement. The
maximum level of nested subqueries allowed is 10. The subquery can
return only one column (multiple rows can be returned).

Sybase Driver
The following sections provide information about the Attunity Connect
Sybase driver:

! Setting Up the Binding
! Mapping Sybase Data Types
! CREATE TABLE Data Types
! Stored Procedures
! Transaction Support
! Isolation Levels and Locking

Setting Up the Binding

! To connect to Sybase data:

The Sybase datasource is set in Attunity Studio, via the Configuration
perspective.

! Open the binding under the machine where the data resides.
! Right-click Datasource and select the New DataSource option.
! Specify a name for the data source in the Name field.
! Select Sybase for the data source Type field.

! Specify the Sybase connect string as follows:

Server name – The Sybase Server. If you omit the Server name, the
driver binds to Sybase’s default server.

Database name – The name of the database. If you omit the Database
name, the driver binds to Sybase’s default database.
" The entries for both Server name and Database name fields are

case-sensitive.
" You can omit both the Server name and the Database name. The defaults

are specified in the Sybase interface file.

 763

Sybase Driver
Interface file – The full path and name of a Sybase interface file. If
you omit the interface file, the default Sybase interface file is used.

" To access Informix on 64 bit operating systems (HP-UX 11 and higher, AIX 4.4
and higher and Sun Solaris 2.8 and higher) the data source 32 bit client must
be used.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

ansiNull="true|false" – Sets the treatment of NULLs to be compliant
with the ANSI standard. The default is true.

chained="true|false" – Sets the Sybase transaction mode to chained
transactions. This is equivalent to the Sybase command "set chained
on". The default is false.

cursorRows="n" – The number of rows retrieved in a read-ahead buffer.
This value controls the CS_CURSOR_ROWS parameter in the Sybase
OpenClient CTLIB. If n is negative, the number of rows read at one time
is the number that will fill the buffer. If n is 0, read-ahead is disabled.

dbName="string" – (Database name in the connect string) The name of
the database. If you omit the Database name, the driver binds to
Sybase’s default database.

disableCursors="true|false" – Controls the use of CTLIB cursors. When
set, performance of retrieval-based queries is improved. However,
parameters and BLOBs cannot be used in the queries and only one open
statement can be used. The setting is ignored if the query is included in
a started transaction. The default is false.

interfaceFile="string" – (Interface file in the connect string) The full path
and name of a Sybase interface file. If you omit the interface file, the
default Sybase interface file is used.

isolationLevel ="value" – Specifies the default isolation level for the data
source. Values are:

! readUncommitted – Specifies that corrupt data is not be read.
This is the lowest isolation level.

! readCommitted – Specifies that only the data committed before
the query began is displayed.

! repeatableRead – Specifies that data used in a query is locked
and cannot be used by another query nor updated by another
transaction.

! serializable – Specifies that the data is isolated serially. Treats
data as if transactions are executed sequentially.

 764

Sybase Driver
If the specified level is not supported by the data source, Attunity
Connect defaults to the next highest level.

packetSize="n" – The size of a Sybase packet. Valid values are 1 to n,
where n is the number of units for the packet. Each unit is 512 bytes.

parmWithAt="true|false" – Specifies that all parameters in Sybase
stored procedures begin with the “at” symbol (@). The default is false.

server="string" – (Server name in the connect string) The Sybase
Server. If you omit the Server name, the driver binds to Sybase’s default
server.

Checking Sybase
Environment Variables

Check that the SYBASE environment variable is correctly set and that
the Sybase database is readable by Attunity Connect. If necessary,
define the variable in the startup script (such as nav_server.script)
defined for the workspace in the daemon configuration information, or
in the nav_login or site_nav_login file – see the Attunity Connect
Installation Guide.

Sybase's CTLIB library files must be installed on the host and the
directory containing the Sybase System client-shared libraries must be
included in the library path of the operating system.

Mapping Sybase Data Types

The following table shows how Attunity Connect maps Sybase data
types to OLE DB and ODBC data types.

UNIX Platforms
Make sure that the OCS directory is placed at the beginning of the
shared library environment variable (before the ASE and FTS
directories).

The default driver supplied by Attunity Connect is for use with Sybase OpenClient
version 10.0.4, to access versions of Sybase prior to and including Sybase version
11.1.1. If the version of Sybase you are using is greater than version 11.1.1,
overwrite the nvdb_syb shareable image with the nvdb_syb115 shareable image.
You can revert back to the default by overwriting the nvdb_syb shareable image
with the nvdb_syb110 shareable image. All three files (nvdb_syb, nvdb_syb110
and nvdb_syb115) are in NAVROOT/lib, where NAVROOT is the directory where
Attunity Connect is installed.

Sybase OLE DB ODBC

Bit DBTYPE_I2 SQL_TINYINT

Binary DBTYPE_BYTES SQL_BINARY

 765

Sybase Driver
Char(m<255) DBTYPE_STR SQL_CHAR

Char(m>255) DBTYPE_STR SQL_LONGVARCHARa

Datetime DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Decimal DBTYPE_NUMERIC SQL_NUMERIC

Double Precision DBTYPE_R4 SQL_REAL

Float DBTYPE_R8 SQL_DOUBLE

Image DBTYPE_BYTES SQL_LONGVARBINARY

Integer DBTYPE_I4 SQL_INTEGER

Money DBTYPE_NUMERIC SQL_NUMERIC(19,4)

Numeric DBTYPE_NUMERIC SQL_NUMERIC

Real DBTYPE_R4 SQL_REAL

Small Datetime DBTYPE_DBTIMESTAMP SQL_TIMESTAMP

Small Int DBTYPE_I2 SQL_SMALLINT

Small Money DBTYPE_NUMERIC SQL_NUMERIC(10,4)

Text DBTYPE_BYTES SQL_LONGVARCHAR

TinyInt DBTYPE_I2 SQL_SMALLINT

Varbinary DBTYPE_BYTES SQL_BINARY

Varchar(m<256) DBTYPE_STR SQL_CHAR

Varchar(m>255) DBTYPE_STR SQL_LONGVARCHARa

a. Precision of 2147483647. If the <odbc longVarcharLenAsBlob> parameter is set to
true in the Attunity Connect environment settings, then precision of m.

Sybase OLE DB ODBC

 766

Sybase Driver
CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to Sybase data types:

Stored Procedures

The Attunity Connect Sybase driver supports Sybase stored
procedures, including procedures that return multiple resultsets.

To retrieve output parameters, multiple resultsets, and the return code
from the stored procedure, use the "? = CALL" syntax, described on page
728.

" You must use input/output parameters and not just output parameters in
Sybase stored procedures.

CREATE TABLE Sybase

Binary Binary

Char[(m)] Char[(m)]

Date Datetime

Double Float

Float Real

Image Image

Image(m) Binary(m)

Integer Integer

Numeric float

Numeric(p[,s]) Numeric(p,s)

Smallint Smallint

Text Text

Time Datetime

Timestamp Datetime

Tinyint Tinyint

Varchar(m) Varchar(m)

 767

Syntax File (NAV.SYN)
Transaction Support

The Attunity Connect Sybase driver supports one-phase commit. It can
participate in a distributed transaction if it is the only one-phase
commit data source being updated in the transaction.

" Both the transaction environment properties convertAllToDistributed and
useCommitConfirmTable must be set to true.

Isolation Levels and Locking

The Attunity Connect Sybase driver supports the following isolation
levels:

! Uncommitted read
! Committed read
! Serializable

" The isolation levels supported can be overwritten in the binding settings.

The isolation level is used only within a transaction.

Sybase supports page level locking. Updates in Sybase are blocking – if
another connection tries to access a locked record, the Attunity Connect
server is locked.

Update Semantics

For tables with no bookmark or other unique index, the driver returns
as a bookmark a combination of most (or all) of the columns of the row.
The driver does not guarantee the uniqueness of this bookmark; you
must ensure that the combination of columns is unique.

Syntax File (NAV.SYN)

Attunity Connect processes the SQL submitted by a user based on the
backend database being accessed. In the following circumstances you
can control the way the SQL is processed by Attunity Connect:

! When the features supported by the version of the backend
database are different from the support provided by Attunity
Connect for that database.

! When the backend database is accessed using either the ODBC or
OLESQL Attunity Connect generic drivers. The set of SQL features
sent by default to the backend database is minimal – those that are
normally supported by all relational databases. This is because any
flavor of SQL can be supported by the backend database.

 768

SYS
Attunity Connect provides a mechanism to handle these situations,
using a special file: NAV.SYN (the Attunity Connect SQL syntax file).

For details, see Using the Attunity Connect Syntax File (NAV.SYN).

SYS
The Attunity Connect internal storage mechanism within the general
repository. SYS provides local storage for all Attunity Connect
operations.

By default the SYS data source is not displayed. You can display it by
setting the Show SYS data source option in the Configuration node in
the Attunity Studio preferences. For details of all the preferences, refer
to "Attunity Studio Preferences" on page 105.

System Parameters (OpenVMS Only)
Verify that the following system parameters have these minimum
values:

" You additionally need to check the prescribed parameters used by other
database systems and data dictionaries, such as CDD/Plus, Oracle, Rdb,
Sybase, Ingres, and Adabas Predict.

RESHASHTBL 64
LOCKIDTBL 200
VIRTUALPAGECNT 2048

 769

Text-Delimited File Driver
Text-Delimited File Driver
Text files are called text-delimited when:

! The text fields are delimited by a specified character.
! Rows are delimited by new lines.

The Text-Delimited File driver supports variable length records. The
driver handles files larger than 2GB only on UNIX platforms.

The Text-Delimited File driver does not support the following SQL
statements:

! UPDATE statements (see page 709).
! DELETE statements (see page 714).

The Text-Delimited File driver does not support transactions.

The following sections provide information about the Attunity Connect
Text-Delimited File driver:

! Setting Up the Binding

! Metadata Considerations

Setting Up the Binding

! To connect to a text-delimited file:

The Text-Delimited files data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data source and choose the New data source option.
! Specify a name for the data source in the Name field.
! Select Text-Delimited files for the Type field.
! Specify the Text-Delimited file connect string as follows:

Data location – The directory where the text-delimited files you
create with CREATE TABLE statements reside. You must specify
the full path for the directory.
" The data files are specified in the Data file field of the Metadata

perspective of Attunity Studio, or when using NAV_UTIL EDIT, via the
filename attribute. For tables created using the CREATE TABLE
statement, the value specified in the Data directory field is used to create
the data files and is specified in the ADD metadata to locate the data. If a
value is not specified in this field, the data files are written to the DEF
directory under the directory where Attunity Connect is installed.

 770

Text-Delimited File Driver
Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

headerRows="n" – Sets Attunity Connect to skip a specified number of
lines at the beginning of each file.

" You can override this value by specifying a <dbCommand> statement in ADD.

newFIleLocation – (Data directory in the connect string) The directory
where text-delimited files you create with CREATE TABLE statements
reside. You must specify the full path for the directory.

Metadata Considerations

To use the Attunity Connect Text-Delimited File driver, you need ADD
(ADD is the Attunity Connect Data Dictionary, which you use to store
metadata).

In the ADD metadata, use the delimited and quoteChar table attributes
to specify the delimiting character and the character used for
quotations. See "Table Attributes" on page 49 for details of the
delimited quoteChar attributes.

Attunity Connect assumes that the data in the in the physical file is
always of type string and converts this string to the data type specified
in the metadata. When this is not the case, for example when the data
in the physical file is of type nls_string, you can prevent the data in the
physical file from being treated as a string and converted by
Attunity Connect by using the DISABLE_CONVERT dbCommand. as
follows:

<field name=’name’ datatype=’string’ size=’25’>
 <dbCommand>DISABLE_CONVERT</dbCommand>
</field>

 771

Thin Client
Thin Client
Attunity provides a number of thin clients:

.NET – Available on Windows platforms only. Access to data sources
(using ADO.NET) and applications using Attunity Connect .NET
providers.

COM – Available on Windows platforms only. Access to COM-based
applications.

Java – Access to data sources via JDBC and applications via JCA.

XML – Access to applications.

" Using the Database or Query application adapter you can also use XML to
access data sources through Attunity Connect.

These thin clients are supplied together with complete documentation.

Transaction Management
Attunity Connect serves as a distributed transaction coordinator with
two-phase commit capability toward its data sources to the extent that
transaction support is implemented in the data source drivers.

Attunity Connect can be used either as a stand-alone transaction
coordinator or as a “sub-coordinator” under another TP monitor (such as
Microsoft DTC).

As a transaction coordinator, Attunity Connect is called only with a
Commit command and manages the two-phase commit functionality.
As a sub-coordinator, Attunity Connect can be also called for a
PrepareCommit function.

In managing transactions, Attunity Connect does the following:

! Exposes distributed transaction methods to users (using
ITransactionJoin on NT machines).
" If you use the ITransactionJoin API, Attunity Connect must be a

“sub-coordinator” under Microsoft's DTC product. DTC provides a
transaction object for Attunity Connect to use.

" The XA_ APIs are available.

! Issues transactional commands to data sources when necessary.
! Provides a recovery mechanism in case of system failures.

 772

Transaction Management
Using Attunity Connect
as a Stand-Alone
Transaction
Coordinator

When another transaction manager is not available, Attunity Connect
can function across the whole client/server system. Thus, on the client
Attunity Connect runs as a master transaction coordinator (sending a
PrepareCommit call to the data source on a server) and on the server
Attunity Connect functions as a sub-coordinator. This can cascade
through an entire tree of servers involved in the transaction. Recovery
can take place starting either on the client (with automatic cascading)
or on a server machine (cascading to its servers).

When a transaction is started, Attunity Connect generates a new
Transaction ID (XID) and calls the Attunity Connect
StartDistributedTransaction API. All subsequent statements are
treated as part of the same transaction until the transaction is either
committed or aborted.

The Attunity Connect transaction coordinator on the client node issues
transactional commands (including PrepareCommit) to all of its data
sources, both local and remote.

" When Attunity Connect is a sub-coordinator, the Transaction ID is externally
supplied.

! To use Attunity Connect as a transaction coordinator:

1. Define a CommitConfirm table for every data source that supports
only one-phase commit. For details, see "The CommitConfirm
Table" on page 779.

2. Open the Configuration explorer by selecting
Start|Programs|Attunity|Studio1.2.

3. Expand the machine whose binding environment you want to set.
4. Expand Bindings to view the bindings for the machine.
5. Right-click the binding and select Edit Binding.

 773

Transaction Management
6. Expand the transactions entry and set the convertAllToDistributed
and useCommitConfirmTable parameters to "true". Set the
convertAllToSimple parameter to "false".

7. Check the transactionType configuration property for each data
source. The value of this property overrides any binding
environment settings.
" The default setting of the transactionType enables the highest level of

support for the data source, except on OS/390 machines where the level
is set to the support that is provided even if RRS is not installed.

Attunity Connect
Driver Capabilities

Attunity Connect supports a two-phase commit capability to the extent
that transactions are implemented in the data source drivers, as
follows:

Data sources that do not support transactions – Attunity Connect does not
reject transaction methods involving a data source that does not
support transactions, but does nothing with this data source and
returns a warning code for the method call.

" The Attunity Connect flat file system, VSAM, DISAM and text-delimited files
drivers do not support transactions.

 774

Transaction Management
Data sources with one-phase commit capability – Attunity Connect
supports BeginTransaction, Commit, and Rollback transaction
commands. It does not support PrepareCommit. If the Attunity Connect
commit-confirm option is enabled, for every committed transaction,
Attunity Connect writes an entry into a CommitConfirm table on the
data sources involved (see "The CommitConfirm Table" on page 779 for
details). Thus, if the system fails while the data source is executing a
Commit command, you can check to see whether a Commit command
succeeded (if the record for this transaction is there) or failed (if the
record is not there).

A data source with one-phase commit capability can still participate in
a safe distributed transaction if it is the only data source in the
transaction without a two-phase commit capability. When Attunity
Connect acts as a transaction coordinator, upon receiving a
PrepareCommit command, it dispatches the PrepareCommit to all the
data sources that support two-phase commit and inserts a record to the
CommitConfirm table of the one-phase commit data source. When
Attunity Connect receives the Commit command, it first issues the
commit to the data source with one-phase commit capability, and then
dispatches the Commit to the two-phase commit data sources. This
guarantees transaction integrity regardless of what happens.

When more than one data source with one-phase commit capability
participates in a distributed transaction, Attunity Connect issues a
Commit to the data sources with one-phase commit capability after
issuing Prepare commands to all the data sources that support
two-phase commit. Attunity Connect then commits all the data sources
that support two-phase commit. Thus, if the Commit to a data source
that supports one-phase commit fails, any other of the one-phase
commit data sources already updated will not be rolled back when the
transaction fails.

" If Attunity Connect is a sub-coordinator working under another coordinator (not
under itself in client-server settings), it reports upward that it is one-phase
commit (and not two-phase commit) as long as one of the data sources
participating in the transaction supports only one-phase commit. This is
because the outside coordinator may have other data sources that support
only one phase commit, or may not know to issue a PrepareCommit to Attunity
Connect as its very last data source (so that Attunity Connect can Commit its
one-phase commit data source).

" The Attunity Connect drivers support one-phase commit, with the exception of
the flat file system, VSAM1, DISAM and text-delimited files drivers. See below
for the drivers that also support two-phase commit.

1. The VSAM under CICS driver supports two-phase commit (see below).

 775

Transaction Management
Data sources with two-phase commit capability – Attunity Connect
supports the PrepareCommit and Recover API calls. Data sources that
support two-phase commit can participate fully in a distributed
transaction.

The following Attunity Connect drivers support two-phase commit:

! DB2 (on OS/390 and z/OS platforms, using the DB2MFCLI driver)
! Informix (on UNIX and NT platforms)
! Ingres II
! Oracle v8 and higher (using the Attunity Connect Oracle8 driver)
! SQL Server (on NT platforms, using Microsoft DTC)
! VSAM under CICS driver (on OS/390 and z/OS platforms with CICS

TS 1.3 or higher)

Refer to the specific driver for any two-phase commit considerations.

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

Attunity Connect
Adapter Capabilities

Attunity Connect supports a two-phase commit capability to the extent
that transactions are implemented in the application adapter.

Applications with two-phase commit support – Attunity Connect supports
the PrepareCommit and Recover API calls. Applications that support
two-phase commit can participate fully in a distributed transaction.

The following Attunity Connect adapters support two-phase commit:

! CICS application adapter (on OS/390 and z/OS platforms)
! IMS/TM application adapter (on OS/390 and z/OS platforms)

Refer to the specific adapter for any two-phase commit considerations.

OS/390 and z/OS Platforms

RRS (Transaction Management and Recoverable Resource Manager
Services) must be installed.

" The default setting of the transactionSupport property is set to the support that
is provided even if RRS is not installed.

OS/390 and z/OS Platforms

RRS (Transaction Management and Recoverable Resource Manager
Services) must be installed.

" The default setting of the transactionSupport property is set to the support that
is provided even if RRS is not installed.

 776

Transaction Management
Distributed Transactions

Attunity Connect is configured to enable distributed transactions.

To bypass Attunity Connect distributed transaction capabilities, you
can specify that Attunity Connect convert all distributed transactions
into simple transactions by specifying the convertAllToSimple
parameter in the environment settings as false and the
convertAllToDistributed parameters true.

! To set the distributor transaction:

1. Open the Configuration explorer by selecting
Start|Programs|Attunity|Studio1.2.

2. Expand the machine whose environment binding you want to set.
3. Expand Bindings to view the bindings for the machine.
4. Right-click the binding and select Edit Binding.
5. Expand the transactions entry and set "true" for the

useCommitConfirmTable and convertAllToDistributed
parameters. Set "false" for the convertAllToSimple parameter.

 777

Transaction Management
6. Set the convertAllToSimple parameter to false and set the
convertAllToDistributed parameter to true.

Transaction Log File An Attunity Connect transaction log file can be defined for every
binding configuration on every machine. This enables recovery in two
modes:

! Driven from the local client to recover the client’s current
transactions, following a crash.
" This is the recommended method for recovery.

! Driven from the remote machine to recover all of the transactions
at a given server, regardless of the availability of any client
machines involved.

Recovery at the server does not affect the state of the transactions
as recorded in the transaction log file on the client. Thus, a client
may see as “needing to be resolved” transactions that have already
been resolved on the server. The recovery utility assumes that
recovery has been performed on the server (see page 642).
" For recovery at a server to work, a transaction log file must have been

defined on the server.

 778

Transaction Management
Under Windows, the default log file (TRLOG.TLF) is written to the same
directory as the NAV.LOG file (which is specified by the <debug
logFile=...> environment property). It is recommended to use the
default log file and perform recovery from a PC.

" You can change the name and location of the log file by the <transactions
logFile=...> environment property.

The transaction log file has one or more entries for every transaction
whose PrepareCommit or Commit commands were received by Attunity
Connect but whose Commit or Rollback or Forget commands have not
completed successfully. The transaction log file also includes entries
that provide you with transaction status information and information
to assist in heuristic recovery.

" The entry is removed from the log file after the transaction has completed if
Attunity Connect receives a Prepared statement from the transaction
coordinator – the entry exists only while a user Commit command is in
progress).

The following information is recorded in the transaction log file:

! The transaction state, which can be one of the following:
! PrepareCommit issued
! Prepared
! CommitIssued
! Committed
! RollbackIssued
! Rolledback

! Information enabling you to reconnect to the data source during
recovery without needing any external parameters, including:
! The binding used by Attunity Connect.
! A timestamp field in every entry (indicating when the data

source started or ended the transactional command).

You can determine whether to roll back the transaction or continue to
commit the transaction, depending on the entries in the transaction log
file.

Before deciding whether to rollback or commit a failed transaction, you
may need the information from another log (the CommitConfirm table
– see below), which includes the following:

! The state of the transaction in the transaction log file is Started
Commit.

! All of the entries in the server machines for the data sources are
Started Commit.

 779

Transaction Management
! The data source supports only one-phase commit and the state is
Commit Issued.

This information is available using the Attunity Connect Recovery
utility (see "Recovery" on page 779).

The CommitConfirm
Table

To use data sources that support only one-phase commit in a
distributed transaction, a CommitConfirm table must be present for
every one-phase commit data source.

! To use the CommitConfirm table:

1. Execute the following CREATE TABLE statement on the data source
to create the table:

CREATE TABLE CMTCNFRM (
 "TRANS_ID" CHAR (140) NOT NULL,
 "TID2" CHAR (140) NOT NULL,
 "CMNT" CHAR (128)
)
" Create the table exactly as shown (names are all uppercase and the

CMNT column length is 128).

2. In Attunity Studio binding settings, set the
useCommitConfirmTable parameter to "true".

You can do this by opening the Configuration explorer by selecting
Start|Programs|Attunity|Studio1.2. Expanding the machine
whose environment binding you want to set. Expanding Bindings to
view the bindings for the machine, right-clicking the binding and
selecting Edit Binding.

During Commit, Attunity Connect writes an entry to this table that
enables Attunity Connect to determine, after a crash, whether the data
source completed the Commit successfully prior to updating the status
in the log file.

Once a Commit is completed, the entry can be deleted.

" Attunity Connect does not automatically delete the entry.

Recovery

Attunity Connect provides a user interface that enables you to examine
the transaction status, initiate automatic recovery when possible, and
manually resolve the status of transactions that were in the middle of
a Commit when a crash occurred. For details see "Recovery Utility" on
page 642.

 780

Troubleshooting
You can examine a transaction log file to determine which transactions
failed.

Recovery can take place starting either on the client (with automatic
cascading) or on a server machine (cascading to its servers).

Also see: "Recovery" on page 642, "Recovery Utility" on page 642.

Troubleshooting
Troubleshooting typically involves:

! Checking or specifying client log files (see below).
! Checking communications and data source status (see

"Communication Factors" on page 781).
! Checking the connection to a data source using SQL (see

"NAV_UTIL EXECUTE" on page 512). You can also ping the data
source from Attunity Studio, by right-clicking the adapter and
choosing the test option from the popup menu.

A common problem is that the data types used in the SQL do not
match the available data types of the data source. For example, if a
table in the data source requires a float, the SQL must specify a float
and not a string.

! Checking the connection to an application adapter using XML (see
"NAV_UTIL XML" on page 535). You can also ping the application
from Attunity Studio, by right-clicking the adapter and choosing
the test option from the popup menu.

! Checking the Attunity Connect configuration information (the
Attunity Connect binding and environment settings, and user
profiles). The following list identifies common problems:
! Make sure the software is registered. Refer to the Attunity

Connect Installation Guide for details. If you have registered
the software, check with the distributor whether you are
licensed to use the specific driver that is causing problems. You
can display the license details by running the following
command:

nav_util check license

The following type of information is returned:

Active licensed items are:

APIs: *,
Providers: *,
Features: *,
Options: *,

 781

Troubleshooting
Graphical Utilities: *,
Concurrent Users: 100

Press any key to continue...

Where an asterisk signifies that the complete set is available.
! Make sure that any port number specified for a remote machine

in the binding is correct.
! Make sure that the name of a remote machine in the binding

settings is not used as a data source name.
! Checking the optimization plan used by the Query Processor using

the Attunity Connect Analyzer (see "Query Analyzer" on page 626).

Checking and Specifying Log Files

The settings for the general log file for the machine running the
application are specified in the binding environment. The following
values must be set:

! Trace errors

! Log file (with the full name and path of the log file on the client).

Log files that monitor the server and the daemon are set as part of the
daemon configuration and viewed in the Runtime Manager perspective.

Communication Factors

Check the communications to ensure that the machine and the data
source that you are trying to access are available. For example, try to
access the server from another machine using FTP (or Telnet). If the
problems are not Attunity Connect-specific, you should also encounter
problems accessing the server.

Checking the TCP/IP
Configuration of a
Machine

To check the basic TCP/IP configuration on the machine (as it applies to
Attunity Connect) you use the tcpip command.

For example, on the PC run the following: nav_util check tcpip

The following type of information is returned:

Checking TCP/IP configuration…
Definition of ’localhost’ - OK
Local host name - pc1.acme.com
Machine address - 190.19.1.2

Press any key to continue...

 782

Troubleshooting
" If you are interested only in the local host name, run the command:
nav_util info.

server – Checks whether a client can be allocated a particular
workspace server from the given daemon. If username and password
are not given, anonymous login is used.

" If a username and password are not supplied, an attempt is made to log onto
the server as an anonymous user.

where:

Checking Daemon
Activity

Checking the activity of a daemon, in Attunity Studio, can be done by
viewing the list of active daemons.

1. In the Runtime Manager perspective, right-click Daemons and
choose Add Daemons.

2. Click Browse to view the list of active daemons.

Checking Status Checking the status of a daemon on the given machine for all
workspaces or for the specified workspace is done using the Status
option. The Status option is activated by right-clicking the machine,
workspace or server level and choosing Status from the menu.

The following type of information is returned for a machine:

Number of logins – The number of logins and failures to the daemon
since the daemon was started.

Number of active daemon clients – The number of active connections to
the daemon, including the connection that issued the command. The
number will always be one more than the number of active servers
listed in the Active Servers Status section, since it includes the
connection that issued the command. The number includes the daemon
server itself.

 783

Tuning
Number of active client sessions – The number of servers currently
active.

Max. number of concurrent client sessions – The maximum number of
clients that were at any point connected, during the session.

Alternatively, to check the status of various system functions, use the
following command in the text editor:

nav_util check
 irpcd(daemon_location[,username,password])
 tcpip
 server(daemon_location,workspace[, username,
password])
 irpcdstat(daemon_location[,workspace][, username,
password])

Tuning

Tuning the Query
Processor

Most of the tuning that you might need in order to improve performance
involves the Attunity Connect Query Processor. You can influence
query processing in the following ways:
! Using statistics about tables and indexes so that Attunity Connect

query optimization can accurately cost various optimization
strategies.

For data sources that do not provide statistics, such as some
non-relational data sources, use the statistics utility (described on
page 467) to collect statistics about tables, indexes, and columns of
data sources. Relational data sources provide their own statistical
tools to produce statistics, Attunity Connect uses during
optimization.
" If a data source does provide statistical utilities, ensure that the statistics

are updated.

Attunity Connect caches table metadata when the table is first
accessed. You can also ensure that the statistics for a table are
cached by using the following command:

SELECT * FROM
NAV_PROC:SP_OLE_COLUMNS(’ds_name’,’%’,’table’,’%’,0
)
" Cache statistics only for tables frequently accessed, since cached data

uses a significant amount of memory.

UNIX Platforms
Enclose the parameters in quotes. For example, nav_util check
"irpcd(hp)".

 784

Tuning
! Adjusting the environment properties specifically per query as
described in "Binding Configuration" on page 129, or globally per
machine by modifying the binding environment as described in
"Binding Configuration" on page 129.

As a general rule the environment properties should be set on the
machine where the query is processed. Use the Attunity Connect
Query Analyzer to examine the optimization plan and identify
where the query and/or parts of the query are processed. Use this
information to set relevant environment properties (for details, see
"Query Analyzer" on page 626).

! Specifying parameters to influence the optimization strategy (see
below).

Tuning the SQL Additional guidelines for controlling performance are:

! Use forward-only and read-only cursors whenever possible.
! Use optimistic locking in preference to pessimistic locking

whenever possible. With pessimistic locking, as each record is read
it is locked, resulting in significant overhead. With optimistic
locking records are locked only immediately prior to update.

! Use views and stored procedures (see "The CREATE VIEW
Statement" on page 723 and "The CREATE PROCEDURE
Statement" on page 725).

! Batch SQL statements together in a single statement. For details,
see "Batching SQL Statements" on page 129.

! Use a snapshot of the metadata for relational data sources
(assuming the metadata is stable). For details, see "LOCAL_COPY
Metadata (Metadata Caching)" on page 443.

! When passing large queries, use the following combination of
parameters: <queryProcessor firstTreeExtensions>,
<queryProcessor maxColumnsInParsing> and <queryProcessor
parserDepth>.

For example, for an SQL text around 60K, try the following
combination:

<queryProcessor firstTreeExtensions="900"
 maxColumnsInParsing="500"
 parserDepth="500" />
" These parameters are set in the environment properties of the binding

configuration using Attunity Studio.

! Set data source specific properties (such as read-ahead for ADABAS
data or cursor control for Sybase). For details, see "Driver
Configuration Properties" on page 308.

 785

Tuning
! Use hints in the query to tune optimization. If a statement is not
sufficiently optimized, you can use hints to control the optimization
strategy implemented. This is useful when you have special
knowledge about the data source environment (such as, statistics,
load, network and CPU limitations, etc.). You can specify a hint to
guide optimization. For the syntax used to specify hints, see page
695.
" Use hints in conjunction with the Attunity Connect Query Analyzer to

check the results and ensure that the specified hint did improve
optimization.

! Use the Attunity Connect Query Analyzer to examine the
optimization used (including checking whether statistics were used
to help the optimization). For details, see "Query Analyzer" on page
626.

Tuning a Daemon To optimize an Attunity Connect daemon’s performance, you can do the
following:

! Check user system parameters.

For example, under OpenVMS check the required user quotas (see
page 797).

! Check the TCP/IP connections.

! Use reusable server processes. This is the default. You set this
parameter in the daemon configuration WS Server tab (via the
Attunity Studio Configuration perspective) for a specific workspace.
" When accessing Informix through XA, do not specify this mode. In this

case, define a new workspace for Informix, so that all the other data
sources you are accessing use reusable servers.

! Use prestarted servers. You set this parameter in the daemon
configuration (via the Attunity Studio Configuration explorer) for a
specific workspace.

The number of server processes to pre-start is site-dependent.
Generally, the following recommendations can help you determine
how many server processes to have ready at any one time:
! The number of prestarted server processes should be slightly

higher than the expected number of concurrent users.
! The minimum number of available server processes should be

set to 0 (or a low value) when the turnaround of clients is low
(for example, if users connect in the morning and stay
connected for the day).

! The minimum number of available server processes should be
set to a high value (up to the number of available servers) when
the turnaround of clients is high (for example, if users connect
and disconnect frequently).

 786

Tuning
Optimization
Strategies

Before a query is executed it is optimized for performance. Part of the
optimization includes deciding on efficient join strategies when more
than one table is involved in a query. Although optimization is normally
performed automatically, you can specify parameters to influence the
following join strategies from the set of join strategies:

Lookup join – When the table from the right side of a join can fit in
memory, the table is read once into memory and then the join is
performed in memory.

Hash join – When the table from the right side of a join cannot fit in
memory, the join is performed using memory caches and temporary
files.

Semi-join – When retrieving data from a relational backend on the right
side of a join, left-side rows are retrieved and cached in memory, and a
query is formulated to the relational data source to retrieve all of the
potentially relevant right-hand rows. To use the semi-join strategy, the
table must have an index and the query must include an equal
predicate on the first segment from the index.

You can tailor the use of joins by setting parameters as described in
"Binding Configuration" on page 129 and in "Setting Up the Binding"
on page 144 or by forcing a strategy when specifying the query, by using
hints as described on page 695.

" The parameters cannot force a strategy to be used but can stipulate that a
specific type of strategy, from the list of strategies generated by the query
optimizer, is not used.

You can also generate a file describing the strategies used by the Query
Optimizer for every query for later analysis with the Attunity Connect
Query Analyzer (see "Query Analyzer" on page 626).

The main environment properties that control optimization are:

! <optimizer goal> – You can specify the row optimization you want
either as part of the SQL syntax (OPTIMIZE FOR N ROWS clause
described as part of the SELECT statement page 692) or by setting
this parameter (the default is all row optimization).
" For an aggregate query, the optimization strategy used is always all row

optimization.

! <optimizer preferredSite> – You can adjust the preferred site for
execution of the query (normally a query is executed on the machine
where the data source is located).

! <tuning hashMaxOpenFiles>, <tuning hashMaxDiskSpace> and
<misc tempDir> – If hash joins are used, their execution can be
affected by these parameters.

 787

Tuning
! <tuning hashBufferSize> – You can change a strategy that uses a
hash join to one that uses a lookup join by increasing the
hashBufferSize buffer.

! You can disable one or more join strategies. For example, you can
force a semi-join by disabling the hash join (by setting <optimizer
noHashJoin="true" />).

Buffer Sizes If the application is running slower than expected, check the
environment properties to ensure that buffers are big enough. The main
<tuning> parameters to check are:

dsmMaxBufferSize – The maximum size of a cache memory. This cache
is used when memory is required on a temporary basis (as when
Attunity Connect sorts data for a query output, for a subquery, or for
aggregate queries). This cache size is not used for hash joins and lookup
joins (see the hashBufferSize parameter, below). The default is 1000000
bytes.

dsmMidBufferSize – The maximum size of the index cache. This cache is
not used for hash joins and lookup joins. The default is 100000 bytes.

hashBufferSize – The amount of cache memory that is available for each
hash join or lookup join. The default is 1000000 bytes.

Make sure that the buffers used when Attunity Connect communicates
across a distributed system are large enough, but not so large that they
impact on performance.

The following parameters define communication buffers:

comCacheBufferSize – The size of a memory buffer on a client, which is
used by the Attunity Connect client/server to store read-ahead data.
The default is 200000 bytes.

comMaxSocketSize – The maximum bytes that can be written in one
chunk on a socket. The default is -1 (no limitation).

comMaxXmlInMemory – The maximum size of an XML document held in
memory. The default is 65535 bytes.

comMaxXmlSize – The maximum size of an XML document passed to
another machine. The default is 65535 bytes.

Also see: "Optimizing ADO" on page 84, "Query Analyzer" on page 626, "Workspace for HP
NonStop Server Environment File (HP (Compaq) NonStop Only)" on page 823, "Workspace for
OS/390 Server Environment File (OS/390 and z/OS Only)" on page 824.

 788

Tuxedo Adapter
Tuxedo Adapter
The Attunity Connect Tuxedo adapter is used to manage online
transaction processing applications. You can execute a BEA Tuxedo
service with Attunity Connect using the Attunity Connect Tuxedo
adapter.

The Tuxedo adapter interacts with Tuxedo using Tuxedo’s ATMI
(Application-to-Transaction Manager Interface) procedure library. In
addition the adapter uses the Tuxedo System Field Manipulation
Language (FML) to support related data transfer needs.

The Tuxedo adapter provides support for the following Tuxedo message
buffers as Input/Output:

STRING – Null terminated character array.

CARRAY – Array of uninterpreted arbitrary binary data.

XML – The XML formatted data.

VIEW – C structure layout.

VIEW32 – C structure layout with 32-bit FML identifiers.

FML – Tuxedo system type that provides transparent data portability.

FML32 – FML type where 32-bit FML identifiers are used.

" Synonyms for the above list (such as X_C_TYPE, X_OCTET, etc.) are
recognized as well.

The following sections provide information about the Attunity Connect
Tuxedo adapter:

! Setting Up Tuxedo
! Setting Up the Binding
! The Adapter Definition
! Transaction Support

 789

Tuxedo Adapter
Setting Up Tuxedo

Check the following Tuxedo environment variables are correctly set:

TUXDIR is set to the Tuxedo root directory.

WSNADDR is set to the Tuxedo Workstation network address.

Setting Up the Binding

! To connect to Tuxedo:

The Tuxedo adapter is set using Attunity Studio, in the Configuration
perspective:

! Open the binding under the machine where the data resides.
! Right-click Adapters and choose New adapter.
! Specify a name for the adapter in the Name field.
! Select Tuxedo for the Type field.

The Adapter Definition

To work with the Attunity Connect, you need to set up an adapter
definition to handle the interactions to and from a Tuxedo service.

In Attunity Studio, import the adapter definition using a BEA Jolt bulk
loader file or Tuxedo configuration and FML/VIEW source files2.

UNIX Platforms

Check the shared library environment variable includes the path to the
Tuxedo bin directory, as in the following example:

LD_LIBRARY_PATH = /disk2/users/tuxedo/tuxedo8.0/bin

Windows Platforms

Check the PATH environment variable includes the path to the Tuxedo
bin directory, as in the following example:

PATH=C:\tuxed\tuxedo8.0\bin

2. The Tuxedo configuration and FML/VIEW files are binary files, created from source text
files. If the source text files are not available, you can recreate them from the binary files.
For configuration files, run the following Tuxedo command: tmunloadcf config_file
For view files, run the one of the following Tuxedo command:
For 32bit view files: viewdis32 view_file
For 16bit view files: viewdis view_file

 790

Tuxedo Adapter
Importing Metadata
Using a BEA Jolt Bulk
Loader File

Import the metadata in the Metadata Import perspective as follows:

1. Specify the Jolt Bulk Loader file.
2. Select the adapter interactions from the list as needed.
3. The metadata can be imported to the machine where the adapter

resides. This step can be returned to and redone at any time.
" When reopening an import item in the Metadata Import explorer and

choosing Manual Import. The import wizard opens, displaying what has
previously been imported.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

Importing Metadata
Using FML/VIEW Files

Import the metadata in the Metadata Import perspective as follows:

1. Specify the configuration and FML/VIEW files.

The configuration files are used to get the information necessary for
starting application servers and initializing the bulletin boards in
an orderly sequence in Tuxedo. Configuration files have a number
of sections, including a SERVICES section which provides
information on services used by the application, from which
interactions are generated during the import procedure.

The FML files contain metadata used by Tuxedo and are used to
provide the data structures for the interactions.

2. Add additional simple record definitions, if necessary. These are
records stored in the following Tuxedo buffer types:
! XML data
! String data
! Carrays

3. Specify the adapter interactions as needed.

Interaction name – The name of the interaction. The name is selected
from the drop-down list. The list is generated based on the services
specified in the configuration file.

Mode – The interaction mode:
! sync-receive – The interaction expects to receive a response.
! sync-send – The interaction sends a request and does not expect

to receive a response.
! sync-send-receive – The interaction sends a request and expects

to receive a response.

Input – Identifies an input record. The input record is the data
structure for the outbound interaction. The records generated from
the FML/VIEW files specified at the beginning of the procedure are

 791

Tuxedo Adapter
listed in a drop-down list. Select the relevant record for the
interaction.
" You must specify an input record for each interaction before you can click

Next.
If the interaction does not require an input record, the record specified
here is ignored.

Output – Identifies an output record. The output record is the data
structure for the results of the outbound interaction. The records
generated from the FML programs specified at the beginning of the
procedure are listed in a drop-down list. Select the relevant record
for the interaction.
" You must specify an output record for the interaction if the mode is set to

sync-send-receive or sync-receive, before you can click Next.

Description – Free text describing the interaction.

Interaction-Specific Parameters – Tuxedo specific parameters.

Input Buffer Type – The type of data used for the input.

Output Buffer Type – The type of the buffer to use for the results
of an outbound interaction.

No Transaction – Enables a service to be executed, regardless of
transaction context. This parameter should always be checked.

No Reply Expected – For future use.

No Blocking Request – Avoids a FROM request submission if a
blocking condition exists.

No Timeouts – ignores blocking timeouts.
4. The metadata can be imported to the machine where the adapter

resides. This step can be returned to and redone at any time.
" When reopening an import item in the Metadata Import explorer and

choosing Manual Import. The import wizard opens, displaying what has
previously been imported.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

Transaction Support

The Tuxedo adapter supports one-phase commit.

 792

Two-Phase Commit
You can limit the transaction duration before timing out at the adapter
level.

Two-Phase Commit
See "Transaction Management" on page 771.

 793

UDL
UDL
Microsoft OLE DB universal data link, used to access data from an ADO
application.

Also see: "ADO Connect String" on page 87.

User-Defined Data Type – UDT
A user-defined data type is created using the Attunity Connect SDK.
Using the SDK, you can define additional data types to accommodate
the requirements of a data source or to supplement data types available
in a standard Attunity Connect driver such as ADD-RMS or ADD-DISAM.
For more details, refer to Attunity Connect Developer SDK.

A column defined with a user-defined data type can be viewed in the
Attunity Studio Metadata perspective but not edited (other columns in
the table can be edited).

User Information in Application Connect Strings
Through a connect string you can dynamically pass to Attunity Connect
the username/password pairs required for access to a database or
remote machine. If the client repository has a user profile, this profile
is compared with the information specified in the connect string: the
information of the connect string has precedence over that of the user
profile in the repository.

The connect string may reference a remote machine that has its own
user profile. In such cases, the information in the server user profile
takes precedence over username/password pairs supplied in the
connect string.

User Profiles
To access the data on a server through Attunity Connect at runtime, the
user must log on to the server. One of the following occurs:

! Anonymous access to the server is allowed. Set this level of security
by specifying security information in the Security section of the
daemon configuration. See "User Profiles" on page 793.

! Anonymous access to the server is not allowed. A valid user name
and password exist in the user profile (see below). These values are
used to log on to the server. See "User Profiles" on page 793 for
details.

 794

User Profiles
! Anonymous access to the server is not allowed and a valid user
name and password does not exist in the user profile or is not
provided in the connect string. An error occurs.

" If you are setting up access to data, using Attunity Studio, you are prompted to
enter a user name and password.

User profiles are stored in the repository and control access to remote
machines, application adapters and data sources.

The user profile contains the user name and password pair for each
machine, data source and application adapter listed in the binding. The
user name relates to the resource as follows:

! The remote machine (as it appears in the <remoteMachines>
section in the binding configuration.

! The data source (as it appears in the <datasources> section in the
binding configuration)

! The application adapter (as it appears in the <adapters> section in
the binding configuration).

! The encryption key when communication across the network is
encrypted. For details, refer to "Specifying Encrypted
Communication" on page 674.

Accessing the User
Profile

An application calling Attunity Connect can access the user profile
residing in the repository of either an Attunity Connect client or a
remote Attunity Connect server. In the latter case, the user information
on the server is used to connect to a data source on behalf of the client.
If a server needs to access a second remote server on behalf of this
client, the user information is passed to the second server.

" Attunity recommends keeping the user profile on the client except with thin
clients such as JDBC and XML.

When an application passes a username/password pair to
Attunity Connect on the client, the client first looks for the user profile
in the local repository. If the user profile is not found locally, the client
assumes the user profile resides on a remote server. Attunity Connect
then passes the username/password pair to the daemon on the remote
machine.

If user profiles of both a client and remote server specify different
username/password pairs for the same machine or database, the
information specified in the server user profile takes precedence, and is
used as the authenticator.

" The name of the user profile on the server must be the same as the workspace
account.

 795

User Profiles
Managing a User
Profile

To manage the user profile use the Attunity Studio Configuration
perspective, via the Users node.

The Users List contains the user profiles specified for the machine
under which they are listed.

The Users List includes the default NAV user profile.

New users are added by right-clicking Users in the perspective tree,
clicking New User and entering a name for the user and, optionally, the
password associated with the user.

Once the user is added, you can set authenticators for the resources.

 796

User Profiles
To add authenticators click Add and the following window is displayed:

! Resource Information
Specifies the resource to which the user is authorized.
! Resource type

Specifies the resource type as datasource, adapter, remote
machine or encryption key.
"For details of the encryption key usage, refer to "Specifying Encrypted

Communication" on page 674.
! Resource name

The resource to which the user is authorized.

! Authorization information
Specifies the user authorization details.
! User name

The name of the user authorized to enter the resource.
! Password

The password for the resource authorization.
! Confirm password

A confirmation for the resource authorization password.

You can directly modify the user profile information in the repository as
follows:

! Using the UPD_SEC option of the Attunity Connect NAV_UTIL
utility:

HP (Compaq) NonStop, OpenVMS, UNIX and Windows Platforms

nav_util UPD_SEC ds_name username password

OS/390 and z/OS Platforms

NAVROOT.USERLIB(NAVCMD)

Enter UPD_SEC ds_name username password at the prompt.

 797

User Quotas (OpenVMS Only)
! Using the NAV_UTIL EDIT utility to export the user profile to an
XML file, displayed in a text editor. To modify the profile and close
the editor, importing the XML file back into the repository:

User Quotas (OpenVMS Only)
The required user quotas are:

The recommended user quotas are:

OS/400 Platforms

call prg(navroot/navutil) parm (UPD_SEC ‘ds_name’
‘username’ ‘password’)

OpenVMS, UNIX and Windows Platforms

nav_util edit user profile_name

HP (Compaq) NonStop

navedit user profile_name

OS/390 and z/OS Platforms

NAVROOT.USERLIB(NAVCMD)

Enter edit user profile_name at the prompt.

OS/400 Platforms

call prg(navroot/navutil) parm (edit user
‘profile_name’)

MAXJOBS: 10
MAXACCTJOBS: 0
MAXDETACH: 0
PRCLM: The system default
PRIO: 4
QUEPRIO: 0
CPU: (none)
FILLM: 100
SHRFILLM: 0
BIOLM: 18
DIOLM: 18
ASTLM: 24
TQELM: 10
ENQLM: 2000

 798

User Quotas (OpenVMS Only)
Authorized Privileges – CMKRNL, SYSGBL, SYSNAM, PRMGBL

Default Privileges – TMPMBX, NETMBX

These are common quotas. Specific configurations may require that you
increase the values of BYTLM, WSEXTENT or PGFLQUO. Check your
database requirements to verify the requirements for your system.

Other recommendations include the following:

USER NAME – You can use any naming scheme for Attunity Connect
users.

UIC – Attunity Connect users can be assigned any UIC (User
Identification Code).

GROUPS – Attunity Connect users can be grouped according to their
UIC. In most cases, it is convenient to group together the users of the
same applications.

FILE PROTECTION – You can use any combination of the OpenVMS file
protection mechanisms. Attunity Connect programs are not privileged,
so they are affected by the assigned file protection. To ensure that all
users can access the shareable images, protection W:WER must be
assigned.

PRIVILEGE – Attunity Connect users need no special OpenVMS
privilege beyond the minimal TMPMBX and NETMBX. Since
Attunity Connect relies on the system file protection service, you need
to make sure that users have the privileges required to access both
Attunity Connect software and definitions.

" Check data source recommendations as well.

BYTLM: 20480
PBYTLM: 0
JTQUOTA: 1024
WSDEF: 150
WSQUO: 750
WSEXTENT: 3000
PGFLQUO: Dependent on factors such as the type and size of

the databases accessed using Attunity Connect.

 799

Virtual
Virtual
An Attunity Connect data source that stores Attunity Connect views,
stored queries, Attunity Connect procedures, and virtual database
definitions.

Also see: "SYS" on page 768, "Virtual Data Source", below, and "Virtual Driver" on page 807.

Virtual Database
A virtual database presents a view containing selected tables from one
or more data sources, as if from a single data source. You populate a
virtual database by defining synonyms for the tables, views, and stored
procedures you want the virtual database to make available.

An Attunity Connect virtual database does the following:

! Presents a view to the user such that only selected tables from
either one or more data sources are available, as if from a single
data source.

! Limits the data available to a user to the tables, views and stored
procedures that are needed by that user.

! Presents table names in a meaningful way, by defining the name as
used by a data source with a name that has meaning in the
application.

! Enables an application to view the tables in several data sources in
a uniform manner, by presenting a consistent view of each table in
the virtual database.

Virtual Database

Synonyms
Views
Stored Procedures

Virtual Database

Synonyms
Views
Stored Procedures

 800

Virtual Database
To the calling application, a virtual database looks like a single
database consisting of the predefined set of tables, views, and stored
procedures. The calling application cannot access the underlying
sources, there by preventing access to other corporate data.

A virtual database can also be used to provide more meaningful names
for tables and procedures. Developers can give meaningful names to
data source tables and stored procedures. Because the virtual database
uses a repository to maintain its definitions, native system constraints
on file, table, and procedure names do not apply. This feature is
particularly useful for legacy back end databases whose table/record
names are restricted by the naming conventions in effect on back-end
platforms (for example, the eight-character limit on HP (Compaq)
NonStop computers).

What Can a Virtual
Database Include?

A virtual database can reference the following from other data sources:

! Tables (via Attunity Connect Studio or the CREATE SYNONYM
statement)
" For the syntax used to create a synonym, see "The CREATE SYNONYM

Statement" on page 730.

! Views
! Stored procedures

A virtual database can also include the following, based on the current
contents:

! Views
! Stored procedures

The following sections provide information about an Attunity Connect
virtual database:

! Setting Up the Binding
! Metadata Considerations
! Using a Virtual Database

 801

Virtual Database
Setting Up the Binding

Attunity Connect supports virtual databases on all Attunity Connect
platforms.

! To set a virtual database:

The virtual database is set using Attunity Studio, in the Configuration
perspective:

1. Open the binding under the machine you want to set the virtual
database for.

2. Right-click Data source and choose the New data source option.
3. Specify a name for the data source in the Name field.
4. Select Virtual for the Type field.
5. Optionally, specify, as the connect string, the Data Location where

the new tables for this virtual database will reside.

Once a virtual database is defined in the binding, you can define the
tables, synonyms, views, and stored procedures in the virtual database.

Metadata
Considerations

Metadata must be defined for each table, synonym, view and stored
procedure.

! To define metadata for Virtual Databases:

! Right-click the virtual database in the virtual database
Configuration explorer tree.

The Metadata explorer opens with the virtual database displayed
with Tables, Synonyms, Stored Procedure and Views under it.

Defining Tables Tables can be defined in the virtual database and used as part of the
virtual database. Normally it is recommended to create tables in the
virtual database for storing administrative details about the virtual
database.

! To specify a table to include in a Virtual Database:

1. Right-click Tables under the virtual database and choose New
Table from the pop-up menu. The New tables wizard opens.

2. Enter a name for the table.
3. Click Finish.
4. Create metadata for the table, including the columns and indexes

for the table. For details refer to "Data Source Metadata" on page
460.

 802

Virtual Database
Creating Synonyms A Synonym is an alias for a table, view or stored procedure. You can use
the synonym name instead of the name of the table (stored procedure,
etc.) that it is replacing.

" You cannot create a synonym in a single session after dropping a synonym
with the same name.

A synonym can be used to implement an Attunity Connect virtual data
source by defining synonyms for the tables, views, and stored
procedures you want the virtual data source to make available.

! To create a synonym for a table:

1. Right-click Synonyms under the virtual database and choose New
Synonym in the pop-up menu. The New Synonym wizard opens.

2. Enter a name for the synonym.
3. Click Select by the Target field. The Select Target panel opens.
4. In the Select Target pane all the data sources defined under the

same binding as the virtual database are displayed.
5. Select the table, view or stored procedure you want to assign the

synonym to.
6. Click OK.
7. Click Finish.

Defining Stored
Procedures

An Attunity Connect stored procedure is an SQL statement that
accesses data sources or other stored procedures. The stored procedure
can later be used in an SQL statement, or wherever a subquery can be
specified, for example in a FROM clause.

 803

Virtual Database
1. Right-click Stored Procedures under the virtual database you are
defining and choose New Stored Procedure from the popup menu.
The Create Procedure wizard opens.

2. Specify a unique name, which identifies the stored procedure.
3. Select the query type.
4. Create the stored procedure as follows:

Selecting tables
! In the left pane, expand the data source where the table resides.

"You cannot include tables from any data source shortcuts listed in the
binding. To include a table from a data source defined in the binding that
resides on a different server, manually edit the SQL (using the Attunity
Connect ds: table syntax).

! Select the table and click the right button to move the table to
the right pane of selected tables.

Selecting Columns
! In the left pane, expand the data source and the table

containing the column.
! Open the Columns tab in the right pane.

 804

Virtual Database
! Select the column and click the right button to move the column
to the right pane.

Joining columns from different tables

When a column having the same name as another column selected
from a different table is selected, the Create Joint tables pane
opens.
! Expand the table and select the column you want to join.
! Click the right arrow to move the column to the right pane.
! Optionally, click next and edit the join statement.
! Click Finish.

Adding conditions in a WHERE clause

WHERE clauses are set in the Where tab.
! Select and move the column you are setting the WHERE clause

for to the right pane.
! Set the operator and value conditions as needed.

Grouping Columns

Columns are grouped in the Group tab.
! Select and move the columns you are grouping to the right

pane.

Filtering results using a HAVING clause

The HAVING clause provides conditions for grouping columns.
HAVING clauses are set in the Having tab.
! Select and move the column you are filtering to the right pane.
! Set the operator and value conditions as needed.

Sorting results

Query results are sorted in the Sort tab.
! Select and move the column whose query result you want to sort

to the right pane.
! Select the sorting order as either ascending or descending.

5. Optionally, check Enable manual query editing to fine tune the
query as needed.

6. Click Finish.

Creating Views Attunity Connect enables you to define views for one or more data
source. Views created are read-only and can later be used in a FROM
clause of an SQL query, or wherever a subquery can be specified. An
Attunity Connect view is stored by default in the SYS data source.

" A view cannot accept parameters (compare with Attunity Connect procedures).

 805

Virtual Database
1. Right-click Views under the virtual database you are defining and
choose New View from the popup menu. The Create view wizard
opens.

2. Specify a name which identifies the view.
3. Create the view as follows:

Selecting tables
! In the left pane, expand the data source where the table resides.

"You cannot include tables from any data source shortcuts listed in the
binding. To include a table from a data source defined in the binding that
resides on a different server, manually edit the SQL (using the Attunity
Connect ds: table syntax).

! Select the table and click the right button to move the table to
the right pane of selected tables.

Selecting Columns
! In the left pane, expand the data source and the table

containing the column.
! Open the Columns tab in the right pane.
! Select the column and click the right button to move the column

to the right pane.

 806

Virtual Database
Joining columns from different tables

When a column having the same name as another column selected
from a different table is selected, the Create Joint tables pane
opens.
! Expand the table and select the column you want to join.
! Click the right arrow to move the column to the right pane.
! Optionally, click next and edit the join statement.
! Click Finish.

Adding conditions in a WHERE clause

WHERE clauses are set in the Where tab.
! Select and move the column you are setting the WHERE clause

for to the right pane.
! Set the operator and value conditions as needed.

Grouping Columns

Columns are grouped in the Group tab.
! Select and move the columns you are grouping to the right

pane.

Filtering results using a HAVING clause

The HAVING clause provides conditions for grouping columns.
HAVING clauses are set in the Having tab.
! Select and move the column you are filtering to the right pane.
! Set the operator and value conditions as needed.

Sorting results

Query results are sorted in the Sort tab.
! Select and move the column whose query result you want to sort

to the right pane.
! Select the sorting order as either ascending or descending.

4. Optionally, check Enable manual query editing to fine tune the
query as needed.

5. Click Finish.

Using a Virtual Database

Any data source related task that can be performed on a normal data
source can also be performed on the virtual database. For example, the
user can create a new table in the virtual database or create a new view
using existing tables in the virtual database. The new views are stored
in the repository of the virtual database – they are not stored in any
actual data source.

 807

Virtual Driver
" The user cannot, for example, create a view that includes data that is not part
of the virtual database.

Stored procedures in a virtual database can be either procedures
defined in Attunity Connect or procedures that originate in an actual
data source. The stored procedures are stored in the repository for the
virtual database and are used in the same way, without regard to the
source of the stored procedure (Attunity Connect or a data source stored
procedure).

Virtual Driver
Attunity Connect includes a driver enabling you to access
Attunity Connect proprietary data sources. These data sources are
accessed using the Virtual driver. You can use a Virtual data source to
store the following in a location other than the Attunity Connect default
SYS data source:

! Attunity Connect views (for details, see page 723).
! Attunity Connect stored queries (for details, see page 725).
! Attunity Connect synonyms (for details, see page 730).

The following statement, for example, creates a view on Oracle data and
stores it in a Virtual data source named oraviews (rather than in the
default SYS Virtual data source):

create view oraviews:emps as select * from
ora:employees_us,ora:employees_uk

A Virtual driver is also used to define a virtual database (for details, see
"Virtual Data Source" on page 799).

Setting Up the Binding

! To connect to Virtual data:

The Virtual data source is set using Attunity Studio, in the
Configuration perspective:

! Open the binding under the machine where the data resides.
! Right-click Data sources and choose New data source.
! Specify a name for the data source in the Name field.
! Select Virtual for the Type field.
! Specify the Virtual connect string as follows:

 808

Virtual Driver
Data location – The location where the views and stored procedure
definitions reside. The connect attribute is optional.You must
specify the full path for the directory.
" If a value is not specified, the views and stored procedures are stored in

data source files in the DEF directory under the directory where Attunity
Connect is installed.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

audit="true|false" – Activates an audit file. This property must be set
when including a Virtual data source in a distributed transaction.

auditFile="string" – The audit filename is the concatenation of the value
specified for the "name" attribute of the <table> statement and an
".aud" suffix.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

filepoolCloseOnTransaction="true|false" – Specifies that all files in the
filepool for this data source close at each end of transaction (commit or
rollback).

filepoolSize="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

filepoolSizePerFile="n" – Specifies how many instances of a file from the
filepool may be open concurrently for each file.

HP (Compaq) NonStop Platforms Only

The volume must be audited in order to create audited files.

HP (Compaq) NonStop Platforms Only

enscribeLockMode="read | write" – Specifies the lock mode as either
read only or writable.

enscribeLockType="value" – The LockType property of the Recordset
object:

adLockReadOnly (default) – Read-only mode.

adLockPessimistic – Pessimistic locking.

adLockOptimistic – Optimistic locking.

adLockBatchOptimistic – Optimistic batch updates. Required for
batch update mode as opposed to immediate update mode.

 809

Virtual Driver
lockWait="true|false" – Specifies whether the driver waits for a locked
record to become unlocked or returns a message that the record is
locked.

maxSecondsLockingWait="n" – The maximum amount of time (in
seconds) to wait before a locked record becomes unlocked or returns a
message that the record is locked.

newFileLocation="string" – (Data location in the connect string) The
location where the views and stored procedure definitions reside. The
connect attribute is optional.You must specify the full path for the
directory.

transactionLogFile="string"– The name of the file where the transaction
log is written.

transactions="true|false" – Specifies whether to start the TMF
transactions. Use this property when dealing with unaudited files.

useGlobalFilepool="true|false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.:

OS/390 Platforms Only

newFileSMSDataClass="string" – The data class where views and stored
procedure definitions reside.

newFileSMSStorageClass="string" – The storage class where views and
stored procedure definitions reside.

HP (Compaq) NonStop Platforms Only

newFileVolume="string" – (Data disk in the connect string) Specifies the
file volume where the file is catalogued.

OpenVMS Platforms Only

useRmsJournal="true | false" – Enables using RMS journaling, when
SET FILE/RU_JOURNAL is issued under OpenVMS.

The SET FILE/RU_JOURNAL OpenVMS command marks an RMS file
for recovery unit journaling.

Any RMS table used in a transaction where journaling applies must be
defined with an index. The following SQL statements are used with RMS
journaling, with their OpenVMS equivalents:
Begin – SYS$START_TRANS
Commit – SYS$END_TRANS
Rollback – SYS$ABORT_TRANS

 810

Virtual Tables
Virtual Tables
Data stored hierarchically in a data source (such as information stored
in arrays in RMS) can be flattened to denote the parent child
relationship in the source. For example, a hierarchical query can use an
alias and produce a list containing the children stored in an array called
hchild belonging to each employee listed in an Employee table.

See "Using Virtual Tables to Represent Hierarchical Data" on page 388.

VSAM Driver
Attunity Connect supports VSAM data on IBM OS/390 and z/OS
platforms. VSAM files of type KSDS, ESDS and RRDS are supported.

" The VSAM driver connects directly to the VSAM data and is limited if the VSAM
files are managed by CICS. In this case, it is recommended to use this driver
for read-only access to VSAM files. However, this may not give you adequate
read integrity if some changes are buffered by CICS. Another alternative is to
use the VSAM under CICS driver, described on page 814.

The following sections provide information about the Attunity Connect
VSAM driver:

! Setting Up the Binding
! CREATE TABLE Data Types
! Metadata Considerations

In addition, the VSAM driver provides array handling – see
"Hierarchical Queries" on page 390.

VSAM Data Source Restrictions

When accessing VSAM data, the following restrictions apply:

! Transactions are not supported when accessing VSAM directly.
" When accessing VSAM under CICS, two-phase commit transactions are

supported.

! SQL DELETE operations are not supported for ESDS files.

When accessing VSAM, the following restrictions apply:

! Locking is not supported
! An RRDS file cannot have an alternate index.
! The primary key of a KSDS file must be one segment only (however,

it can be several consecutive fields). You cannot modify the primary
key value of a KSDS file.

 811

VSAM Driver
! To enable Attunity Connect to create and delete VSAM data under
OS/390 and z/OS, run the following JCL:

// IDCSYSIN DD DSN=&&VSAM,DISP=(NEW,DELETE,DELETE),
// SPACE=(TRK,(1)),UNIT=SYSDA,
// DCB=(BLKSIZE=3200,LRECL=80,RECFM=FB)

Setting Up the Binding

! To connect to VSAM data:

The VSAM datasource is set in Attunity Studio, via the Configuration
perspective.

! Open the binding under the machine where the data resides.
! Right-click Datasource and select the New DataSource option.
! Specify a name for the data source in the Name field.
! Select VSAM for the data source Type field.

! Specify the VSAM connect string as follows:

Data HLQ – The high level qualifier where the data files are located.

Disk Volume name – The high level qualifier (volume) where the data
resides.
" The data files are specified in the Data file field in the Attunity Studio

Metadata perspective, in the General tab or, when using NAV_UTIL EDIT,
via the filename attribute. For tables created using the CREATE TABLE
statement, the value specified in the Data directory field is used to create
the data files and is specified in the ADD metadata to locate the data. If a
value is not specified in this field, the data files are written to the DEF high
level qualifier where Attunity Connect is installed.

When SMS is used to manage the volumes, leave this value empty
and edit the XML for the data source (in the Source tab after
right-clicking the binding and choosing Edit Binding). Add the
following lines to the <config> part of the data source definition:

newFileSMSStorageClass="Storage_class"
newFileSMSDataClass="Data_class"

For example:

<datasource name="v1" type="ADD-VSAM">
 <config newFileLocation="Data_HLQ"
 newFileSMSStorageClass="Storage_class"
 newFileSMSDataClass="Data_class"/>
</datasource>

 812

VSAM Driver
Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

filepoolCloseOnTransaction="true|false" – Specifies that all files in the
filepool for this data source close at each end of transaction (commit or
rollback).

filepoolSize="n" – Specifies how many instances of a file from the
filepool may be open concurrently.

newFileLocation="string" – (Data HLQ in the connect string) Specifies
the high level qualifier for the file.

newFileVolume="string" – (Data disk in the connect string) Specifies the
file volume where the file is catalogued.

useGlobalFilepool="true|false" – Specifies whether Attunity Connect
uses a global filepool that can span more than one session.

CREATE TABLE Data Types

The following table shows how Attunity Connect maps data types in a
CREATE TABLE statement to VSAM data types:

CREATE TABLE VSAM

Char[(m)] Char[(m)]

Date Date+time

Double Double

Float Float

Image -

Integer Integer

Numeric[(p[,s])] Numeric(p,s)

Smallint Smallint

Text -

 813

VSAM Driver
Metadata Considerations

The Attunity Connect VSAM driver requires Attunity Connect
metadata.

If the COBOL copybook files describing the data source are available,
you can import the metadata by running the metadata import. The
metadata import is run in the Metadata Import perspective.

The following maps the steps needed to automatically import metadata.

1. Specify the COBOL copybooks are used to create the metadata.
2. Apply filters to the copybooks as needed. The following filters are

available:

ignoreFirst6 – Ignore the first six columns in the COBOL copybook.

ignoreFrom72 – Ignore columns 73 to 80 in the COBOL copybook.

prefixNestedColumns – Prefix all nested columns with the previous
level heading.

In addition, you can specify a search string and the string that will
replace this search string in the generated metadata, and whether
the replacement is dependent on the case of the found string.

The records identified in the COBOL copybooks are displayed. You
can select the records you want to import in the Select Tables pane.
The import manager identifies the names of the records in the
COBOL copybooks that will be imported as tables.

3. The Resolve Table Names pane enables specifying a table name you
want to use for each of the names displayed, according to the
COBOL copybook where the record is defined.

4. In the Assign File Names pane, specify the physical file name for
each record listed, including the high-level qualifiers.

5. The OS/390 machine must be accessed to retrieve information to
build metadata about the indexes.
" If the indexes are not generated, you can define them manually in the

Metadata perspective of Attunity Studio.

6. The metadata generated and can be imported to the machine where
the data source resides. This step can be returned to and redone at
any time.

Tinyint Tinyint

Varchar(m) Varchar(m)

CREATE TABLE VSAM

 814

VSAM Under CICS Driver
" When reopening an import item in the Metadata Import explorer and
choosing Manual Import. The import wizard opens, displaying what has
previously been imported.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

" The following are specific metadata requirements:

The dbCommand in the <table> statement must specify the volume for VSAM
files created via Attunity Connect:
<dbCommand>volume</dbCommand>

The dbCommand of all alternate keys must include the filename of the
alternate key. For example:
<key name="AccountNo" size="4">
 <dbCommand>VSAM.DATA.ACCOUN01.IO.PATH</dbCommand>
 <segments>
 ...
 </segments>
</key>

VSAM Under CICS Driver
Attunity Connect supports VSAM data on IBM OS/390 and z/OS
platforms. VSAM files of type KSDS, ESDS and RRDS are supported.

" The VSAM under CICS driver all access to VSAM by making EXCI calls to a
CICS program provided as part of the Attunity Connect installation. This agent
CICS program does the actual VSAM reads and writes from within CICS.

The following sections provide information about the Attunity Connect
VSAM driver:

! Setting Up the Binding
! Transaction Support
! Metadata Considerations

In addition, the VSAM under CICS driver provides array handling – see
"Hierarchical Queries" on page 390.

" DELETE operations are not supported for ESDS files

When accessing VSAM under CICS, the following additional restrictions
apply:

! Using an alternate index to access an ESDS file is not supported.
! A non-unique alternate index for a KSDS file is not supported.

 815

VSAM Under CICS Driver
Setting Up the Binding

! To connect to VSAM data under CICS:

The VSAM (CICS) datasource is set in Attunity Studio, via the
Configuration perspective.

! Open the binding under the machine where the data resides.
! Right-click Datasource and select the New DataSource option.
! Specify a name for the data source in the Name field.
! Select VSAM (CICS) for the data source Type field.

! Specify the VSAM (CICS) connect string as follows:

CICS Application ID – The VTAM applid of the CICS target system.
The default value is CICS. This parameter is used when updating
VSAM data. You can determine this value by activating the CEMT
transaction on the target CICS system. On the bottom right corner
of the screen appears the legend APPLID=target_system.

Transaction ID – The mirror transaction within CICS that receives
control via MRO, which transfers the transaction from the
Attunity Connect environment to CICS. The default value is EXCI.

VTAM Netname – The VTAM netname of the specific connection being
used by EXCI (and MRO) to relay the program call to the CICS target
system. For example, if you issue to CEMT the following command:

CEMT INQ CONN

you see on the display screen that the netname is BATCHCLI (this
is the default connection supplied by IBM upon the installation of
CICS). The default value is ATYCLIEN.

You see on the display screen that the netname is BATCHCLI (this
is the default connection supplied by IBM upon the installation of
CICS). If you plan to use the IBM defaults, then specify BATCHCLI
as the VTAM_netname parameter, otherwise, define a specific
connection (with EXCI protocol) and use the netname you provided
there for this parameter.
" Attunity provides a netname, ATYCLIEN, which can be used after the

following procedure is followed:

Either, use the JCL in the NAVROOT.USERLIB(CICSCONF) member to
submit the DFHCSDUP batch utility program to add the resource
definitions to the DFHCSD dataset (see the IBM CICS Resource Definition
Guide for further details) or, use the instream SYSIN control statements in
the NAVROOT.USERLIB(CICSCONF) member as a guide to defining the
resources online using the CEDA facility.

After the definitions have been added (via batch or using the CEDA

 816

VSAM Under CICS Driver
facility), logon to CICS and issue the following command to install the
resource definitions under CICS:

CEDA INST GROUP(ATYI)

Henceforth, specify "ATYCLIEN" as the NETNAME.

Program Name – The UPDTRNS program that is supplied by
Attunity Connect to enable updating VSAM data. To use the
UPDTRNS program, copy the program from NAVROOT.LOAD to a
CICS DFHRPL library (such as 'CICS.USER.LOAD') and then define
the UPDTRNS program under CICS using any available group such
as ATY group:

CEDA DEF PROG(UPDTRNS) G(ATY) LANG(C) DA(ANY)
DE(ATTUNIT VSAM UPDATE PROG)
"NAVROOT is the high level qualifier where Attunity Connect is installed.
After defining the UPDTRNS program to a group, install it as
follows:
CEDA IN G(ATY)

Trace Queue – The name of queue for output which is defined under
CICS when tracing the output of the UPDTRNS program. When not
defined, the default CICS queue is used.

Driver Configuration After setting the binding, you can set driver properties: right-click the
data source and choose Edit data source and then select the Properties
tab. The following configuration properties are available:

allowUpdateKey="true|false" – Specifies whether the key is updatable.

cicsProgname="string" – (Program Name in the connect string) The
UPDTRNS program that is supplied by Attunity Connect to enable
updating VSAM data.

cicsTraceQueue="string" – (TraceQueue in the connect string) The name
of queue for output which is defined under CICS when tracing the
output of the UPDTRNS program. When not defined, the default CICS
queue is used.

disableExplicitSelect="true|false" – Set to "true" to disable the
ExplicitSelect ADD attribute; every field is returned by a "SELECT *
FROM..." statement.

exciTransid="string" – (Transaction ID in the connect string) The CICS
TRANSID. This value must be EXCI or a copy of this transaction.

targetSystemApplid="string" – (CICS Application ID in the connect
string) The VTAM applid of the CICS target system.

TransactionType="true|false" – Specifies whether the key is updatable.

 817

VSAM Under CICS Driver
vtamNetname="string" – (VTAM Netname in the connect string) The
VTAM netname of the specific connection being used by EXCI (and MRO)
to relay the program call to the CICS target system.

BATCHCLI is the default connection supplied by IBM upon the
installation of CICS. If you plan to use the IBM defaults, then specify
BATCHCLI as the VTAM_netname parameter, otherwise, define a
specific connection (with EXCI protocol) and use the netname you
provided there for this parameter.

" Attunity provides a netname, ATYCLIEN, which can be used after the following
procedure is followed:

Either, use the JCL in the NAVROOT.USERLIB(CICSCONF) member to
submit the DFHCSDUP batch utility program to add the resource definitions to
the DFHCSD dataset (see the IBM CICS Resource Definition Guide for further
details) or, use the instream SYSIN control statements in the
NAVROOT.USERLIB(CICSCONF) member as a guide to defining the
resources online using the CEDA facility.

After the definitions have been added (via batch or using the CEDA facility),
logon to CICS and issue the following command to install the resource
definitions under CICS:

CEDA INST GROUP(ATYI)

Henceforth, specify "ATYCLIEN" as the NETNAME.

Transaction Support

The Attunity Connect VSAM under CICS driver supports two-phase
commit and can fully participate in distributed transactions when the
transaction environment parameter convertAllToDistributed is set to
true.

To use Attunity Connect with 2PC, you must have RRS installed and
configured and have CICS TS 1.3 or higher installed.

" If RRS is not running, the data source can participate in a distributed
transaction, as the only one-phase commit data source, if the logFile
parameter is set to NORRS in the transactions node of the binding properties
for the relevant binding configuration, in the Configuration perspective of the
Attunity Studio. The XML representation is as follows:

<transactions logFile="log,NORRS" />

where log is the high level qualifier and name of the log file. If this parameter is
not specified, the format is the following:

<transactions logFile=",NORRS" />

 818

VSAM Under CICS Driver
That is, the comma must be specified.

For further details about setting up a data source to be one-phase commit in a
distributed transaction, refer to "The CommitConfirm Table" on page 779.

To use two-phase commit capability to access data on the OS/390 or z/OS
machine, define every library in the ATTSRVR JCL as an
APF-authorized library.

" To define a DSN as APF-authorized, in the SDSF screen enter the command:
"/setprog apf,add,dsn=navroot.library,volume=ac002"
where ac002 is the volume where you installed Attunity Connect and
NAVROOT is the high level qualifier where Attunity Connect is installed.

If the Attunity Connect installation volume is managed by SMS, when defining
APF-authorization enter the following command in the SDSF screen:
"/setprog apf,add,dsn=navroot.library,SMS"

Make sure that the library is APF-authorized, even after an IPL (reboot) of the
machine.

" To use distributed transactions from an ODBC-based application, ensure that
AUTOCOMMIT is set to 0.

Metadata Considerations

The Attunity Connect VSAM under CICS driver requires Attunity
Connect metadata.

If the COBOL copybook files describing the data source are available,
you can import the metadata by running the metadata import in the
Metadata Import perspective of Attunity Studio.

The following maps the steps needed to automatically import metadata
Specify the COBOL copybook files.

1. Specify the COBOL copybooks are used to create the metadata.
2. Apply filters to the copybooks as needed. The following filters are

available:

COMP_6 Switch – The MicroFocus COMP-6 compiler directive.
Specify either COMP-6’1’ to treat COMP-6 as a COMP data type or
COMP-6’2’ to treat COMP-6 as a COMP-3 data type.

Compiler Source – The compiler vendor.
Storage Mode – The MicroFocus Integer Storage Mode. Specify
either NOIBMCOMP for byte storage mode or IBMCOMP is for word
storage mode.
ignoreFirst6 – Ignore the first six columns in the COBOL copybook.

ignoreFrom72 – Ignore columns 73 to 80 in the COBOL copybook.

 819

VSAM Under CICS Driver
prefixNestedColumns – Prefix all nested columns with the previous
level heading.

In addition, you can specify a search string and the string that will
replace this search string in the generated metadata, and whether
the replacement is dependent on the case of the found string:

Find – Searches for the specified value.

Ignore Case Sensitivity – Specifies whether to be sensitive to the
search string case.

Replace with – Replaces the value specified for Find with the value
specified here.

The records identified in the COBOL copybooks are displayed. You
can select the records you want to import in the Select Tables pane.
The import manager identifies the names of the records in the
COBOL copybooks that will be imported as tables.

3. The Resolve Table Names pane enables specifying a table name you
want to use for each of the names displayed, according to the
COBOL copybook where the record is defined.

4. In the Assign File Names pane, specify both the physical file name
and the logical file name for each record listed.

5. The OS/390 machine must be accessed to retrieve information to
build metadata about the indexes.
" If the indexes are not generated, you can define them manually in the

Metadata perspective of Attunity Studio.

6. The next step (Assign Index File Names) specify next to the
alternate indexes for the table the logical file name for the index, for
each table listed.

7. The metadata generated and can be imported to the machine where
the data source resides. This step can be returned to and redone at
any time.
" When reopening an import item in the Metadata Import explorer and

choosing Manual Import. The import wizard opens, displaying what has
previously been imported.

For additional information regarding how to import metadata using the
Metadata Import perspective, refer to the "Metadata Import
Perspective" on page 448.

" The following are specific metadata requirements:

The filename attribute must specify the CICS logical name.

The dbCommand in the <table> statement must specify the VSAM file type:
<dbCommand>file_type</dbCommand>
where file_type can be one of: ESDS, RRDS or KSDS.

 820

VSAM Under CICS Driver
The dbCommand of all primary and alternate keys must include the CICS
logical name of the alternate key. For example:
<key name="EMP-ID" size="8" unique="true">
 <dbCommand>CICS_logical_filename</dbCommand>
 <segments>
 ...
 </segments>
</key>

You can use the Metadata perspective of Attunity Studio to define new
metadata and update the statistics for the data.

 821

Workspace
Workspace
A workspace defines the server processes and environment that is used
for the communication between the client and the server machine for
the duration of the client request. A workspace definition includes the
data sources and adapters that can be accessed as well as various
environment variables.

The information for the workspace exists in the Attunity Connect
Repository.

Workspace Configuration

The following section describes how to configure the workspaces
handled by the daemon. A workspace is defined by:

! A startup script. This is the script used to start server processes for
the daemon. Attunity Connect includes a default startup script,
which it is recommended to use.

! The server mode.
! A set of security parameters, including a range of port numbers for

access through a firewall.
! A set of logging options.

" The binding configuration of the client machines use the workspace names
defined in this section to specify the workspaces they (the clients) use.

Workspaces are defined in the Configuration perspective of Attunity
Studio under the Daemon to which they belong.

The parameters of an existing workspace are be edited within the
Daemon editor. This is described in "Daemon Configuration" on page
227.

Defining a New
Workspace

When you defining a new workspace, you can either copy the values of
an existing workspace on the same daemon or have Attunity Connect
set it’s default values.

Workspace parameters are set in the Attunity Studio Configuration
perspective under the daemon that manages it.

The parameters of a new workspace can either be copied from an
existing workspace on the same daemon or set as the Attunity Connect
default. For example for a workspace on windows the serverMode is
defined as singleClient, and the startupScript is defined as nav_util
srv.

 822

Workspace
To define new workspace parameters from an existing workspace, click
the ... (ellipsis) button and select the workspace from the list.

In the XML format the following parameters are available:

! name=workspace_name
The name used to identify the workspace. The workspace name is
composed of letters, digits, underscores ("_") or hyphens ("-").

! description=workspace_short_description
A short description of the workspace.

HP (Compaq) NonStop and OS/390 or z/OS Platforms

Limit the name of a workspace to five characters so that a system
environment file, named workspaceDEF, does not exceed eight
characters (see "Workspace for HP NonStop Server Environment
File (HP (Compaq) NonStop Only)" on page 823 or "Workspace for
OS/390 Server Environment File (OS/390 and z/OS Only)" on page
824). Workspace names greater than five characters are truncated
to five characters. Thus, the default workspace, Navigator, will look
for a system environment called NavigDEF.

 823

Workspace for HP NonStop Server Environment File (HP (Compaq) NonStop Only)
Workspace for HP NonStop Server Environment File (HP
(Compaq) NonStop Only)

You can configure the Attunity Connect server process for a workspace
through a HP (Compaq) NonStop environment file. The file must be
named workspaceDEF and reside in the subvolume where
Attunity Connect is installed. On start up, a server process for
workspace abcd looks for the file abcdDEF in the subvolume where
Attunity Connect is installed.

" If the workspace name is longer than five characters, the HP (Compaq)
NonStop environment file name must be truncated to five characters. Thus, the
default workspace, Navigator, will look for a file called NavigDEF.

The workspaceDEF file has the following format:

[PARAM]
paramname1=paramvalue1
paramname2=paramvalue2
...
paramnameN=paramvalueN

[DEFINE class name]
attr1=value1
attr2=value2
...
[DEFINE class name]
...

[PARAM] Section This section of the file defines parameters similar to environment
variables. Each line defines a parameter and specifies a value for it.
These variables are available to the Attunity Connect server processes.
This section has the following format:

[PARAM]
paramname1=paramvalue1
paramname2=paramvalue2
...
paramnameN=paramvalueN

[DEFINE class name]
Sections

Each [DEFINE class name] section defines a group of HP (Compaq)
NonStop environment parameters, specifying attributes and their
values. This section has the following format:

[DEFINE class name]
attr1=value1
attr2=value2
...

 824

Workspace for OS/390 Server Environment File (OS/390 and z/OS Only)
where class name refers to DEFINE classes such as MAP (which uses
only one attribute, FILE=xxx), and SEARCH (which uses and specifies
multiple attributes).

Some [DEFINE] sections need a Defaults clause, which you can specify
in the relevant section as follows:

DEFAULTS=…

Example

[PARAM]
name1 = value1
name2 = value2

[DEFINE MAP =PAK]
FILE = $d0117.dev.attconpk

[DEFINE SEARCH =program_search]
DEFAULTS = $vol.subvol
SUBVOL0 = $d0117.nav
SUBVOL1 = ($d0117.dev,$D0117.SYSTEM)

Workspace for OS/390 Server Environment File (OS/390 and
z/OS Only)

You can configure the Attunity Connect server process for a workspace
through an OS/390 and z/OS environment file. The file must be named
NAVROOT.DEF.workspaceDEF where NAVROOT is the high level
qualifier where Attunity Connect is installed. On start up, a server
process for workspace abcd looks for the file NAVROOT.DEF.abcdDEF.

" If the workspace name is longer than five characters, the OS/390 and z/OS
environment file name must be truncated to five characters. Thus, the default
workspace, Navigator, will look for a file called NavigDEF.

The workspaceDEF server environment file has the following format:

<ENVIRONMENT>
SUBSYSTEM=paramvalue1
PLAN=paramvalue2

 825

Writing Queries Using Attunity Connect SQL
Writing Queries Using Attunity Connect SQL
Attunity Connect enables users from any client platform to use
standard SQL to access both relational and non-relational data. For
example, a user on a PC can issue an SQL join across IMS/DB and VSAM,
as well as across relational databases such as Oracle or Sybase.

Attunity Connect SQL extensions have the following rules and
limitations:

! You cannot use Attunity Connect reserved keywords in SQL for
table and column names (see page 650).

! The following size limitations exist in Attunity Connect SQL:

! Comments can be included as part of the SQL. Comments are
bounded by /* and */. If a comment is greater than the limit of 350
characters, break it up over a number of lines.

! Quotation marks ("") or square brackets ([]) can be used to quote
identifiers such as table names and column names.

Limitation
Maximum
Length

Length of an identifier (table or column name) 64

Length of a stringa

a. The length can be modified in one of the following ways:

By specifying a value for the tokenSize parameter within the
<queryProcessor> group in the Attunity Connect environment.

Specify a question mark (?) instead of the string. When prompted for
the data type of the value specify C (for cstring).

350

Number of parameters in a query 50

Level of nesting of function calls 20

Level of nesting of nested queries 10

Length of a LIKE mask operand 255

Length of a comment line 350

 826

Writing Queries Using Attunity Connect SQL
Writing Efficient SQL The following tips can improve the efficiency of queries:

! Use views and stored query procedures (see "The CREATE VIEW
Statement" on page 723 and "The CREATE PROCEDURE
Statement" on page 725).

! Use forward-only and read-only cursors.
! Batch SQL statements together in a single statement. For details,

see below.
! Use the HINT clause, specifying the optimization strategy you want

used for the query (see page 695 for details).

You can test connections and SQL interactively using NAV_UTIL
EXECUTE. For details, see "NAV_UTIL EXECUTE" on page 512.

 827

XML
XML
Attunity Connect uses XML in the following situations:

! To manage information in the repository. Information can be
exported from the repository and imported into the repository via
XML documents.

! As a frontend, to enable applications to access Attunity Connect.
This frontend is implemented as an adapter using the Attunity
Connect XML protocol (ACX). ACX is an XML-based communication
protocol that enables applications to access the Attunity Connect
Query Processor as an application.

Also see: "Attunity Connect XML Protocol (ACX)" on page 105, "XML Transports", below.

XML Transports
Attunity Connect accepts XML request documents from any application
as long as the XML is formatted as described in "ACX Request and
Response Documents" on page 106. After processing the XML request,
Attunity Connect returns an XML response document to the requesting
client application.

XML request and response documents are passed between the
application and Attunity Connect via the TCP/IP or (over the web) HTTP
transport.

Passing XML Documents via TCP/IP

! To send XML via the TCP/IP transport, complete the following steps:

1. Connect to the remote machine.
2. Send the XML, in which the first 4 bytes specify the length of the

document and the remainder is the XML itself.

The length format is defined as a signed 32-bit integer in network
format (big-endian).

If the response from the remote machine includes
"server.redirect", it also includes the following:

<info>ip:port</info>

where:

ip – The IP address of a remote machine to which you redirect the
XML.

 828

XML Transports
port – The port on the remote machine through which the
connection is made.

For details about server.redirect, see "The connect Verb" on page
107.

3. Open a new connection and send the XML to this ip:port location.

A sample xmldemo program for passing XML via TCP/IP, and its
relevant source files, are located in NAVROOT\samples\Demos\xml.

Passing XML Documents via HTTP (Using the NSAPI Extension)

To configure NSAPI to handle the Attunity Connect XML documents
transferred to it by the Attunity Connect daemon, complete the
following steps.

1. Ensure that the nvNsapi.dll exists on the server.
2. Create the NSAPI initialization file, NSAPI.INI, as follows:

alias=URL_address:port
...

where:

alias – An alias for the remote machine.

URL_address – The address of the remote machine.

port – The port through which the connection is established.
Example

dev=osf.acme.com:2551
prod=sun.acme.com:2551

3. Make the following modifications to the OBJCNF file:
! Add to the init section the following line:

Init fn="load-modules"
shlib="navroot/bin/nvNsapi.dll"
funcs="xml-form,url-line-req-xml"

! Add to the NameTransaction section the following lines:

NameTrans fn="pfx2dir" from="/nvNsapi.dll"
dir="navroot/bin" name="nvNsapi.dll"

! Create the object having the name defined in step 2, and within
the object define the function’s xml-form, which takes as a
parameter the location of the nvNsapi.ini file:

<object name="nvNsapi.dll">
 Service fn="url-line-req-xml"
</object>

 829

XML Transports
4. In the MIME.TYPE file, add the following line:

type=magnus-internal/xmlform exts=xml

	About this Manual
	Intended Audience
	Related Information
	Typographic Conventions
	Syntax Diagram Conventions
	Related Documentation

	ACX
	Adabas DDM Import
	Adabas Driver
	Setting Up the Binding
	Driver Configuration Using Predict Metadata
	Driver Configuration (When Using ADD Metadata)

	Checking the Adabas Environment
	Mapping Adabas Data Types
	Generating a Trace File
	Transaction Support
	Locking
	Metadata Considerations
	Handling More than One Logical Table in the Same Physical File

	Adapters
	ADD
	ADD Supported Data Types
	ADD Syntax
	The <table> Statement
	Table Attributes

	The <dbCommand> Statement
	The <fields> Statement
	The <field> Statement
	Field Attributes

	The <group> Statement
	Group Attributes

	The <variant> Statement
	Variant Attributes

	The <case> Statement
	Case Attributes

	The <keys> Statement
	The <key> Statement
	Key Attributes

	The <segments> Statement
	The <segment> Statement
	Segment Attributes

	The <foreignKeys> Statement
	The <foreignKey> Statement
	foreignKey Attributes

	The <primaryKey Statement>
	The <pKeySegment> Statement
	pKeySegment Attributes

	The <procedure> Statement
	Procedure Attributes

	The <parameters> Statement

	ADDON file
	ADO
	ADO Methods and Properties
	ADO Schema Recordsets
	Optimizing ADO

	ADO Connect String
	Connect String Parameters

	APIs to Application Adapters
	Application Adapter
	Application Adapter Definition
	The adapter Element
	The interaction Element
	The schema Element
	The enumeration Element
	The record Element
	Defining Hierarchies

	The variant record Element
	The field Element
	Attunity Connect Analyzer

	Attunity Connect Environment Prompt (Windows Only)
	Attunity Connect Procedure
	Attunity Studio
	Opening a Perspective

	Attunity Studio Preferences
	Attunity Connect XML Protocol (ACX)
	ACX Request and Response Documents
	Request Document
	Response Document

	Connection Verbs
	The connect Verb
	The setConnection Verb
	The disconnect Verb
	The reauthenticate Verb
	The cleanConnection Verb

	Transaction Verbs
	The setAutoCommit Verb
	The transactionStart Verb
	The transactionPrepare Verb
	The transactionCommit Verb
	The transactionRollback Verb
	The transactionRecover Verb
	The transactionForget Verb
	The transactionEnd Verb

	The execute Verb
	Metadata Verbs
	The getMetadataItem Verb
	The getMetadataList Verb

	The ping Verb
	The exception Verb
	The Exception Element

	BASIC Mapfiles Import (OpenVMS Only)
	Batching SQL Statements
	Binding Configuration
	<datasources> Statement
	<datasource> Statement
	<remoteMachines> Statement
	<remoteMachine> Statement
	<adapters> Statement
	<adapter> Statement
	Sample Binding

	BizTalk Adapter
	The Adapter Definition for a BizTalk Adapter

	Btrieve DDF File Import (Windows Only)
	Btrieve Driver
	Setting Up the Binding
	Driver Configuration

	Mapping Btrieve Data Types
	Transaction Support
	Metadata Considerations

	C and COBOL APIs to Applications
	Using the Attunity Connect API to Invoke Application Adapters
	Using the API with C Programs
	Using the API with COBOL Programs
	The APIs

	Connection APIs
	The Connect Function
	The Clean Connection Function
	The Disconnect Function
	The Reauthenticate Function
	The Retry Connection Function

	Transaction APIs
	The Set Autocommit Function
	The Transaction Commit Function
	The Transaction Rollback Function
	The Execute Function
	The Execute Batch Function
	The Get Adapter Schema Function
	The Get Event Function

	The Ping Function
	The Get Error Function
	Example Programs Using Attunity Connect APIs to Invoke Application Adapters

	Change Data Capture
	Chapters
	CICS as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
	Configuring the IBM OS/390 Machine
	Using a CICS Transaction to Invoke an Application Adapter
	COBOL

	Calling the Transaction
	The Transaction Output

	CICS Application Adapter (OS/390 and z/OS Only)
	Setting Up the Binding
	The Adapter Definition
	Importing an Adapter Definition

	Transaction Support

	CISAM Driver
	Setting Up the Binding
	Driver Configuration

	CREATE TABLE Data Types
	Transaction Support
	Locking
	Metadata Considerations

	Client Machine
	COBOL APIs to Applications
	COBOL Copybook Import for Data Source Metadata
	COBOL Copybook Import for Application Adapter Definitions
	COBOL Data Types to Attunity Data Types
	Codepage
	COM Application Adapter
	Registering the COM Application
	Setting Up the Binding
	The Adapter Definition for a COM Adapter
	The COM Adapter Definition

	COM Adapter Supported Data Types
	Defining Data Types

	ComACX – Attunity Connect COM Component for XML
	Communication Errors
	How Communication Between Machines is Handled
	Resolving Specific Errors

	Configuration Perspective
	Bindings
	Daemons
	Users

	Configuration Properties
	Connect String
	Checking a Connection

	Connection Pooling
	Copying Data From One Table to Another
	Daemon
	Starting the Daemon
	HP (Compaq) NonStop, OpenVMS, OS/400, UNIX and Windows Platforms
	OS/390 and z/OS Platforms
	Starting Multiple Daemons

	Shutting Down the Daemon
	Checking that a Daemon is Running

	Daemon Command Interface
	Daemon Configuration
	The Daemon Definition
	Daemon Control
	Daemon Logging
	Daemon Security

	The Workspace Definition
	Workspace Info
	Workspace Server
	Workspace Logging
	Workspace Security
	Workspace Governing
	Disabling a Workspace

	Sample Daemon Configuration

	Data Drivers
	Data Source
	Data Source Shortcut
	Database Adapter
	Setting Up the Binding
	The Adapter Definition for a Database Adapter
	The Database Adapter Definition

	Using the Database Adapter

	DB2 Driver
	Setting Up the Binding
	OS/390 and z/OS Platforms
	OS/400 Platforms
	UNIX and Windows Platforms

	Mapping DB2 Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	DBMS Driver
	Setting Up the Binding
	Driver Configuration

	Mapping DBMS Data Types
	Database Model Mapping Requirements
	Virtual Driver Columns
	Using Virtual Driver Columns

	Transaction Support
	Locking
	Metadata Considerations
	Resolving Errors

	DBMS Import (OpenVMS Only)
	Delete Command in Attunity Studio
	Deleting Repository Objects
	Demo Database
	DISAM Driver
	Setting Up the Binding
	Driver Configuration

	CREATE TABLE Data Types
	Locking
	Metadata Considerations

	Drill-down Operations
	Driver Configuration Properties
	Drivers
	Editing Repository Objects
	Encryption
	Enscribe Metadata Import from COBOL Copybooks (HP (Compaq) NonStop Only)
	Enscribe COBOL and DDL Import (HP (Compaq) NonStop Only)
	Enscribe Driver (HP (Compaq) NonStop Only)
	Setting Up the Binding
	Driver Configuration

	CREATE TABLE Data Types
	Creating Enscribe Files
	Transaction Support
	Locking
	Metadata Considerations

	Enscribe TAL and DDL Import (HP (Compaq) NonStop Only)
	Environment Properties
	comm Category
	debug Category
	miscellaneous Category
	odbc Category
	oledb Category
	optimizer Category
	queryProcessor Category
	transactions Category
	tuning Category
	Dynamically Changing an Environment Property

	Errors
	Attunity Connect Standard Error Codes
	Attunity Connect Trace Return Codes
	10 to 14: Sort Warnings
	15 to 25: Virtual Driver Warnings and Other Return Codes
	30 to 60: General Warnings
	61 to 80: Distributed Transaction Warnings
	-200 to -249: Query Processor Compiler and Parser Errors
	-250 to -280: Syntax Errors During Lex Operation
	-280 to -283: QTREE Processing
	-400 to -500: AU Imported Code for Math and Convert
	-501 to -550: Sort Return Codes
	-1000 to -1050: Query Processor Return Codes
	-1050 to -1199 Virtual driver Return Codes
	-1200 to -1499: General
	-1500 to -1550: Optimizer Return Codes
	-1601 to -1650: Communication Return Codes
	-1651 to -1700: Administration Return Codes (license, user profile,...)
	-1800 to -1900: Distributed Transactions and Recovery Errors
	-2000 to-2099: Memory
	-2100 to -2500: Drivers
	-3000 to -3100: ADAQL Driver
	-4000 to -4010: GST

	Events
	Creating an Adapter Definition for the Event
	Handling the Event
	Setting Access Rights to an Event Queue
	The Event Router Configuration
	The Router Workspace
	The Router Configuration

	Exporting From the Repository
	Extended Native Data Source Metadata
	Firewalls
	Flat Files Driver
	Setting Up the Binding
	Driver Configuration

	Metadata Considerations

	Heterogeneous Joins
	Hierarchical Data
	Flattening Hierarchical Data Using SQL
	Using Virtual Tables to Represent Hierarchical Data
	Creating Virtual Tables

	Hierarchical Queries
	Chapter
	Generating Hierarchical Results Using SQL
	Hierarchical Queries From an Application
	Drill-down Operations in an ADO Application
	Drill-down Operations in an ODBC Application
	ODBC Drill-down Operations Using RDO
	ODBC Drill-down Operations Using C
	Drill-down Operations in a Java Application

	Hot Server
	Impersonation
	Import Utilities
	Importing to the Repository
	IMS/DB DBCTL (OS/390 and z/OS Only)
	Setting Up the Binding
	Driver Configuration

	Metadata Considerations

	IMS/DB DBDC Driver (OS/390 and z/OS Only)
	Setting Up OTMA
	Setting Up the Binding
	Driver Configuration

	Metadata Considerations

	IMS/DB DLI Driver (OS/390 And Z/OS Only)
	Setting Up the Binding
	Driver Configuration

	Setting Up the Daemon Workspace
	Metadata Considerations

	IMS/TM as a Client – Invoking an Application Adapter (OS/390 and z/OS Only)
	Setting Up the IBM OS/390 Machine
	Setting Up a Call to the Transaction
	Calling the Transaction
	C
	COBOL Call

	The Transaction Output

	IMS/TM Application Adapter (OS/390 and z/OS Only)
	Setting Up OTMA
	Setting Up the Binding
	The Adapter Definition
	Transaction Support
	Setting Up the Binding
	Driver Configuration
	Checking the Informix Installation

	Mapping Informix Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	Ingres and Ingres II (OpenIngres) Drivers
	Setting Up the Binding
	Driver Configuration
	Checking Ingres Environment Variables

	Mapping Ingres and Ingres II Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	Invoking APIs to Applications
	IRPCD
	Isolation Levels
	JCA
	JDBC
	Joining Data from Multiple Data Sources in a Single Query
	Languages
	Legacy Plug Adapter
	Setting Up the Binding
	The Adapter Definition for a Legacy Plug Adapter

	Local Data
	LOCAL_COPY Metadata (Metadata Caching)
	Locking Considerations
	Optimistic Locking
	Pessimistic Locking
	No Locking
	JDBC Locking Considerations
	ODBC Locking Considerations
	ADO Locking Considerations

	Logging

	Metadata
	Data Sources
	Applications
	Events

	Metadata ADD Utilities
	Metadata Caching
	Metadata Import Perspective
	Importing Adapter Metadata
	Importing Data Source Metadata
	Importing Event Metadata

	Metadata Import Utilities for Data Sources
	Metadata Perspective
	Adapter Metadata
	General Tab
	Interaction Tab
	Interaction Advanced Tab
	Schema General Tab
	Schema Record Tab
	Source Tab

	Data Source Metadata
	Metadata for Data Sources that Do Not Require Attunity Connect Metadata
	General Tab
	Columns Tab
	Indexes Tab
	Statistics Tab
	Source Tab

	National Language Support (NLS)
	Setting NLS Support
	NLS Support on OS/400 Platforms
	NLS Support at the Field Level
	NLS Support Across Machines with Different Codepages
	NLS and XML
	NLS and 7-Bit Hebrew
	SQL Functions For Use With Graphic Strings
	Mapping to an Unsupported Codepage

	Native Metadata
	Natural/CICS Transactions (OS/390 and z/OS Only)
	Writing a Natural Remote Procedure Call
	The General Structure of a Subprogram

	Defining the Natural/CICS Transaction to Attunity Connect
	Setting Up the Binding
	Driver Configuration
	Metadata Considerations
	Specifying the Program to Execute
	Specifying the Input and Output Parameters

	Maintaining the CICS Environment for the Attunity Connect Natural Agent
	TTENQ
	PTASK
	NTASK
	MTASK
	NFRONT
	NBACK
	NATNUC
	PDELAY
	LDELAY
	PXINTQ
	PXOUTQ
	PXCLTQ
	PXPTRQ
	PXLWRQ
	PXNWRQ
	MAXTH
	MSG
	TDQID
	MAXNTM
	MAXMSG
	MXINAC
	SECMODE
	AUTO
	SENDER
	OUTDEST
	TBTCH
	LOGON
	USERID
	PASSWD
	MONITR
	ADDPARM
	TSRECL
	DYNPARM

	NAV.SYN
	NAV_UTIL
	NAV_UTIL ADD_ADMIN
	NAV_UTIL AUTOGEN
	NAV_UTIL CHECK
	NAV_UTIL CODEPAGE
	NAV_UTIL DELETE
	Deleting Data Source Objects from the Repository

	NAV_UTIL EDIT
	NAV_UTIL EXECUTE
	Using NAV_UTIL Execute
	Executing SQL
	Facilities Available in the NavSQL Environment

	NAV_UTIL EXPORT
	NAV_UTIL GEN_ARRAY_TABLES
	NAV_UTIL IMPORT
	NAV_UTIL INFO
	NAV_UTIL LOCAL_COPY
	NAV_UTIL PASSWORD
	NAV_UTIL REGISTER
	NAV_UTIL TEST
	NAV_UTIL UPD_DS
	NAV_UTIL UPD_SEC
	NAV_UTIL UPDATE
	NAV_UTIL Utility
	Nav_Util Options
	Running Nav_Util
	Running Nav_Util on a Remote Machine from a Local Machine
	Running Nav_Util from a Shell Environment
	Connecting to a Remote Machine
	Quitting the Shell Environment

	Running Nav_Util on a Java Machine

	NAV_UTIL VERSION
	NAV_UTIL VIEW
	NAV_UTIL XML
	NAVDEMO
	The Demo Database
	TPART Table
	SUPPLIER Table
	PARTSUPPP Table
	CUSTOMER Table
	TORDER Table
	LINEITEM Table
	NATION Table
	REGION Table

	Navmap File (HP (Compaq) NonStop Only)
	NAVROOT
	Network Communications

	ODBC
	ODBC API Conformance
	Minimum Requirements of an ODBC Provider
	Asynchronous Execution
	General Information
	Conformance Information
	SQL Syntax Information

	ODBC Data Types
	ODBC Schema Rowsets
	Attunity Connect-Specific SQLGetInfo fInfoType
	Attunity Connect-Specific SQLColAttributes fOption
	Support for Non-C Applications on Platforms Other than NT

	ODBC Connect String
	Defining a DSN
	Connect String Parameters

	ODBC Driver
	Setting Up the Binding
	ODBC data on a Windows Platform
	ODBC data on a non-Windows Platform
	Driver Configuration

	Mapping ODBC Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels

	Offline Design Mode
	OLE DB
	OLE DB Methods
	OLE DB Data Types
	OLE DB Properties
	Initialization Properties
	Data Source Properties
	Data Source Information Properties
	Session Properties
	Rowset Properties
	Attunity Connect-specific Properties

	OLE DB Schema Rowsets

	OLEDB-FS Driver
	Setting Up the Binding
	Driver Configuration

	Data Provider Requirements
	Data Source Properties
	Mapping OLE DB Data Types
	Transaction Support
	Isolation Levels

	OLEDB-SQL Driver
	Setting Up the Binding
	Driver Configuration

	Data Provider Requirements
	Mapping OLE DB Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels

	One-Phase Commit
	Oracle Driver
	Setting Up the Binding
	Driver Configuration
	Syntax Settings
	Checking Oracle Environment Variables

	Mapping Oracle Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	Passthru SQL
	For a Specific SQL Statement
	Via ADO
	Via RDO and DAO

	For all SQL During a Session
	Via ADO/OLE DB
	Via ODBC

	Passthru Queries as Part of an SQL Statement

	Pathway Adapter (HP (Compaq) NonStop Only)
	Setting Up the Binding
	Driver Configuration

	The Adapter Definition for a Pathway
	Support for TMF Transactions

	Perspectives
	Prestarted Servers
	Preferences
	Procedure Driver (Application Connector)
	Setting Up the Binding
	Driver Configuration

	Metadata Considerations
	Defining Return Values
	Defining Input and Output Arguments

	Executing a Procedure

	Procedures
	Query Adapter
	Setting Up the Binding
	Query Adapter Interactions
	The query Interaction
	Result Recordset Formats
	The attributes XML Recordset Format
	The update Interaction
	The ddl Interaction
	The callProcedure Interaction
	The getSchema Interaction

	Query Analyzer
	The Attunity Connect Analyzer GUI
	Attunity Connect Query Analyzer Toolbar
	Attunity Connect Query Analyzer Icons

	Working with an Optimization Plan

	Query Governor
	Rdb Driver (OpenVMS Only)
	Setting Up the Binding
	Driver Configuration

	Mapping Rdb Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	Recovery
	Recovery Utility
	The Recovery Utility Toolbar

	Red Brick Driver
	Setting Up the Binding
	Driver Configuration

	Mapping Red Brick Data Types
	CREATE TABLE Data Types
	Transaction Support

	Referential Integrity
	Registering Attunity Connect
	Remove Command in Attunity Studio
	Repository
	Remote Data
	Reserved Keywords
	Reserved Keywords for SQL
	Other Reserved Keywords

	Reusable Server
	RMS CDD Metadata Import (OpenVMS Only)
	RMS Metadata Import from COBOL Copybooks (OpenVMS Only)
	RMS Driver (OpenVMS Only)
	Setting Up the Binding
	Driver Configuration

	CREATE TABLE Data Types
	Transaction Support
	Locking
	Metadata Considerations

	RRS (OS/390 and z/OS Platforms Only)
	Runtime Perspective
	Managing a Daemon
	Logs in the Runtime Perspective

	Sample Data
	Security
	Design Time
	Initial Access to a Machine
	User Authorization
	Workspace Authorization
	User Profile Access

	Runtime
	Administration
	Client Access

	Encrypting Network Communications
	Setting an Encryption Protocol
	Specifying Encrypted Communication
	Specifying the Encryption Key on the Server Machine
	Encryption as Part of the JDBC Connect String

	Segmented Data Sources
	Environment Parameters for Segmented Data Sources

	Server Machine
	Server Mode
	Single Client
	Snapshot of the Metadata
	SQL
	SQL Server (ODBC) and SQL Server Drivers
	Setting Up the Binding
	Driver Configuration

	Mapping SQL Server Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	SQL Syntax
	The SELECT Statement
	The FROM Clause
	The WHERE Clause
	The GROUP BY and HAVING Clauses
	The ORDER BY Clause
	Set Operators on SELECT Statements

	The SELECT XML Statement
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement
	The CREATE TABLE Statement
	The DROP TABLE Statement
	The CREATE INDEX Statement
	The CREATE VIEW Statement
	The DROP VIEW Statement
	The CREATE PROCEDURE Statement
	The DROP PROCEDURE Statement
	The CALL Statement
	The CREATE SYNONYM Statement
	The DROP SYNONYM Statement
	The GRANT Statement
	Transaction Statements
	The BEGIN Statement
	The COMMIT Statement
	The ROLLBACK Statement

	Constant Formats
	Expressions <expr>
	Functions
	Aggregate Functions
	Conditional Functions
	Data Type Conversion Functions
	Date and Time Functions
	Numeric Functions and Arithmetic Operators
	String Functions

	Parameters
	Search Conditions and Comparison Operators
	Passthru Query Statements (bypassing Attunity Connect Query Processing)

	SQL/MP Driver
	Setting Up the Binding
	Driver Configuration

	Mapping SQL/MP Data Types
	CREATE TABLE Data Types
	Mapping SQL/MP Table Names
	SQL/MP Primary Keys
	Partitioned Tables
	Transaction Support
	Isolation Levels and Locking

	SQS
	Stored Procedure
	Subquery
	Sybase Driver
	Setting Up the Binding
	Driver Configuration
	Checking Sybase Environment Variables

	Mapping Sybase Data Types
	CREATE TABLE Data Types
	Stored Procedures
	Transaction Support
	Isolation Levels and Locking

	Syntax File (NAV.SYN)
	SYS
	System Parameters (OpenVMS Only)
	Text-Delimited File Driver
	Setting Up the Binding
	Driver Configuration

	Metadata Considerations

	Thin Client
	Transaction Management
	Using Attunity Connect as a Stand-Alone Transaction Coordinator
	Attunity Connect Driver Capabilities
	Attunity Connect Adapter Capabilities
	Distributed Transactions
	Transaction Log File
	The CommitConfirm Table

	Recovery

	Troubleshooting
	Checking and Specifying Log Files
	Communication Factors
	Checking the TCP/IP Configuration of a Machine
	Checking Daemon Activity
	Checking Status

	Tuning
	Tuning the Query Processor
	Tuning the SQL
	Tuning a Daemon
	Optimization Strategies
	Buffer Sizes

	Tuxedo Adapter
	Setting Up Tuxedo
	Setting Up the Binding
	The Adapter Definition
	Importing Metadata Using a BEA Jolt Bulk Loader File
	Importing Metadata Using FML/VIEW Files

	Transaction Support

	Two-Phase Commit
	UDL
	User-Defined Data Type – UDT
	User Information in Application Connect Strings
	User Profiles
	Accessing the User Profile
	Managing a User Profile

	User Quotas (OpenVMS Only)
	Virtual
	Virtual Database
	What Can a Virtual Database Include?
	Setting Up the Binding
	Metadata Considerations
	Defining Tables
	Creating Synonyms
	Defining Stored Procedures
	Creating Views

	Using a Virtual Database

	Virtual Driver
	Setting Up the Binding
	Driver Configuration

	Virtual Tables
	VSAM Driver
	VSAM Data Source Restrictions
	Setting Up the Binding
	Driver Configuration

	CREATE TABLE Data Types
	Metadata Considerations

	VSAM Under CICS Driver
	Setting Up the Binding
	Driver Configuration

	Transaction Support
	Metadata Considerations

	Workspace
	Workspace Configuration
	Defining a New Workspace

	Workspace for HP NonStop Server Environment File (HP (Compaq) NonStop Only)
	[PARAM] Section
	[DEFINE class name] Sections

	Workspace for OS/390 Server Environment File (OS/390 and z/OS Only)
	Writing Queries Using Attunity Connect SQL
	Writing Efficient SQL

	XML
	XML Transports
	Passing XML Documents via TCP/IP
	Passing XML Documents via HTTP (Using the NSAPI Extension)

